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Abstract 

Linear feedback shift registers over the ring 2s~ can be implemented efficiently 
on standard microprocessors. The most significant bits of the elements of a se- 
quence in Zg constitute a binary pseudorandom sequence. We derive lower bounds 
for the linear complexity over Fs of these binary sequences. 

1 Sequences over Residue Rings 

For a positive integer e let Z2c denote the residue ring Z/(2”), that is the set of integers 

1% I, *. . ,2’ - 1) with arithmetic operations carried out modulo 2’. Computation in Zse 

differs from computation in Fs= in the way overflows are handled. In a polynomial basis 
representation of Fze we choose an irreducible polynomial from F2[s] and thus define how 

overflows, i.e. terms of degree larger or equal e, are fed back, i.e. reduced to polynomials 

of degree less than e. In Zp overflows modulo 2” are simply discarded. 

Sequences in Zg are of particular interest from an application point of view as they 

can be generated very efficiently on microprocessors when e is the word length of the 
processor. A sequence a = (ut) generated by a linear feedback shift register over Zs= 

obeys a linear recursion of the form 

n-1 

at+n = gCjat+j (mod 2’) fort 2 0 , 

where n is the length of the shift register and a t, cj E Zze (see Fig.1). Due to a result by 

Ward [7] the upper bound for the period of linear recursive sequences of degree II over 

Zze is 2’-‘(2” - 1). 

Definition 1.1 Linear recursive sequences of degree n over Zs= with pe- 
riod 2”-‘(2” - 1) are called maximal length linear sequences, in short MLL- 
sequences ([1,4]). 
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Figure 1: A linear feedback shift register over 2, with feedback polpornid 
f(2) = 2 3  - 2 2  - 3 

The period of a polynomial f(z) E ZZe[2] is defined as follows. 

Definition 1.2 
polynomial f(z) E Z?e[z]. The period of f(z) is given by 

Let (f(2)) denote the ideal in Z~.[Z] generated by some 

per(f(z)) := min{T 2 11% 2 o : xT+d - z E (f(4)) ' 

A polynomial f(z) E 22e[z] is called primitive if it has period 2"-'(2" - 1). 

2 Binary Sequences Generated from Sequences over 
Residue Rings 

Binary sequences a;, 0 5 i < e, can be derived from sequences cr over Z2e by 
e-I 

at = Cati2' > 

a; = ( U o ; , U l i , .  . . ,ati,. . .) . 
a:; E {0,1) > 

i=O 

As an example, the sequence (1,0,4,7,. . .) E Zg is represented by 

CYO = ( l , O , O , l )  ...) 
a1 = ( O , O , O , l , .  . .) 
a2 = ( O , O , l , l ,  ...). 

Let L be the left shift operator on the sequences a E Zg. For any polynomial 
n 

define 
n 

f(L)Cy := c c;L'a 
i=O 

Definition 2.1 
f(z) E Z~.[Z] of lowest degree so that f ( L ) a  = 0. 

The minimal polynomial of Q is the monic polynomial 

The polynomial f(z) can be decomposed into polynomials f;(z) E F,[z] by 
e-1 
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If f(z) is a primitive polynomial then fo(z) is a primitive polynomial in Fz[z] and the 
roots of f,(z) have period 2" - 1. 

We quote the following results relating to the period of binary sequences derived from 
MLL-sequences over Ge ([1,4,7]). 

Theorem 2.1 Let Q be a MLL-sequence over 22. with minimal polynomial 
f(x) of degree n. We have 

per(a,-l) = per(cr) = 2"-l(2" - 1 )  . 

Let f ( x )  E Z2=[z] be a primitive polynomial of degree n. There exist 

2("--')"(2" - 1) 

different MLGsequences with minimal polynomial f(z). 
Let cr and p be two MLL-sequences with minimal polynomial f(z). The 
probability that a is a cyclic shift of p is 2-(n-1)(e-1). 

Dai [I] and Huang [4] also give upper bounds for the linear complexity of the sequence 
( ~ ~ - 1 .  In this paper we will bound the linear complexity from below. 

3 MainLemma 
Let E 2: be a MLL-sequence generated by some LFSR over Zza. A new element of 
the sequence crr will be computed from the previous elements of this sequence, from the 
lower bit sequences, and from the carries generated by the lower bit sequences. Let p i j  

denote the sequence of carries propagated from sequence a; to sequence aj and let 

Qk(Z0,  XI,. . . , z,) := c Zi,Zia . . . xil, 
O l i l < i a < - - < i r l n  

be the symmetric function of order k applied to n arguments ([6], p. 182 ff). Fig. 2 
describes the decomposed computation of the sequences a, and p;j. Note that the 
coefficients of fo(z)  act as a filter for the inputs to the @kr i.e. for 

we have 

Let a be a MLL-sequence with minimal polynomial f (x)  of degree n and let 0 be a 
root of fo(z). For any 

