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AVERAGE RISK OF A SEQUENTIAL PROCEDURE!
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Summary. Sections 1-6 are concerned with lower bounds for the expected
sample size, Eo(N), of an arbitrary sequential test whose error probabilities at
two parameter points, 6, and 6;, do not exceed given numbers, e; and a5, where
Ey(N) is evaluated at a third parameter point, 8. The bounds in (1.3) and
(1.4) are shown to be attainable or nearly attainable in certain cases where 6,
lies between 6, and 6, . In Section 7 lower bounds for the average risk of a general
sequential procedure are obtained. In Section 8 these bounds are used to derive
further lower bounds for Eo(N) which in general are better than (1.3).

1. Introduction and main results. Let X, X5, - - - be a sequence of independent
random variables having a common probability density f with respect to a
o-finite measure z. One of two decisions, d, and dz, is to be made. Let f; and f;
be two probability densities such that decision d» (d;) is considered as wrong if
f = fi(fz). We shall consider sequential tests (decision rules) for making decision
d, or d, , such that the probability of a wrong decision does not exceed a positive
number a; when f = f; (¢ = 1, 2). Let N denote the (random) number of ob-
servations required by such a test. This paper is mainly concerned with lower
bounds for Eq(N), the expected sample size when f = fo, where f; is in general
different from f; and f. .

The background of this problem is as follows. Suppose that f depends on a
real parameter 8 and f; corresponds to the value 6;, where 6, < 6;. Suppose
further that decision d; or d; is preferred according as 6 < 6, 0or § = 6,, and
that neither decision is strongly preferred if 6, < 8 < 6, . If we require that the
probability of a wrong decision does not exceed ai(as) if 8 < 6 (0 = 6,), the
condition of the preceding paragraph will be satisfied. (In many important cases
a test which satisfies the latter condition also satisfies the former.) It is known
[14] that Wald’s sequential probability ratio (SPR) test for testing 8, against
6y , with error probabilities equal to 1 and «p, minimizes the expected sample
size at these two parameter values. In typical cases its expected sample size is
largest when 6 is between 6; and 6, (thafc is, when neither decision is strongly
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preferred), and in general there exist tests whose expected sample size at these
intermediate 8 values is smaller than that of the SPR test. (A special case in
which a SPR test minimizes the maximum expected sample size will be discussed
in Section 4.) In principle it is possible to construct a test which minimizes the
expected sample size at an arbitrary ¢ value or minimizes the maximum expected
sample size. Kiefer and Weiss [7] have proved important qualitative properties
of such tests. The actual construction, however, of a test having this property,
as well as the evaluation of its expected sample size and its error probabilities,
meets with difficulties which have not been overcome so far (except for a few
special cases). Therefore attempts have been made to find a test which, without
actually minimizing the maximum expected sample size, comes close to this
goal, or at least substantially improves upon the performance of known tests.
I mention in particular the work of Donnelly [5] and T. W. Anderson [1] who,
independently of each other, considered a class of-tests such that, if # is the
mean of a normal distribution, the boundaries for the cumulative sums are not
parallel lines, as in the SPR test, but converging straight lines. (Anderson also
considered truncated tests of this type.) The performance of these and other
tests can, to some extent, be judged by comparing, at any parameter point 8,
the expected sample size of the test with the smallest expected sample size
attainable by any test having the same error probabilities at 6, and ;. In the
ignorance of the minimum expected sample size, the comparison may be made
with a lower bound for this minimum. If the discrepancy is small, both the test
(as judged by this criterion) and the bound cannot be greatly improved. Our
main concern will be with bounds which are best when 6 is between 8, and 6.

We admit arbitrary (in general, randomized) sequential tests which terminate
with probability one under each of f;, f1 and fo . We also assume, with no loss
of generality, that Eo(N) < . To exclude trivialities, we suppose that a; +
[22] < 1.

The first lower bound for the expected sample size was given by Wald ([11],
p. 156) who proved, for the case fo = f;, that

BN = @108 (ar/(1 = e0) + (1 = e) log (1 — on)/an)

1.1

) [ fltog (1/$:)) s

and an analogous inequality for fo = f5 . (Wald’s proof assumes a nonrandomized
test, but this restriction is easy to remove.) Both the numerator and the denomi-
nator in (1.1) are positive (since log z > 1 — z " for z > O unless z = 1); the
integral in the denominator can be equal to 4+ «, in which case the lower bound
has the trivial value 0. The sign of equality in (1.1) can be attained with a
SPR test in the case where the ratio fi/f. takes on the two values C and 1/C
only, provided that the values a; and as can be achieved as error probabilities
in this test. In certain other cases the sign of equality can be nearly attained
with a SPR test.
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The following extension of (1.1) to the case of an arbitrary f, has been given
by the author [6]:
—log [ai(l — )™ + (1 — &)°az™]
¢ [ oo (fu/fd) du + (1 = ) [ follog (fo/fe)) ds

For fo = fi and ¢ — 1, (1.2) reduces to (1.1). This bound is likely to be close
when f; is close to £, or fa.
In this paper two new inequalities will be proved,

> .
(12) BoN) = sup

1 — o0 — a2

>
3) e [ min (o 5s,5) d

and

(14) By = /4" = ¢ log g_(2a1 + o)l — 7/4)"

where

(15) ¢ =max (5,80, 6= [fllog o) de,  i=12,
and

(16) = [ (o (/) — i + o du.

