
T6hoku Math. Journ.
36 (1984), 185-189.

LOWER BOUNDS FOR THE EIGENVALUES OF THE FIXED
VIBRATING MEMBRANE PROBLEMS

HAJIME URAKAWA

(Received March 18, 1983)

1. Introduction. Let Q be a bounded domain of the Euclidean space
Rn with appropriately regular boundary BQ. We consider the classical
fixed vibrating membrane problem:

An = Xu on Q and u = 0 on BQ .

Here A is the standard Laplacian — 2?=i32/3(Xi)2 of the Euclidean space
Rn. Let {\ < X,2 <; • • • <; Xk <; • - • f oo} be the eigenvalues of this problem
counted with their multiplicities.

G. Polya conjectured (cf. [8])

(1.1) Xk ^ CnVo\(Q)-2/nk2/n for every k ,

which was proved by him in case of space-covering domains Q. That
is, an infinity of domains congruent to Q cover the whole space Rn

without gaps and without overlapping except a set of measure zero.
Here the positive constant Cn is An2a)-2/n, con = nn/2/r((n/2) + 1) is the
volume of the unit ball and Vol (Q) is the volume of Q. The conjecture
of Polya is closely related to H. Weyl's asymptotic formula (cf. [10])

(1.2) Xk - Cn Vol (Q)~2/nk2/n a s k -> 00 ,

which shows the sharpness of Polya's bounds for higher eigenvalues.
E. H. Lieb [5] has showed that (1.1) is true when Cn is replaced by

a smaller constant D~2/n where A"2/3 = C3x 0.2773 and A = 0.1156. Re-
cently S. Y. Cheng and P. Li (cf. [11, p. 22]) showed

(1.3) A* ̂  An Vol (Q)-2/nk2/n for every k ,

which is valid for general compact riemannian manifold with smooth
boundary. Here the constant An is 2cn~1e~2/n, c = c'2 ((n—2)/(2n—2)f and
cf is the Sobolev constant na)Hn which satisfies the inequality Vol (8Q)n ^
c'n Vol (Q)n~\ It should be noted that the constant An is asymptotically
c^"1^"1 as n —> c>o.

In this paper, we show the following:

THEOREM 1. For every eigenvalue Xk of the fixed vibrating membrane
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problem for a bounded domain Q in the Euclidean space Rn, we have

(1.4) Xk ̂  Cn Vol {QY2/nk2/n8L{Q)2/n ,

where the constant dL(Q) is the lattice packing density of Q (cf. [9, p.
22] or §2).

Here we note some remarks for the constant dL(Q) of the inequality
(1.4).

REMARK 1. For space-covering domains 42, dL(Q) = 1. Theorem 1 can
be regarded as a natural generalization of Polya's result.

REMARK 2. For convex bounded domains 42 in Rn, it is known (cf.
[9, p. 10]) that

(1.5) dL(i2)^2(n\y/(2n)l .

In particular, when n = 2,

(1.6) dL(Q) ^ 3/4 = 0.75 (cf. [12]) .

Since the right hand side of (1.5) is asymptotically 2{nn)mArn (cf. [9, p.
10]) as n —> °o 9 we have

(1.7) dL(Q)2/n ^ (2(nl)2/(2n)l)2/n ~ 1/16 = 0.0625 as n -> oo ,

which shows the sharpness of (1.4) for large n.

REMARK 3. For a symmetrical (i.e.,— xei2 whenever xeQ) convex
bounded domain 42,

(1.8) 8L{Q) ̂  CM/2- 1 , C(n) = ± k~n .

When n — 3, for all symmetrical convex bounded domains 42 in JB3,

(1.9) ^(42)2/3 ^ 0.4486 ,

which is sharper than the constant of Lieb in this case.