*- 1 

i=O 

define the weight of p = 0" as 



192 

602 

$01 

Figure 2: The carries in the generation of a sequence in 2,- 

n-1 

w(p)  = C e; E Z . 
i=O 

Let K be the algebraic closure of Fz. Define 

and 

We will sketch the main step in deriving lower bounds for the linear complexity of 
a,-l. A detailed account can be found in [2]. The sequences Q, will be decomposed into 

a,=a,f+CY;, 

where a,f and a; are chosen so that the minimal polynomial of a,+, is a divisor of g$(z) 
and the minimal polynomial of a; and is a divisor of g;(z). Hence, we have for the 
linear complexity .C(ar) of ar 

L(ar) = L(a;t) + C(a;)  . 

We will bound the linear complexity of a, from below by determining the sequences a:, 
0 _< r 5 e - 1. Writing j3ij = /3$ + /3,; aa above, the sequence a: can be related to the 
carry sequences Pzr-; and we obtain finally 

Lemma 3.1 Let o E Zg be a MLL-sequence with minimal polynomial 
j(z) E Z2c[z] of degree a, let 8 be a root of fo(z). We have for any r ,  2' 5 n,  

Q;t = L' c V P .  
p,w(p)=Z' 

for some T 2 0. 
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4 Lower bounds for the linear complexity 
Let m(z)  be the minimal polynomial of C Y , - ~ .  The degree of m(s) will be examined by 
means of the discriminant of f(z) and Lemma 3.1: 

Definition 4.1 The discriminant of f(z), A,(z), is given by 

{ hh:[zi(hf(z) + 1) 
(mod (fO(z),2)) if e = 2 
(mod (f0(z),2)) if e 2 3 

A ~ ( x )  

with h f ( z )  determined by 

z2"-' G 1 -+ 2hf(z) (mod (f(z),P)). 

Lemma 4.1 ([4]) For any e, r ,  2 5 T < e - 1,  we have 

With these preparations we embark on the analysis of the sequences a?. We may assume 
n- 1 

(Yo = c up = C?Je2' , 
P * W ( P ) = l  i=O 

hence 

Write 
j=1 

4 2 )  = (. - P )  . 
P 4  p)=2'+ 1 

-p#O 

The root 0 of fo(r) has period 2" - 1, therefore 

or@) I (z2*-1 - 1) . 

~ r x  ( )2=-2-2'-'+1 I m(z) ,  2 5 f 5 M . 

We define M := min(e - l,log,(n - 1)) and derive from Lemma 4.1 and from (1) 

This gives 
M 

L(c~cf_~)  3 c(2"-' - 2k-' + 1) - degak(z) . 
k=2  

With A = Af(0) and 
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we may rewrite (2) as follows, 

Theorem 4.2 Let Q E Z$ be a ML-sequence and let M be defined as above. 
We have 

M 
L(cYe-1) 2 C(2"-2  - 2k-' + l)I&(A)l . 

k=Z 

It can be shown that 

for 2k < n. In fact, Wk(A)l is very close to this upper bound for any A. We consider a 
special case where IMk(A)l obtains its maximal vdue. 

Theorem 4.3 If F2(A) = F2d and {A, A2, .  . . , A2d-1} is a normal basis of 
FZ(A) over Fz, then we have 

Proof. It suffices to prove for k < e - 1 

2*+ 1 
A(') = C A2i' # 0 

for any i = (zl,iz,. .  . ,i2k+1), 0 5 il < i2 < * - -  < i z k + l  < n. In fact, if F,(A) = F z d ,  
A(i) can be reduced to 

A(') = A2"' + Azkz + . . - + AZkt , 

where 0 5 I1 < kz < a . 0  < k, < d, t = 1 (mod 2). Since {A,A2,.  . . ,A+-'> is a 

I 

j=1 

normal basis we get A(i) # 0. 

The lower bound given in Theorem 4.3 is quite large. For example, if n = 2(2& + 1) < 
2"-' for some k, just one term in the right hand sum will be, ref. [5],  

(2e-Z - 2 k - 1  f- 1) 

MLL-sequences have period 2"-'(2" - 1) so we get 
p + e - - l  

L(ae-1) 2 L 
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5 Conclusions 
Binary sequences generated from MLL-sequences over ZZe are of particular interest from 
an application point of view as they can be implemented very efficiently on micropro- 
cessors when e is the word length. We have shown that the lower bounds for the linear 
complexity of these sequences are reasonably high. However, the reader should be awae  
that there exist algorithms to reconstruct sequences generated by linear congruences 
from truncated outputs [3] if the congruence is known. Thus, the results on sequences 
over residue rings rather should help to evaluate their contribution to more sophisticated 
designs than be taken as an argument for their security. 
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