Note that {; = 0, and {; > 0 if fy and f; are densities of different distributions.
In the proof of (1.4) it will be assumed that, in addition to the existence of
the integrals in (1.5) and (1.6),

(1.7) fo(z) = 0 implies min [fi(z), fo(2)] = 0,
and that the equation

N
(1.8) Eo(2, Y5)" = mEu(N),
=
is satisfied, where
f(X;)
( ) ngl(X]) g‘l + 5-2

Concerning the last assumption we note that &1 — & = [ follog (f2/f1)] du
so that Eo(Y;) = 0 and, by (1.8), Eo(Y?) = 7°. Equation (1.8) has been proved
by Wald [9] and Wolfowitz [15] under certain conditions; see also Seitz and
Winkelbauer [8]. It certainly holds if N is bounded or if ¥; + .-+ <4 YV, is
bounded for m < N. It is clear that, if condition (1.8) is satisfied for a test
which minimizes Eq(N), then inequality (1.4) is true also for any other test. In
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particular this is true under the assumptions of Theorem 4 of Kiefer and Weiss
{7], which imply that, if a test minimizes Fo(N ), then N is bounded.

Inequalities (1.3) and (1.4) will be proved and discussed in the following
sections. Here we mention only the conditions for the attainment or near-
attainment of equality. In inequality (1.3) the sign of equality holds under
certain conditions which are typified by the following two cases. In the first
case the densities f; are arbitrary except that fo(z) = min [fi(z), fo(z)], but
a; and « are restricted to values which are attainable with a test which requires
at most one observation, x; , and decision di(d:) is made if fi(z1) — fo(z1) >
0 (<0). In the second case the f; are rectangular densities on intervals of com-
mon length such that the mean of fy is between the means of f; and f2. Then"
equality in (1.3) is attained with a version of the SPR test for arbitrary values
oy and oz .

In (1.4) strict equality is not attainable except in trivial cases. If fo, f1 and
f2 are normal probability densities with variance 1 and respective means ¢ = 0,
—d and §, then for &y = ay = a < } equality in (1.4) is nearly attained with a
fixed sample size test if o is very small and with a SPR test if « is sufficiently
large. For & = 0.05 and o = (.01, the expected sample size at § = 0 of a test
considered by Anderson [1] comes remarkably close to the lower bound in (1.4).

Lower bounds for the average risk of a general sequential procedure and
resulting improvements of inequality (1.3) are stated and proved in Sections
7 and 8.

2. Some lemmas. A randomized sequential test for deciding between d; and
ds , based on the sequence X;, X,, « -+, can be characterized by two sequences
of random variables, Yo, ¥1, Y2, --- and ¢o, ¢1, ¢2, - -+ such that ¢, = 0,
Yo+ 1+ e+ -+ £1,0 £ ¢, £ 1, and both ¢, and ¢, are functions of X, ,
-+« , X, only; ¥ and ¢, are constants. Here ¥, denotes the probability of N = =,
under the condition that the values X;, ---, X, have been observed, where N
is the number of observations taken before making & terminal decision, and
¢, and 1 — ¢, are respectively the probabilities of making decisions ds and d,
under the condition that N = n and the values X; , - - - , X,, have been observed.
A test defined in this way will be denoted by {y., ¢.}. The sequence {y,} will
be referred to as the stopping rule and {¢.} as the terminal decision rule of the
test. It will be assumed that N < o, that isys + ¢4 + - - - = 1, with probability
one when the common probability density f of the independent random variables
X,, X;, --- is any one of the functions fy, fi, fo . We note that the probability
of making decision d» when f = f; equals

Ei(¢N) = Ei(go\bnd’n)-

The probability density []j-:f:(z;) with respect to the product measure
" (n = 1) will be written f; , for short. It will be convenient to define

fi.n/fj,n =1 ifn = 0,
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in accordance with the convention that an “empty” product is equal to 1.
Similarly, the empty sum, ) j~; with n = 0, is defined to be 0. The notation ¢
will serve to denote any terminal decision rule such that forn = 1,2, ---

* 1 lf fln <f2n
(21) o ={3 AN

The following lemmas will be needed. Lemmas 1, 3, 4, 5 and 6 will be used in
the proof of inequality (1.3), Lemmas 1, 2, 4 and 7 in the proof of (1.4). Most
of the lemmas are known. The simple proofs of all but Lemma 4 are included
for convenience.