2. Lattice packing of bounded domain.

2.1. Following Rogers [9], we explain the lattice packing density
8L(D) for a bounded domain 42 in the Euclidean space Rn. If {alf • • •, an)
is a basis of Rn, the set A = A{au --,an) of all vectors of the form
S n W i f l M e Z , i = 1, • • •, n) is called a lattice. Let {ax, a2, • • •, an, an+1,
• • •} be an enumeration of the points of A. A system Z = ZAiQ consisting
of the translates Q + at — {x + at\ x e 42} of a given bounded domain 42
is called a lattice packing of 42 with lattice A when 42 + at n 42 + a5 = 0
(t :£ J). For such a lattice packing Z, put
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p(Z, C) = Vol(C)-^+ oS^ Vol(fl + a,) ,

where C is a cube in Rn with the edge length s(C). Define

p(Z) = lim sup |0(Z, C) <: 1 .
«(C)-oo

The lattice packing density 8L(Q) (cf. [9, p. 24]) of Q is defined by

8L{Q) = sup p{Z) ,
z

the supremum being taken over all lattice packings Z of the set Q.

2.2. Translating a bounded domain Q in /Jn, we may assume the
origin o of Rn belongs to Q. For a small positive constant h, put 42̂  =
{hx;xeO}. Then

(2.1) Vol(flfc) = /^nVol(i2) .

Let K be the open unit cube {xe Rn; \xt\ < 1/2 (i = 1, • • -, ^} in Rn. For
a lattice packing ZAth of i2A with lattice A = A(alf • • • , a j , let i3(fe, A)
be the union of Qh + a, (i = 1, 2, • • -) which are included in If (see
Figure 1).

s o Co OLD G_D S O v
FIGURE 1. Lattice packing ^ , / t of i2^ and Q(h, A).

Let m(fe, A) be the number of Qh + a, (i = 1, 2, • •.) being included
in K. For a small positive number fe, define

m(h) = sup

where the supremum is taken over all lattice packings ZA>h of Qh. Then
it is clear that

(2.2)

Moreover we have:

(2.3)

lira m(h) =
fc0

lim sup sup Vol (Q(h, A)) ^ 8L(Q) ,
h-+0 ZA,h
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where the supremum is taken over all lattice packings ZAth of Qh.

REMARK. I t seems that the above inequality is in fact the equality.

PROOF OF (2.3). By (2.1), the left hand side of (2.3) coincides with

lim sup sup Vol (i- KY' £ Vol (Q + a,) ,

where Z varies over all lattice packings of Q and (l/h)K = {(l/h)x; xe K).
Then we have

sup Vol (i- KY £ Vol (Q + ax) ̂  Vol (±- KY' £ Vol (Q + bt)

Vol (^KY1 S Vol (fi + 6,) - hn\2ns(Q)(± + 2s(Q)Y~1\ ,

for any lattice packing ZA, of Q with lattice ,4 '= yl(&!, •••,&„). Here
s(i2) is the length of the edge of any fixed cube including 42. Therefore
the left hand side of (2.3) is not less than

lim sup Vol (-1 KY £ Vol (Q + b%) = p{ZA.) ,

for any lattice packing ZA, of Q with lattice A! — A(bu • • •, &J. Thus we
have (2.3).

Combining (2.1) and (2.3), we have immediately

(2.4) lim m(h)hn ^ 8L(Q) Vol {Q)~l .
h-* 0

3. Proof of Theorem 1. Let Q be any bounded domain in Rn. We
preserve the notations and situations in §2.

For the A>th eigenvalue Xk(Q) of the fixed vibrating membrane
problem for Q, it is well-known that

(3.1) lim Xk(K)k~2/n = Cn , and
k—*oo

(3.2) \*(i2J = h-2Xk(Q) , k = 1, 2, • • • ,

for every positive number h. Moreover for every lattice packing ZA>h

of Qh with lattice A, we have

(3.3) Xkm[hiA){K) ^ \4(0i) for every k = 1, 2, • - - ,

because of the inequalities

Xkm{h>A)(K) ^ ^ ( ^ ^ ( ^ ( f c , A)) ^

by [3, p. 408, Theorem 2]. Therefore we have
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(3.3') Km{h)(K) ^
Then we obtain

\k(Q) = fc%(fl4) (by (3.2))

^ VXkm{k){K) (by (3.3'))

for all Zc = 1, 2, • • • and A > 0. Letting fe^O on the right hand side of
the above inequality, we have

= ilimXkm{h)(K)(km(h))-2/n\\limm(h)2/nh2\k2/n

lim
h-*Q

by (2.2), (3.1) and (2.4). Thus we have Theorem 1.
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