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o An O*(2°K/))Y algorithm implies also 2°(").
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o Note: Ignore polylog factors.
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The square root phenomenon

Planar graphs: Known NP-hardness reduction usually give O*(2°(V9) lower
bounds under ETH.

Completion problems:

e Known reductions give O*(2°("l/6)) and (’)*(2"(“1/9)) lower bounds, or worse.
o Fomin & Villanger:
Here the big gap between what we suspect and what we know is frustrating.

o Arguments for the optimality of k/2:

o An O*(2°K/))Y algorithm implies also 2°(").

e Fundamental trade-off between cheap and expensive vertices.
@ Our answer: We corroborate the suspicion that k/2 is optimum.

o Note: Ignore polylog factors.

o Personal opinion: log k in the exponent can be shaved off.

@ Goal: Prove a 2°(" |ower bound for MINIMUM FILL-IN.
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Results

@ Under ETH:
o no 20(n'/?/10g%n) algorithm for MINIMUM FILL-IN;
e consequently, no O*(2O(kl/4/'°gc ) FPT algorithm.

@ Under stronger assumptions:
o no 2°" algorithm for MINIMUM FILL-IN;
e consequently, no O*(2°(k1/2)) FPT algorithm.

@ Same lower bounds for all the other completion problems.
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Known reductions

3SAT — MaxCurt OLA FiLL-IN
n" = O(n+m)
m’ = O(n+ m)
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Known reductions

3SAT — MaxCurt OLA FiLL-IN
n" = O(n+ m) n = 0o((n)?)
m' = O(n+ m) m” = O((n")°)
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Known reductions

3SAT —— MaxCur OLA FILL-IN
n" = O(n+m) n' = O((n’)3) n'" =0O(A - n")
m’ = O(n+ m) m'’ = O((n')e)
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OPTIMUM LINEAR ARRANGEMENT

e Let m: V(G) — {1,2,..., n} be an ordering of V(G).
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OPTIMUM LINEAR ARRANGEMENT

o Let m: V(G) — {1,2,..., n} be an ordering of V(G).

@ The cost of an edge uv is c(uv) = |w(u) — 7(v)|
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o Let m: V(G) — {1,2,..., n} be an ordering of V(G).

@ The cost of an edge uv is c(uv) = |w(u) — 7(v)|
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OPTIMUM LINEAR ARRANGEMENT

Let m: V(G) — {1,2,...,n} be an ordering of V(G).

The cost of an edge uv is c(uv) = |m(u) — 7(v)|

The cost of mis 3 _.c(q) c(e)-

OPTIMUM LINEAR ARRANGEMENT: Find 7 with minimum cost.

Note: It can be as large as cubic.
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Reduction MAXCuT~~OLA

o Complement the graph.
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Reduction MAXCuT~~OLA

o Complement the graph.

@ Add a clique K of size N = n€ for a large ¢, and make it fully adjacent to the
rest of the graph.

< K
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o Complement the graph.

@ Add a clique K of size N = n€ for a large ¢, and make it fully adjacent to the
rest of the graph.

A K B

@ Easy: K can be assumed to be consecutive.
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Complement the graph.

Add a clique K of size N = n¢ for a large ¢, and make it fully adjacent to the
rest of the graph.

A K B
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Instead of minimizing the cost, maximize the cost of the non-edges.

We want to maximize the number of non-edges flying over K.
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Reduction MAXCuT~~OLA

Complement the graph.

Add a clique K of size N = n¢ for a large ¢, and make it fully adjacent to the
rest of the graph.

A K B

Easy: K can be assumed to be consecutive.
Instead of minimizing the cost, maximize the cost of the non-edges.
We want to maximize the number of non-edges flying over K.

Every edge flying over K has to gain more than the total noise on the sides.
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Reduction MAXCuT~~OLA

Complement the graph.

Add a clique K of size N = n¢ for a large ¢, and make it fully adjacent to the
rest of the graph.