Lemma 1. If {Yn , ¢} s an arbitrary sequential test,

(2.2) Ei(¢n) + Ex(1 — ¢n) = Ei(éx) + Ex(1 — ¢w),

where the same stopping rule {Y.} is used on both sides of the inequality.
Lemuma 2. If fo(z) = 0 implies min [fi(z), fo(z)] = 0, then for any stopping
rule {¥,},

(2.3) Ey(¢w) + Es(1 ~ ¢u) = Edmin (fun, fon)/fon]-
LemMa 3. For any stopping rule {.},

(24) Ey(¢n) + Ex(1 — ¢) = Eolmin (fov, fuw, fon) /fon,

where the sign of equality holds if

(2.5) for Z min (fiv, fon)

with probability one under fi or f, .
To prove these three lemmas we note that for any test {{. , ¢}

Ei(¢n) + Ex(1 — ¢n) = o+ 1§1 f%[d’nfl,n + (1 = ¢u)fenl dp”
(2.6) B

= Yo+ EI f Yo min (f1,0 ,f2,n) du”

with equality for ¢, = éx,n = 1,2, .-+ . This proves Lemma 1.
If the condition of Lemma 2 is satisfied, we can write min (fi,n, fon) =
[min (f1,4, f2,n)/fo,nlfo.» in the integrand in (2.6), which implies Lemma 2.
Finally, using (2.6),

i) + Bl = 69) 2 b0+ 5 [ vamin Qo fim, o) da™

Upon dividing and multiplying by f.» in the integrand we obtain inequality
(2.4). The condition for equality in Lemma 3 is easy to verify.

LemMa 4. If Eo(N) < » and t(z) is a real-valued function such that Eqt(X:)]
exists, then

(2.7) Ey [JZ_J(XJ-)] = Eft(X1)]Eo(N).
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Equation (2.7) is originally due to Wald [11] and has been proved under the
present assumptions, except for the trivial extemsion to randomized tests, by
Blackwell {3]; see also Wolfowitz [15].

Lemma 5. Ifa; 2 0,0; 2 0,¢; 20,7=1, -+, n, then

(2.8) Imn(Ha,,I:Ib,,fI > _InIlmin(aj,b,-,cj).

In fact, each of a; , b;, ¢; gmm(a,, b;, ¢;).
Lemma 6. If 0 < d; é »J

=1, , n, then
(2.9) 21(1 —dj)=z1- IIld,

The sign of equality ts attained if and only if all but at most one of dv, ---, dn
are equal to 1.
Lemma 6, with the condition for equality, follows from the identity

g(l—df)—1+§dj=§2(1—dm)< gd)

Lemma 7. If U is a random variable, E(e”) = ¢"7 whenever the expectations
exist. The sign of equality holds if and only if U is equal to a constant with prob-
ability one.

Proor. Let V = U — E(U). By Taylor’s formula, ¢’ = 1 + V, with equality
only if V = 0. Hence E(e”) = 1, and the lemma follows.

3. Proof of inequality (1.3). By Lemma 1, for any test which satisfies
Ex(¢y) £ arand Bo(l — ¢n) < as,

(3.1) o + op = Eu(on) + Ea(1 — én).
By Lemma 3,

(3.2) Ex(¢n) + Ex(1 — ¢x) = Eomin (fox , fiw , fon) /fox].
By Lemma 5,

(3.3) min (fon, fin, fom) 2 gmin [fo(;), fi(z;), fe(2:)].
Hence if we write r(z) = min [fo(z), f1(z), f2(2)1/fo(z), We have

(3.4) Eo[min (fo,N ,fl,N ’ fZ,N)/fON] = EO[J];II T(Xj)]-

Note that 0 = r(z) = 1. If we apply Lemma 6 and then Lemma 4, we obtain

B[ 1) | 2 Bt - - r(XJ-)J}

=1

(3.5)
~ 1= BB ~r(6)] = 1= B [ 1= [min (5, 51, 7) du |
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Inequality (1.3) now follows from (3.1), (3.2), (3.4) and (3.5).

4. Discussion of inequality (1.3). The sign of equality in (1.3) holds if and
only if it holds in each of the inequalities (3.1), (3.2), (3.4) and (3.5). Equality
in (3.1) is attained if ¢, = ¢u and

(4.1) E¢n) = ar, Ex(1 —¢w) = ar.

By Lemma 6, equality in (3.5) holds if and only if, foreachn = 1, N = n
implies that all but at most one of 7(X,), -+, r(X,) are equal to 1, with prob-
ability one under f, . This is the case if

(42) fo(X5) = i(X;) = f(X;) forj=1,---,N—1
If this condition is satisfied, equality also holds in (3.4). If, in addition to (4.2),
(4.3) fo(z) 2 min [fi(2), fo(z)], -

then condition (2.5) of Lemma 3 is satisfied and hence equality is attained in
(3.2). Thus conditions (4.1), (4.2) and (4.3) are sufficient for the attainment
of equality in (1.3).

