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Abstract. Let G be a graph with n vertices and λ1, λ2, . . . , λn be its eigenvalues. The Estrada

index of G is defined as EE(G) =
∑

n

i=1
eλi . In this paper, new lower bounds for the Estrada index

are established.
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1. Introduction. Throughout this paper, let G be an undirected simple graph

with n vertices and m edges. We say that G is an (n,m)-graph. Let the spectrum

of G be λ1, λ2, . . . , λn arranged in a non-increasing order. The properties of graph

spectrum can be found in [1]. The Estrada index [3] is a spectrum-based graph

invariant promoted by Estrada [4, 5, 6, 7, 8, 9] and defined by

EE = EE(G) =

n
∑

i=1

eλi .(1.1)

The Estrada index was used to study the folding degree of proteins and other

long-chain molecules [4, 5, 6, 9]. It also has numerous applications in the vast field

of complex networks [7, 8, 13, 14, 17]. A number of properties especially lower and

upper bounds [3, 10, 11, 12, 15, 16, 18, 19, 20] for the Estrada index are known. In

this paper, we establish further lower bounds improving some results in [3, 12].

2. Preliminaries. We begin by some notation that will be used in the following

proofs of results.

For 1 ≤ i ≤ n, let di be the degree of vertex vi in G. The first Zagreb index [2]

of the graph G is defined as Zg(G) =
∑n

i=1
d2i . For k = 0, 1, 2, . . . , let Mk = Mk(G)

be the kth spectral moment of a graph G,

Mk =

n
∑

i=1

λk
i .
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From (1.1) we have

EE(G) =
∑

k≥0

Mk(G)

k!
.(2.1)

Recall that Mk is the number of close walks of length k in the graph [1]. The first few

spectral moments of an (n,m)-graph G are well known: M0 = n, M1 = 0, M2 = 2m

and M3 = 6t, where t = t(G) is the number of triangles in G. Denote by Kn the

complete graph on n vertices.

Lemma 2.1 ([19]). Let G be a graph with m edges. For k ≥ 4,

Mk+2 ≥ Mk,

with equality for all even k ≥ 4 if and only if G consists of m copies of K2 and possibly

isolated vertices, and with equality for all odd k ≥ 5 if and only if G is a bipartite

graph.

The following is an immediate result of Lemma 2.1.

Corollary 2.2. Let G be an (n,m)-graph. For k ≥ 4, we have

n
∑

i=1

(2λi)
k+2

≥ 4

n
∑

i=1

(2λi)
k,

with equality for all even k ≥ 4 if and only if G consists of m copies of K2 and possibly

isolated vertices, and with equality for all odd k ≥ 5 if and only if G is a bipartite

graph.

3. Results. In this section, we present our lower bounds for the Estrada index

and compare them to some existing bounds.

Theorem 3.1. Let G be an (n,m)-graph. Then we have

EE(G) ≥

√

n2 + 4m+ 8t+

(

e2 + e−2

2
− 3

)

M4 +

(

e2 − e−2

2
−

10

3

)

M5 ,(3.1)

with equality if and only if n = 2 or m = 0.

As a simple example, for G = K2, it follows from the above result that EE(K2) =

e + e−1 since n = M4 = 2, m = 1 and t = M5 = 0. This is confirmed by directly

applying definition (1.1).

Proof. From the definition of (1.1), we have

EE2 =

n
∑

i=1

e2λi + 2
∑

i<j

eλieλj .(3.2)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 664-668, July 2012



ELA

666 Y. Shang

By the arithmetic and geometric mean inequality and the fact that M1 = 0,

2
∑

i<j

eλieλj ≥ n(n− 1)





∏

i<j

eλieλj





2
n(n−1)

= n(n− 1)





(

n
∏

i=1

eλi

)n−1




2
n(n−1)

= n(n− 1)
(

eM1
)

2
n = n(n− 1),(3.3)

where the equality holds if and only if λi + λj are equal for all i < j. This condition

is tantamount to the fact that λ1 = · · · = λn or n = 2. Therefore, the equality in

(3.3) holds if and only if m = 0 or n = 2.

In view of the properties of M0, M1, M2 and M3, we obtain

n
∑

i=1

e2λi =

n
∑

i=1

∑

k≥0

(2λi)
k

k!

= n+ 4m+ 8t+
n
∑

i=1

∑

k≥4

(2λi)
k

k!

= n+ 4m+ 8t+
∑

k≥2

∑n

i=1
(2λi)

2k

(2k)!
+
∑

k≥2

∑n

i=1
(2λi)

2k+1

(2k + 1)!
.(3.4)

Invoking Corollary 2.2, we get

n
∑

i=1

e2λi ≥ n+ 4m+ 8t+
∑

k≥2

4k−2
∑n

i=1
(2λi)

4

(2k)!
+
∑

k≥2

4k−2
∑n

i=1
(2λi)

5

(2k + 1)!

= n+ 4m+ 8t+

(

e2 + e−2

2
− 3

)

M4 +

(

e2 − e−2

2
−

10

3

)

M5,(3.5)

with equality holding if and only if G consists of m copies of K2 and possibly isolated

vertices.

Combining with (3.3) and (3.5), we obtain the desired lower bound (3.1), with

equality if and only if n = 2 or m = 0.

Corollary 3.2. Let G be an (n,m)-graph. Then we have

EE(G) ≥
√

n2 + 4m+ (e2 + e−2 − 6)(Zg(G)−m) + [15(e2 − e−2)− 92] t,(3.6)

with equality if and only if n = 2 or m = 0.

Proof. Recall that we have [1]

M4 = 2Zg(G)− 2m+ 8q,
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where q is the number of quadrangles in G, and

M5 = 30t+ 10p+ 10r,

where p is the number of pentagons, and r is the number of subgraphs consisting

of a triangle with a pendent vertex attached. When n = 2 or m = 0, we have

p = q = r = 0. The result then follows directly from Theorem 3.1.

When n = 2 or m = 0, we clearly have t = 0. Thus, we have the following

corollary.

Corollary 3.3. Let G be an (n,m)-graph. Then we have

EE(G) ≥
√

n2 + 4m+ (e2 + e−2 − 6)(Zg(G)−m),(3.7)

with equality if and only if n = 2 or m = 0.

For an (n,m)-graph G, it is proved in [3] that

EE(G) ≥
√

n2 + 4m+ 8t.(3.8)

Our bound in (3.1) is obviously better than the bound in (3.8). Recently, the lower

bound is improved to [12]

EE(G) ≥

√

n2 + 5
1

3
m+ 8t.(3.9)

By noting that M4 ≥ 2m and M5 ≥ 0, we have

(

e2 + e−2

2
− 3

)

M4 >
4

3
m,

and hence, our bound in (3.1) is better than the one in (3.9).

In [18] it is shown that if n ≥ 2,

EE(G) ≥ eλ1 + (n− 1)e−
λ1

n−1 .(3.10)

Clearly, the bounds in (3.1) and (3.10) are incomparable in general.
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