LOWER BOUNDS FOR THE DISCREPANCY OF INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS WITH POWER OF TWO MODULUS

JÜRGEN EICHENAUER-HERRMANN AND HARALD NIEDERREITER

ABSTRACT. The inversive congruential method with modulus $m = 2^{\omega}$ for the generation of uniform pseudorandom numbers has recently been introduced. The discrepancy $D_{m/2}^{(k)}$ of k-tuples of consecutive pseudorandom numbers generated by such a generator with maximal period length m/2 is the crucial quantity for the analysis of the statistical independence properties of these pseudorandom numbers by means of the serial test. It is proved that for a positive proportion of the inversive congruential generators with maximal period length, the discrepancy $D_{m/2}^{(k)}$ is at least of the order of magnitude $m^{-1/2}$ for all $k \ge 2$. This shows that the bound $D_{m/2}^{(2)} = O(m^{-1/2}(\log m)^2)$ established by the second author is essentially best possible.

1. INTRODUCTION AND NOTATION

In the last years inversive congruential pseudorandom number generators have been introduced and analyzed (cf. [1, 2, 3, 4]) as alternatives to linear congruential generators. The latter generators show too much regularity in the distribution of k-tuples of consecutive pseudorandom numbers for certain simulation purposes [1]. In the present paper the inversive congruential method with power of two modulus is considered.

Let $m = 2^{\omega}$ for some integer $\omega \ge 6$, $\mathbb{Z}_m = \{0, 1, \ldots, m-1\}$, and write G_m for the set of all odd integers in \mathbb{Z}_m . For $c \in G_m$, let $\overline{c} \in G_m$ be the multiplicative inverse of c modulo m, i.e., \overline{c} is the unique element of G_m with $c\overline{c} \equiv 1 \pmod{m}$. Let $a, b, y_0 \in \mathbb{Z}_m$ be integers with $a \equiv 1 \pmod{4}$, $b \equiv 2 \pmod{4}$, and $y_0 \in G_m$. Define a sequence $(y_n)_{n\ge 0}$ of elements of G_m by the recursion

(1)
$$y_{n+1} \equiv a\overline{y}_n + b \pmod{m}, \quad n \ge 0.$$

A sequence $(x_n)_{n\geq 0}$ of uniform pseudorandom numbers is obtained by setting $x_n = y_n/m$ for $n \geq 0$. The numbers x_n , $n \geq 0$, are called *inversive congruential pseudorandom numbers*. It has been shown in [2] that the sequence $(y_n)_{n\geq 0}$ is purely periodic with period length m/2, and that $\{y_0, y_1, \ldots, y_{(m/2)-1}\} = G_m$.

©1992 American Mathematical Society 0025-5718/92 \$1.00 + \$.25 per page

Received May 3, 1990.

¹⁹⁹¹ Mathematics Subject Classification. Primary 65C10; Secondary 11K45.

Key words and phrases. Pseudorandom number generator, inversive congruential method, power of two modulus, discrepancy.

The behavior of these pseudorandom numbers under the *k*-dimensional serial test for the full period has been investigated in [3] for k = 2. This test employs the discrepancy of *k*-tuples of consecutive pseudorandom numbers. For N arbitrary points \mathbf{t}_0 , \mathbf{t}_1 , ..., $\mathbf{t}_{N-1} \in [0, 1)^k$, the discrepancy is defined by

$$D_N(\mathbf{t}_0, \mathbf{t}_1, \ldots, \mathbf{t}_{N-1}) = \sup_J |F_N(J) - V(J)|,$$

where the supremum is extended over all subintervals J of $[0, 1)^k$, $F_N(J)$ is N^{-1} times the number of terms among \mathbf{t}_0 , $\mathbf{t}_1, \ldots, \mathbf{t}_{N-1}$ falling into J, and V(J) denotes the k-dimensional volume of J. If $(x_n)_{n\geq 0}$ is a sequence of inversive congruential pseudorandom numbers with modulus m and period length m/2, then the points

$$\mathbf{x}_n = (x_n, x_{n+1}, \dots, x_{n+k-1}) \in [0, 1)^k, \qquad 0 \le n < m/2,$$

are considered and

$$D_{m/2}^{(k)} = D_{m/2}(\mathbf{x}_0, \mathbf{x}_1, \ldots, \mathbf{x}_{(m/2)-1})$$

is written for their discrepancy. It has been proved in [3] that

$$D_{m/2}^{(2)} = O(m^{-1/2}(\log m)^2),$$

where the implied constant is absolute.