Condition (4.3) is satisfied for many common one-parameter families of dis-
tributions when 6, is between 6; and ;. Under this condition, (1.3) reduces to

B(N) 2 (1 — oy — az)/(1 — [ min (1, 72 d,;)

= (1—a1—a2)/(%[|f1—f2|du>_

Condition (4.2) is satisfied, and equality holds in (4.4), in the following two
cases.

The first case is where the densities are arbitrary, subject only to (4.3), but
the values ey and o are such that they can be attained as error probabilities
with a test which requires at most one observation (N < 1), and if an observa-
tion z is taken, decision di(d;) is made if f;(z) — fo(z) is > 0 (< 0).

The second case in which equality in (4.4) is attained is where, in addition
to (4.3), the set € = {z|fo(z) = fi(z) = f:(z)} has a positive probability.
Let Co © C and let the complement of Cy be subdivided into two disjoint sets
Cy and C; such that fi(z) — fo(z) 2 0if x e Crand < 0if z € C;. Let N be the
least n such that z, £ Co. Decision d; is made if 2y £ C;, 7 = 1, 2. (Instead,
suitable randomized decisions can be made when z, £ C.) Then it can be readily
verified that equality holds in (4.4), with E((N) = (1 — po)™, a4 = pp
(1 — po)™", s = par(1 — po)~", where py is the probability of Cy (under any f;)
and p;; is the probability of C; under f;. In the particular case where u is
linear Lebesgue measure, f;(z) = g(z — 6;),9(z) = 1/L, —L/2 < 2 = L/2,¢9(x)
= 0 otherwise, 0 < 6, — 6, < L,and 6, < 6y = 6, we have C = {6, — L/2, 6
+ L/2). Letb, — L/2 =<c=d=6+ L/2,C,={,d),C, =(—x,c],C; =
[d, + ). Then with the test just described, perhaps preceded by a random-

(44)
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ized decision as to whether to take at least one observation, any error prob-
abilities can be attained (an 2 0, @2 = 0, a1 + a2 < 1). Moreover, the maxi-
mum with respect to all real 8 of the expected sample size of this test when
the density is g(xz — 0) is attained when 6 is between 6; and 6, . Hence the
test minimizes the maximum expected sample size. It should be noted that the
present test is a modified version of the SPR test as defined in Wald [12], p. 120.
It differs from the latter only in this respect: If the probability ratio after n
observations equals one of the two numbers 4 and B (in Wald’s notation; in
our case A = B = 1), the stopping decision and the terminal decision may
depend on the position of the sample point in the corresponding sets, instead of
being randomized decisions.

It is of interest to note that the bound in (1.3) is always positive whereas the
bounds in (1.1) and (1.2) take on the trivial value 0 if the integrals in their
denominators are equal to + «. However, in most of the more common cases
the bounds (1.1) and (1.2) (as well as (1.4)) are better than (1.3). For instance,
if fo, fi , and f; are normal distributions with a common variance and respective
means 0, —§ and §, the bound in (1.3) is of the order 6, but those in (1.2) and
(1.4) are proportional to 6% and hence better than (1.3) if 3 is small.

There is an interesting similarity between Wald’s inequality (1.1) and in-
equality (1.3) (or (4.4)) for fo = f1 . If &1 and @ denote the actual error proba-
bilities, both inequalities are of the form

D(f1, )
D(f1, f2)’

where D is the measure of discrepancy between two distributions which appears
in the denominators of (1.1) and (4.4), and f;-k denotes the distribution on the
two points d; , d; of the decision space such that the probability assigned to d;
is the probability of making decision d; when f = f; ; more precisely, f7 is the
probability density with respect to a measure p* such that u*(dy) = u*(dp) =1
and 1 — f(d) = fi(dy) = au,1 ~ fi(de) = f3(d)) = a5 .

It will be seen in Section 8 that inequality (1.3) can be deduced from a lower
bound for the average risk of a general sequential procedure. However, the
direct proof given in Section 3 makes it easier to determine the conditions for
equality. Inequalities which are better but more complicated than (1.3) are
given in Section 8.