A K

Easy: K can be assumed to be consecutive.
Instead of minimizing the cost, maximize the cost of the non-edges.
We want to maximize the number of non-edges flying over K.

Every edge flying over K has to gain more than the total noise on the sides.
e Hence K must be large to make this work.
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@ Start with an instance that has a gap.
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@ Start with an instance that has a gap.

o GAP MAXCUT[, g): distinguish between OPT < am and OPT > 3m.
@ Suppose GAP MAXCUT|, g) is hard for some 0 < a < < 1.

@ Then set |K| = (ﬁ%”] - n.
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@ Start with an instance that has a gap.

o GAP MAXCUT[, g): distinguish between OPT < am and OPT > 3m.
@ Suppose GAP MAXCUT|, g) is hard for some 0 < a < < 1.

@ Then set |K| = (ﬁ_%] - n.

@ Gap in MAXCUT ~~ Gap of > 2nm on edges flying over K.
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Start with an instance that has a gap.

GAP MAXCUT|, g): distinguish between OPT < am and OPT > 3m.
Suppose GAP MAXCUT(, g] is hard for some 0 < a < < 1.

Then set |K| = (ﬁ_%] - n.

Gap in MAXCUT ~~» Gap of > 2nm on edges flying over K.

Maximum noise is smaller than nm, so the gap amortizes the noise.
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Hardness of GAP MAXCuUT

e Sparsification lemma = 2°(™ hardness of 3SAT
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increases the size by log® m.

Under ETH, there exists constants r < 1 and c¢ such that there is no 20(m/ log® m)
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@ Already observed and used by Marx in 2007 for proving lower bounds on the
running times of geometric PTASes.
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increases the size by log® m.

Under ETH, there exists constants r < 1 and c¢ such that there is no 20(m/ log® m)
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Hardness of GAP MAXCuUT

e Sparsification lemma = 2°(™ hardness of 3SAT

@ Almost linear PCPs: Reduction from 3SAT to GAP 3SAT|, qj that
increases the size by log® m.

Under ETH, there exists constants r < 1 and c¢ such that there is no 20(m/ log® m)
algorithm for GAP 3SATY, y).

@ Already observed and used by Marx in 2007 for proving lower bounds on the
running times of geometric PTASes.

@ Standard reductions to MAXCUT preserve the gap =
20(m/log"m) hardness of GAP MaxCUTq, -

@ Cor: Under ETH, there is no 20(n/leg" n) algorithm for OL A, for some c.
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Reductions

3SAT —— Gar MaxCur OLA FILL-IN
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Bliznets, Cygan, Komosa, Mach, Pilipczuk Completion problems: lower bounds



Reductions

3SAT —— Gar MaxCur OLA FILL-IN
n’ = O(mlog® m) n' = 0(n") n'" = 0O(A - n")
m’ = O(mlog® m) m' = O((n")?)

Bliznets, Cygan, Komosa, Mach, Pilipczuk Completion problems: lower bounds



Reductions
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Reductions

3SAT —— Gar MaxCur OLA FILL-IN
n’ = O(mlog® m) n" = O(n") n'" = 0O(A - n")
m’ = O(mlog® m) m' = O((n")?)

o We obtained a 290"/ 10" ) |ower bound for OLA, but not on sparse graphs.

(n*/?/ loge n)

@ This proves 29 lower bound for MINIMUM FILL-IN.
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n’ = O(mlog® m) n" = O(n") n'" = 0O(A - n")
m’ = O(mlog® m) m' = O((n")?)

o We obtained a 290"/ 10" ) |ower bound for OLA, but not on sparse graphs.

1/2 c
(n%/ 10" n) |ower bound for MINIMUM FILL-IN.

@ Two routes to rescue the situation:

e Plan 1: Show hardness of OLA on bounded degree graphs.
e Plan 2: Find a better reduction from OLA to MINIMUM FILL-IN.