In the present paper it is shown that for a given modulus m there exist multipliers a in the inversive congruential method (1) such that the discrepancy $D_{m/2}^{(k)}$ is at least of the order of magnitude $m^{-1/2}$ for all dimensions $k \ge 2$ and all increments b. Therefore, the upper bound $D_{m/2}^{(2)} = O(m^{-1/2}(\log m)^2)$ is in general best possible up to the logarithmic factor. Similar results for inversive congruential generators with prime modulus have been obtained recently in [4].

2. AUXILIARY RESULTS

In the following the abbreviation $e(u) = e^{2\pi i u}$ for $u \in \mathbb{R}$ is used, and $\mathbf{u} \cdot \mathbf{v}$ stands for the standard inner product of \mathbf{u} , $\mathbf{v} \in \mathbb{R}^k$. A proof of Lemma 1 is given in [4].

Lemma 1. Let \mathbf{t}_0 , \mathbf{t}_1 , ..., \mathbf{t}_{N-1} be N arbitrary points in $[0, 1)^k$ with discrepancy $D_N = D_N(\mathbf{t}_0, \mathbf{t}_1, \dots, \mathbf{t}_{N-1})$. Then

$$\left|\sum_{n=0}^{N-1} e(\mathbf{h} \cdot \mathbf{t}_n)\right| \leq \frac{2}{\pi} \left(\left(\frac{\pi+1}{2}\right)^l - \frac{1}{2^l} \right) N D_N \prod_{j=1}^k \max(1, 2|h_j|)$$

for any nonzero vector $\mathbf{h} = (h_1, \ldots, h_k) \in \mathbb{Z}^k$, where l is the number of nonzero coordinates of \mathbf{h} .

Let $H_m = \{a \in \mathbb{Z}_m | a \equiv 1 \pmod{8}\}$ be a subset of the set of admissible multipliers in the inversive congruential method (1). For integers c, put $\chi(c) = e(c/m)$ and

$$L_{\chi}(c) = \sum_{a \in H_m} \chi(ac).$$

A straightforward calculation shows that

(2)
$$L_{\chi}(c) = \begin{cases} \frac{m}{8}\chi(c) & \text{for } 8c \equiv 0 \pmod{m}, \\ 0 & \text{for } 8c \not\equiv 0 \pmod{m}. \end{cases}$$

Lemma 2. If $c, d \in G_m$ with $8(c+d) \equiv 0 \pmod{m}$, then $\chi(c+d)\chi(\overline{c}+\overline{d}) = 1$. *Proof.* Let $c, d \in G_m$ with $8(c+d) \equiv 0 \pmod{m}$. Then there exists an integer $j \in \{0, 1, \ldots, 7\}$ with $d \equiv j(m/8) - c \pmod{m}$. Since $c \equiv \overline{c} \pmod{8}$ and $m \ge 64$, it follows that $\overline{d} \equiv -j(m/8) - \overline{c} \pmod{m}$. Hence, $\overline{c} + \overline{d} \equiv -(c+d) \pmod{m}$, which yields $\chi(c+d)\chi(\overline{c}+\overline{d}) = 1$. \Box

Observe that for integers c, $d \in G_m$ the condition $8(c+d) \equiv 0 \pmod{m}$ is equivalent to $8(\overline{c} + \overline{d}) \equiv 0 \pmod{m}$. For integers a, define

$$K_{\chi}(a) = \sum_{c \in G_m} \chi(c + a\overline{c}).$$

Note that $K_{\chi}(a)$ is always real, which can be seen by changing c into -c in the summation.

Lemma 3. There holds

$$\sum_{a\in H_m} (K_{\chi}(a))^2 = \frac{m^2}{2}.$$

Proof. An application of equation (2) and Lemma 2 yields

$$\sum_{a \in H_m} (K_{\chi}(a))^2 = \sum_{a \in H_m} \sum_{c, d \in G_m} \chi(c + d + a(\overline{c} + \overline{d}))$$
$$= \sum_{c, d \in G_m} \chi(c + d) L_{\chi}(\overline{c} + \overline{d})$$
$$= \frac{m}{8} \sum_{\substack{c, d \in G_m \\ 8(\overline{c} + \overline{d}) \equiv 0 \pmod{m}}} \chi(c + d) \chi(\overline{c} + \overline{d}) = \frac{m^2}{2}. \quad \Box$$

Lemma 4. Let $0 < t \le 2$. Then there are more than A(t)m/8 values of $a \in H_m$ for which $|K_{\chi}(a)| \ge tm^{1/2}$, where $A(t) = (4 - t^2)/(8 - t^2)$.