5. Proof of inequality (1.4). We assume that the integrals {7, {» and 72 in (1.5)
and (1.6) exist and that the conditions (1.7) and (1.8) are satisfied. Let, for
i1=1,2

Y X .
(5.1) Zim = :—Zl (logfi(Xj) L)
and let

(5.2) Zn = Zl,n - Z2,n = ; YJ )

(4.5) E(N) z
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where Y; is defined in (1.9). Then

(fi,n/fo'”) = e—zim-f.'n.
Hence, by Lemma 2,

SFT Y
Ei(ol) + Eo(1 — o%) Eo[mm (fO'N,fO,N]

- —max(Zy, N +{1N,Zo,n+2N) —max(Zy, N  Zg,N)—{N
= Fle "] 2 Eole nLIRE,

(5.3)

where { = max ({1, {2). By Lemma 7,
(5 4) Eo[e—max(Zl,N,Zz,N)—-g'N] > e-—-Eo[max(Zl'N,Zz'N)]—g'Eo(N)

Since 2 max (ZI,N s Zz,zv) = Z1,1v -+ Z2,1v + | Zl,N - Zz,zv | s Zl,N - Zz,zv =2y,
and, by Lemma 4, Ey(Z1,v) = Eo(Zsx) = 0, we have

(5.5) Efmax (Zyx , Zow)] = % Eo(| Zn |).
Also
(5.6) Eo(| Zx |) < [Eo(Z2)] = 7[Bo(N)],

where we have used equation (1.8).

Thus if (¢n , ¢n) is any test such that Ei(¢x) < a1, Ey(1 — ¢y) < ap, and
equation (1.8) is satisfied, it follows from Lemma 1 and the relations (5.3),
(5.4), (5.5) and (5.6) that

log (o1 + @) = —(7/2)[Eo(N)] — ¢Eo(N).
Solving this inequality for Eqo(N), we obtain (1.4).

6. Discussion of inequality (1.4). Inequality (1.4) has been obtained by com-
bining the four inequalities (3.1), (5.3), (5.4) and (5.6). Equality in (3.1) is
always attainable for suitable &y and a. , and in (5.3) itholdsif ¢ = ¢ (= §).
In (5.4) the sign of equality holds if and only if max (Z,x , Zs»v) + ¢N is con-
stant with probability one (see Lemma 7), and in (5.6) it holds if and only if
| Zn |, that is | Zi,v — Zaw |, is constant with probability one, both proba-
bilities evaluated under f, . The last two conditions cannot be satisfied simul-
taneously except in trivial cases.

To obtain an idea of how close the bound in (1.4) can come to the minimum
attainable value of Eo(N), we shall consider the following special case. Let f;
be the normal probability density with variance 1 and mean 6; , where 6, = 0,

fp = —dand §: = 6 > 0. Then & = & = §°/2, 7 = 25, and inequality (1.4)
becomes
(6.1) BEo(N) 2 67[1 — 2 log (2a)] — 13},

where 2 = a1 + a; . This bound will be compared with the values of Eqo(N)
for a fixed sample size test, Wald’s SPR test, and a test considered by Anderson,
with error probabilities a; = a2 = a(<3%) in each case.
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Let S, = X; + -+ 4+ X, . For a fixed sample size test such that decision
d; or dz is made according as S, < 0 or S, > 0, the error probabilities at ¢ = —é
and & = § are both equal to <I>(—6n*), where

(@) = (207 [ "y
Hence Eo(N) is the least n such that ®(—én') = . If A = A(a) is defined by
&(—AN) = o, we have

(6.2) Ey(N) = 72\,

exactly or wizth a good approximation. If @« — 0, then A — o and & = ®(—\) =
2r) (1 4+ 0(Z)). Hence A* = —21log a + O [log (—2 log a)]. The
factor of 87° in inequality (6.1) is

{[l —2log (2a)F — 1} = —2loga + 0 [(—2 log &)}].

Thus if « is small enough, the bound in (6.1) is nearly attained with a fixed
sample size test, although the asymptotic approach is extremely slow. It follows
that the fixed sample size test nearly minimizes the expected sample size at
6 = 0 when « is (very) small.

Now consider the SPR test which stops as soon as 26 | S, | > log A (>0).
Then (log A)°< 46°E,(S%) = 46°E,(N) by (1.8),and 4 £ (1 — a)/a. These
inequalities are close approximations for « fixed and & small enough (Wald [10]).
With this approximation,

(63) Ey(N) = 57 (% log 1= "‘)2.

a

Put « = (1 — €)/2. Then

2
(—%logl—a> I

[47

and
f1-2log 2a)ff —1}° = € + 3 — 3 + -

Thus if « is close to its upper bound %, and & is small enough, the lower bound
in (6.1) is nearly attained with a SPR test. Hence the SPR test nearly mini-
mizes Eo(N) in this case. Table 1 shows that even for &« = 0.2 the expected

TABLE 1
Values of Eo(N) and of the lower bound in (6.1) for 6 = 0.1,
«= 0.0001 0.001 0.01 0.05 0.1 0.2 0.3
Fixed sample size 1383 955 541.2 270.6 164.3 70.8 27.5
SPR test 2121 1193 527.9 216.7 120.7 48.0 17.9
Anderson’s test — — 402.2 192.2 — — —
Lower bound (6.1) 1054 710 388.3 187.0 111.1 46.6 17.8
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sample size exceeds the lower bound by only. 3% . (The lower bound in (1.2)
with ¢ = } also approaches Eo(N) for the SPR test as a — 1. However, inequality
(6.1) is better than (1.2), as applied to the present case, for all values of a.)