@ This proves 2°
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Reductions

3SAT —— Gar MaxCur OLA FILL-IN
n’ = O(mlog® m) n" = O(n") n'" = 0O(A - n")
m’ = O(mlog® m) m' = O((n")?)

o We obtained a 290"/ 10" ) |ower bound for OLA, but not on sparse graphs.

@ This proves 20(n'/?/10g" n) ower bound for MINIMUM FILL-IN.
@ Two routes to rescue the situation:
e Plan 1: Show hardness of OLA on bounded degree graphs.
e Plan 2: Find a better reduction from OLA to MINIMUM FILL-IN.

@ Let's look at the reduction OLA~~MINIMUM FILL-IN first.
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Reduction of Yannakakis

o Def. A bipartite graph (A, B, E) is a chain graph if {N(u)},ca form a chain
in the inclusion order.
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Reduction of Yannakakis

o Def. A bipartite graph (A, B, E) is a chain graph if {N(u)},ca form a chain
in the inclusion order.
e Eq., this holds for {N(v)}.ck.
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Reduction of Yannakakis

o Def. A bipartite graph (A, B, E) is a chain graph if {N(u)},ca form a chain

in the inclusion order.

e Eq., this holds for {N(v)}.ck.
e Eq., there is an ordering 7 of A such that N(u) D N(v) for 7(u) < 7(v).

[.

A
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Reduction of Yannakakis

o Def. A bipartite graph (A, B, E) is a chain graph if {N(u)},ca form a chain
in the inclusion order.
e Eq., this holds for {N(v)}.ck.
o Eq., there is an ordering 7 of A such that N(u) D N(v) for (u) < m(v).
e Eq., neighborhoods of vertices of B are downward closed w.r.t. .

A

CCCE R W)

e o ¢ oN o o o o o

B
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Reduction of Yannakakis

o Def. A bipartite graph (A, B, E) is a chain graph if {N(u)},ca form a chain
in the inclusion order.
e Eq., this holds for {N(v)}.ck.
o Eq., there is an ordering 7 of A such that N(u) D N(v) for (u) < m(v).
e Eq., neighborhoods of vertices of B are downward closed w.r.t. 7.

A

CCCE R W)

e o ¢ oN o o o o o

B

o CHAIN COMPLETION: Add at most k edges to a given bipartite graph with
a fixed bipartition to obtain a chain graph.
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Reduction of Yannakakis

o Def. A bipartite graph (A, B, E) is a chain graph if {N(u)},ca form a chain
in the inclusion order.
e Eq., this holds for {N(v)}.ck.
o Eq., there is an ordering 7 of A such that N(u) D N(v) for (u) < m(v).
e Eq., neighborhoods of vertices of B are downward closed w.r.t. 7.

A

CCCE R W)

e o ¢ oN o o o o o

B

o CHAIN COMPLETION: Add at most k edges to a given bipartite graph with
a fixed bipartition to obtain a chain graph.
e CHAIN COMPLETION~>CHORDAL/INTERVAL/PROPER INTERVAL
COMPLETION: Make both A and B into cliques.
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Reduction of Yannakakis

o Def. A bipartite graph (A, B, E) is a chain graph if {N(u)},ca form a chain
in the inclusion order.
e Eq., this holds for {N(v)}.ck.
o Eq., there is an ordering 7 of A such that N(u) D N(v) for (u) < m(v).
e Eq., neighborhoods of vertices of B are downward closed w.r.t. 7.

A

CCCE R W)

e o ¢ oN o o o o o

B

o CHAIN COMPLETION: Add at most k edges to a given bipartite graph with
a fixed bipartition to obtain a chain graph.

o CHAIN COMPLETION~>CHORDAL/INTERVAL/PROPER INTERVAL
COMPLETION: Make both A and B into cliques.

e CHAIN COMPLETION~THRESHOLD/TRIVIALLY PERFECT COMPLETION:
Make A into a clique.