Proof. The lemma will be proved by contradiction. Suppose that $|K_{\chi}(a)| \ge tm^{1/2}$ for at most A(t)m/8 values of $a \in H_m$. Then $|K_{\chi}(a)| < tm^{1/2}$ for at least (1 - A(t))m/8 values of $a \in H_m$. Now observe that $K_{\chi}(a)$ coincides with the Kloosterman sum S(1, a; m) as defined by Salié [5]. Hence, it follows from results of Salié [5] that $|K_{\chi}(a)| \le \sqrt{8}m^{1/2}$ for all $a \in H_m$. Therefore,

$$\sum_{a\in H_m} (K_{\chi}(a))^2 < (1-A(t))\frac{t^2m^2}{8} + A(t)m^2 = \frac{m^2}{2},$$

which is a contradiction to Lemma 3. \Box

3. Lower bounds for the discrepancy $D_{m/2}^{(k)}$

The main results of the present paper are summarized in the following two theorems.

Theorem 1. Let $m = 2^{\omega}$ with $\omega \ge 6$, and let $0 < t \le 2$. Then there exist more than A(t)m/8 multipliers $a \in \mathbb{Z}_m$ with $a \equiv 1 \pmod{8}$ such that for all increments $b \in \mathbb{Z}_m$ with $b \equiv 2 \pmod{4}$ the discrepancy of the corresponding inversive congruential generator (1) satisfies

$$D_{m/2}^{(k)} \ge \frac{t}{\pi+2}m^{-1/2}$$

for all dimensions $k \ge 2$, where $A(t) = (4 - t^2)/(8 - t^2)$. *Proof.* First, Lemma 1 is applied with $k \ge 2$, N = m/2, $\mathbf{t}_n = \mathbf{x}_n$ for $0 \le n < 1$

m/2, and $\mathbf{h} = (1, 1, 0, ..., 0) \in \mathbb{Z}^k$. This yields

$$(\pi+2)mD_{m/2}^{(k)} \ge \left|\sum_{n=0}^{m/2-1} e(\mathbf{h}\cdot\mathbf{x}_n)\right| = \left|\sum_{n=0}^{m/2-1} e\left(\frac{1}{m}(y_n+y_{n+1})\right)\right|$$
$$= \left|\sum_{n=0}^{m/2-1} \chi(y_n+a\overline{y}_n)\right| = |K_{\chi}(a)|.$$

Now, the assertion follows from Lemma 4. \Box

Observe that according to Theorem 1 there exist inversive congruential generators (1) with maximal period length m/2 and

$$D_{m/2}^{(k)} \ge \frac{2}{\pi+2}m^{-1/2}$$

for all dimensions $k \ge 2$.

Theorem 2. Let $m = 2^{\omega}$ with $\omega \ge 6$, and let $0 < t \le 2$. Then there exist more than A(t)m/8 multipliers $a \in \mathbb{Z}_m$ with $a \equiv 5 \pmod{8}$ such that for all increments $b \in \mathbb{Z}_m$ with $b \equiv 2 \pmod{4}$ the discrepancy of the corresponding inversive congruential generator (1) satisfies

$$D_{m/2}^{(k)} \ge \frac{t}{3(\pi+2)}m^{-1/2}$$

for all dimensions $k \ge 2$, where $A(t) = (4 - t^2)/(8 - t^2)$.

Proof. First, Lemma 1 is applied with $k \ge 2$, N = m/2, $\mathbf{t}_n = \mathbf{x}_n$ for $0 \le n < m/2$, and $\mathbf{h} = (1, -3, 0, ..., 0) \in \mathbb{Z}^k$. This yields

$$3(\pi+2)mD_{m/2}^{(k)} \ge \left|\sum_{n=0}^{m/2-1} e(\mathbf{h} \cdot \mathbf{x}_n)\right| = \left|\sum_{n=0}^{m/2-1} e\left(\frac{1}{m}(y_n - 3y_{n+1})\right)\right|$$
$$= \left|\sum_{n=0}^{m/2-1} \chi(y_n - 3a\overline{y}_n)\right| = |K_{\chi}(-3a)|.$$

Now, the assertion follows from Lemma 4, since $a \equiv 5 \pmod{8}$ if and only if $-3a \equiv 1 \pmod{8}$. \Box

Bibliography

- 1. J. Eichenauer and J. Lehn, A non-linear congruential pseudo random number generator, Statist. Papers 27 (1986), 315-326.
- 2. J. Eichenauer, J. Lehn, and A. Topuzoğlu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988), 757-759.
- 3. H. Niederreiter, The serial test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52 (1989), 135-144.
- 4. ____, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers, Math. Comp. 55 (1990), 277-287.
- 5. H. Salié, Über die Kloostermanschen Summen S(u, v; q), Math. Z. 34 (1932), 91–109.

Fachbereich Mathematik, Technische Hochschule, Schlossgartenstrasse 7, D-6100 Darmstadt, Germany

Institute for Information Processing, Austrian Academy of Sciences, Sonnenfelsgasse 19, A-1010 Vienna, Austria

E-mail address: nied@qiinfo.oeaw.ac.at