For a values not close to 0 or 3 we compare the bound in (6.1) with the ex-
pected sample size of a test considered by Anderson [1]. This test stops as soon
as| S.| = ¢ + dn, where d < 0 < ¢. Anderson approximated the sequence {.S,}
by a Wiener process so that his values for the expected stopping time, Eo(7),
when the mean of the process is 0 are approximations to Ey(N). He chose the
constants ¢ and d so as to minimize Ey(7) subject to prescribed error probabili-
tiesa; = as = aat § = 34, ford = 0.1 and « = 0.01 and 0.05. Anderson’s
values are given in Table 1. The expected sample sizes exceed the lower bounds
by only 3.6% and 2.8%, respectively. This shows that both Anderson’s test (as
judged by the expected sample size at 6 = 0) and inequality (6.1) cannot be
greatly improved in these cases.

To conclude this section, it will be shown that for each of the two sequential
tests here considered the expected sample size attains its maximum when the
mean 6 of the normal distribution is 0. In conjunction with the preceding results
this implies that each of these tests (as well as the fixed sample size test) comes
close to minimizing the maximum expected sample size for certain « values.

Both tests are such that sampling is stopped as soon as | S, | = ¢., where
¢, ¢2, - -+ are nonnegative constants. The expected value of N at 6 is the sum
of the probabilities PIN > n | 6]. We can write

PIV > nlol = [ 1y — 02) ay,

where y = (g, *** , yn), 2 = (1,1, -+, 1), f is the probability density of n
independent normal random variables with mean 0 and variance 1, and 4 =
lyllnmn+ -+ +ym|<em,m=1,---,n}. The set A is convex, andy ¢ 4
implies —y ¢ A. It follows from a theorem of Anderson [2] that P[N > n | 6]
attains its maximum at 6 = 0 (and is monotone for § < 0 and 8 > 0). Thus
the same conclusion is true for the expected value of N.

7. Lower bounds for the average risk. In this section a sequence of increasingly
better lower bounds for the average risk of a general sequential procedure will
be derived. Under certain conditions these bounds converge to the minimum
average risk. They are similar to the bounds given by Blackwell and Girshick
[4] and will be obtained as a consequence of results of Wald and Wolfowitz [13]
which are also contained in Wald’s book [12]. In slight extension of the assump-
tions in [13] and [4], the cost per observation will be allowed to depend on the
parameter; due to this assumption the bounds can be used to obtain lower
bounds for the expected sample size (see Section 8).

The random variables X;, X,, --- are assumed to be independent with a
common probability density f; with respect to a o-finite measure u, where the
parameter 6 is contained in a space Q. To simplify the exposition, the assumptions
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of [13], Section 2, will be made (with some obvious changes in notation), with
two exceptions stated below. In particular, x is Lebesgue or counting measure
on the real Borel sets (this is not essential); the loss function W on @ X D is
nonnegative and bounded; the terminal decision space D is compact in the sense
of the convergence sups | W (6, d;) — W (0, dy) | — 0; the a prior: distributions ¢
are the probability measures on a fixed Borel field of subsets of Q. The cost of
m observations is assumed to be ¢(8)m, where ¢(8) is nonnegative, bounded and
measurable on the given Borel field of subsets of Q. (In [13], ¢(8) is a constant.)
In addition, we assume that the function infs.qfs is Borel measurable. The class
A consists of all sequential decision functions § which satisfy the needed measur-
ability conditions as specified in [13]. For the other measurability assumptions
we also refer to [13].

Denote by r(#8, 8) the risk (expected loss plus expected cost) when the decision
function & is used and the parameter is 6. For any a priori distribution £ over
let 7(¢,6) = [ r(0,6) dt. Let p(£) denote the infimum of the average risk (£, 8)
for 6 ¢ A. Let

o = [c0) e, w(@) =it [ WO, a5 ) = [500)

and let £, denote the distribution over @ defined by d&, = fo(y) d&/f:(v). Then
the function p(#) satisfies the equation

(7.1) (&) = min | w(8), [ p(6)x(0) du(y) + o0 |

This is a straightforward extension of Theorem 3.2 of [13].

For n = 0 let p.(£) denote the infimum of (¢, 8) for 6§ € A, , the class of all
decision functions in A which terminate after at most n observations. (This is
consistent with the definition of po(£) above.) By direct extension of Theorem
3.1 of [13] we have

(72) Pn(f) = min [PO(&); / pn—l(éy)fi(y) dﬂ'(y) + C(E):I) n = 17 2) ot

Clearly po(£) = pi(£) = p2(8) = -++ = p(£). In [13] it is shown that if ¢(§) =
¢ > 0, then lim p,(¢) = p(§).

Blackwell and Girschick ({4], pp. 255-256) have given lower bounds for p(%)
which with the present cost function can be defined as follows. Let g (£) = 0
and define recursively forn = 1, 2, ---

(13 A = min| w(@), [ AR d@) +e® |.

Then r3(£) < +5(8) S m () £ --- £ p(£), and if ¢(8) = ¢ > 0, then lim
(8 = p(§) H].

It will now be shown that the lower bounds (7.3) can be improved with the
help of an inequality of Wald and Wolfowitz [13). Sufficient conditions for the
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convergence of these lower bounds and of the upper bounds p,(£) to p(£) when

¢(6) is not constant will also be given.
Let

(74) =1~ [infun fo(y) du(y).

Excluding the trivial case where all distributions f; are identical, we have 0 <
A £ 1. Now define

(75) po(£) = min [po(£), Nc(£)]

and recursively forn = 1, 2, ---

@6 e = min| w®), [ Faa (6 dula) + 8 |.

We shall write fo., for [[7= fo(2;), fe.n for § fo.. dt and ™ for the a posterior:

distribution over Q after n observations z; , - -+ , &, , 5o that d&™ = f;.,. AE/fem .
TuroreM 1. We have

(7.7) po(£) < pi(8) S pa()) < -+ = p(B).

In order that

(7.8) lim po(£) = lim pa(£) = p(),

1t 1s sufficient that either

(7.9) tim [ (™ e du® = 0

or

(7.10) ge(9) > 0} = 1.

ReEMARk 1. If A = 1, then pn_1(£) = re(£), so that the two sequences of
bounds are equivalent. We always have p;_l(é) = ().

REMARK 2. The integral in (7.9) is the risk of the (fixed sample size) Bayes
procedure based on 7 observations when ¢(6) = 0. Thus condition (7.9) is
satisfied for all £ if the maximum expected loss of some decision rule based on »
observations tends to 0 as n — «. An upper bound for the integral in (7.9)
(which, in turn, is an upper bound for p,(&) — p;(s))‘for the case of finite Q is
given in Theorem 2 below.

ReEMARK 3. In Section 8 it will be shown that the inequality p(£) = p(')(g)
implies inequality (1.3). The discussion in Section 4 shows that equality in
p(£) = po(%) is attained in special cases.

Proor or TaEOREM 1. Since p(£) = infs [ r(6, 8) d¢ and

[ o)) dut) = [ints] [ r(0, 9200 deto) | i),
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we have

(710 [ o(6)few) duly) = p(®) [ info fo(y) du(y) = (1 = No8).

(This is essentially equivalent to inequality (3.22) of [13].) Hence, by (7.1), if
p(&) < po(£), then p(£) = N 'c(&). Therefore p(t) = p(,(g). It now follows from
(7.1) and (7.6) by induction that p(§) = p;(f) for alln = 0.

To complete the proof of (7.7) we now show that

(712) P:L(£> g P;—I(E% n = 1} 2’ tee

It can be seen in a similar way as in the proof of (7.11) that

v

[ &) any) 2 (4= Nae).
Hence, by (7.6) with n = 1,

p1(£) = min [po(£), (1 — Npo(£) + ¢(®)].

It is readily shown that the right side of this inequality is equal to po(£). Thus
(7.12) is proved for n = 1. Forn = 2, 3, - - - the result follows by induction from
(7.6).

To prove the remaining part of the theorem, we first observe that p;( £) (just
as ra(£); see [4]) can be interpreted as the minimum average risk in a modified
decision problem. Let D’ denote the original terminal decision space D, aug-
mented by a terminal decision dy £ D. Let the loss function be W (9, d) if d # dg
but A7'¢(6) if d = do . The cost function is that of the original problem. Let A,
denote the class of all sequential decision functions (subject to measurability
assumptions analogous to those in [13]) which terminate after at most n (= 0)
observations, such that decision d, is allowed only after the nth observation
has been taken. If (6, §) denotes the risk function in the modified problem, it
can be seen that the minimum of #/(§, §) for é in A, is equal to p:, (&) as defined
by (7.5) and (7.6).

Since py (£) = p(£) £ pa(£), (7.8) will be proved if we show that

(7.13) lim [oa(£) — pa(8)] = 0.
For a fixed a prior: distribution £, let 8, be a Bayes decision function in A;,

S0 that‘; p:,(I;') = r'(§, 8.). Let 6, be the decision function in A, which is identical
with 8, before the nth observation is taken and makes the optimal terminal

decision after the nth observation. Denote by \[/; = ://i,,(xl , * , Ta_y) the
probability that the sample size N’ required by procedure é, is equal to n, given
that the first n — 1 observations are z;, -+ , Z,_1 . Then

pul®) = pn() = (5,5 — 7(8,8) = [ YalaoE™) — po(E™) S do”
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Therefore
(7.14) pul®) = on(®) = [ Y m(E™ e .

It follows immediately that condition (7.9) is sufficient for (7.13) and hence
for (7.8). Also, if W is an upper bound for W (6, d) and hence for po(%), (7.14)
implies
(T15) — pu(®) = pu(®) S W [ W fin du® = WPV’ = n).

Now

W2 () = (58 2 [ c@B(V) dg

= fc(f))nPa(N’ =n)dt = n f Py(N' = n) dg

fc(8) zn—4}
. [PE(N’ =w- [ P = ds]
{c(0)<n—H)
= Wl[PyN' = n) — £{c(6) < nH}l.
Thus
(7.16) Pe(N' = n) < 07 'W + te(0) < n7H.

Letting n — oo, it follows from (7.15) and (7.16) that condition (7.10) is
sufficient for (7.8). This completes the proof of the theorem.

The section is concluded by a theorem which shows that if Q is finite, then
under a natural assumption on the loss function the difference p,(£) — p;(g)
converges to 0 uniformly in £ at an exponential rate.

TaroreEM 2. If Q consist of k points, 6 = 1, 2, --- | k, say, and if for each 6 ¢ Q
there is a dg € D such that W(6, dy) = 0, then

(7.17) pa(£) — pu(®) < W(k — 1)y,
where W is an upper bound for W (6, d) and
Y = 1ax f:(fifi)%dﬂu
7]

We remark that y < 1 if it is understood that no two of the functions f; , - - -,
f are densities of the same distribution. The theorem exhibits a particularly
simple bound for p,(£) — on(E }; closer bounds are contained in the proof.

To prove the theorem we note that by (7.14)

(7.18) ou® = pe(®) = [ Mo du”
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Let ¢ assign probability g; to the point 8 = ¢. Then
k
[ e e ™ = [ inty 3 6 WG, @) d”

=140,

k k k
< min . ; g W (4, d;)fim du” < f 12; &; ; g W, dj)fin du”,

where ¢; , - - -, ¢ are arbitrary nonnegative measurable functions of z; , -+ , @,
such that ¢; + - -+ + ¢ = 1. Hence, recalling that W (s, d;) = 0,
k

k k

[0 en i S W [ 53 dr0iin s = W3 g0 [ (1 = 6001m d”
Jei

Let, in particular, ¢; = HLl ¢:;, where ¢;; = land for ¢ < j, 1 — ¢ =

¢ = 1if fin > fin and = 0 otherwise. The conditions ¢; = Oand ¢, + -

+ ¢ = 1 are satisfied. (Note that if ¢; = 1, then f;,, = max;f;..) By Lemma 6

of Section 2, 1 — ¢; < D 51 (1 — ¢:;), where the term with 7 = 1 is zero. Hence

k
[ =sdtmawr =3 [ (= suendu.
e
Now if 7 £ 7,

[ G = 6ind® < [ min G, fy0) "

= f (fim fr0)! du™ = [f (i)} dM:I né 7"

Hence [ po(6™ )femdu™ < W2 % gk — 1)y = W(k — 1)¢", and the theorem
follows from (7.18).

8. Further lower bounds for the expected sample size. The lower bounds for
p(§) in Section 7 can be used to obtain lower bounds for the expected sample
size at a specified parameter point 6, in terms of upper bounds on the expected
loss or (by choosing a suitable loss function) in terms of upper or lower bounds
on the probabilities of various decisions at selected parameter points. For this
purpose one chooses the cost function so that ¢(8) = 0 for 6 5 6, and ¢(6y) > 0.
The explicit result will be stated only for a two-decision problem; extensions to
problems involving more than two decisions will be obvious.

Let @ consist of the three points 0, I, 2, and let there be two decisions d; and
do. Put W(l,ds) = W(2,d1) = 1,W(3,d;) = O otherwise, ¢(0) = 1, ¢(1) =
c(2) = 0. Let £ assign probability g; to the pointi (i = 0, 1, 2). Then po(£) =
min (g1, g2), ¢(§) = go,and, with § = {Yn, ¢d},

7(£8) = goBo(N) + giEr(dw) + goFa(1 = o).
For any n = 0, r(%, 8) = pn(£). Hence if Ei(on) £ arand Ey(l — én) < 0a,
(8.1) Bo(N) 2 sup ((oa(8) = gres = guan)/g0), n = 0,1,2, -+
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This glves a sequence of 1ncreas1ngly better lower bounds for Eo(N). In par-
tlcular, po(E) =min (g, , g2 , N"'go), whereA = 1 — [ min (fo ,J1 5 f2) du. The ratio
in (8.1) with » = 0 is maximized by letting g; = g» = A "'go , and the resulting
inequality is equivalent to (1.3).
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