Bliznets, Cygan, Komosa, Mach, Pilipczuk Completion problems: lower bounds



Reduction of Yannakakis

o Def. A bipartite graph (A, B, E) is a chain graph if {N(u)},ca form a chain
in the inclusion order.
e Eq., this holds for {N(v)}.ck.
o Eq., there is an ordering 7 of A such that N(u) D N(v) for (u) < m(v).
e Eq., neighborhoods of vertices of B are downward closed w.r.t. 7.

A

CCCE R W)

e o ¢ oN o o o o o

B

o CHAIN COMPLETION: Add at most k edges to a given bipartite graph with
a fixed bipartition to obtain a chain graph.
o CHAIN COMPLETION~>CHORDAL/INTERVAL/PROPER INTERVAL
COMPLETION: Make both A and B into cliques.
o CHAIN COMPLETION~>THRESHOLD/TRIVIALLY PERFECT COMPLETION:
Make A into a clique.

o Cor: Suffices to get reduction OLA~+CHAIN COMPLETION
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Reduction of Yannakakis

@ Set A= V(G) and B = E(G).

Bliznets, Cygan, Komosa, Mach, Pilipczuk Completion problems: lower bounds



Reduction of Yannakakis

@ Set A= V(G) and B = E(G).
@ Connect u € A with e € B iff u is an endpoint of e.
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Reduction of Yannakakis

@ Set A= V(G) and B = E(G).
@ Connect u € A with e € B iff u is an endpoint of e.

@ Fix some ordering 7: V(G) — {1,2,...,n}, and suppose this is the target
ordering of neighborhoods.
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Reduction of Yannakakis

@ Set A= V(G) and B = E(G).
@ Connect u € A with e € B iff u is an endpoint of e.

o Fix some ordering 7: V(G) — {1,2,...,n}, and suppose this is the target
ordering of neighborhoods.

@ For every uv € E(G) = B, we need to add max(w(u),w(v)) — 2 edges.
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Reduction of Yannakakis

Set A= V(G) and B = E(G).
Connect u € A with e € B iff u is an endpoint of e.

Fix some ordering : V(G) — {1,2,...,n}, and suppose this is the target
ordering of neighborhoods.

For every uv € E(G) = B, we need to add max(w(u),m(v)) — 2 edges.
Crucial observation:

2-max(m(u), 7(v)) = (w(v) + 7(v)) + |7 (u) — 7(v)]
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Reduction of Yannakakis

Set A= V(G) and B = E(G).
Connect u € A with e € B iff u is an endpoint of e.

Fix some ordering : V(G) — {1,2,...,n}, and suppose this is the target
ordering of neighborhoods.

For every uv € E(G) = B, we need to add max(w(u),m(v)) — 2 edges.
Crucial observation:

2-max(m(u), 7(v)) = (x(v) + 7(v)) + |7 (u) — w(v)]

@ The sum of w(u) + 7(v) summands is constant if the input graph is regular.
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Reduction of Yannakakis

@ Set A= V(G) and B = E(G).
@ Connect u € A with e € B iff u is an endpoint of e.

o Fix some ordering 7: V(G) — {1,2,...,n}, and suppose this is the target
ordering of neighborhoods.

@ For every uv € E(G) = B, we need to add max(w(u),w(v)) — 2 edges.
@ Crucial observation:

2-max(m(u), 7(v)) = (x(v) + 7(v)) + |7 (u) — w(v)]

@ The sum of w(u) + 7(v) summands is constant if the input graph is regular.

@ Can be easily achieved by adding loops.
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Reduction of Yannakakis

Set A= V(G) and B = E(G).
Connect u € A with e € B iff u is an endpoint of e.

Fix some ordering : V(G) — {1,2,...,n}, and suppose this is the target
ordering of neighborhoods.

For every uv € E(G) = B, we need to add max(w(u),m(v)) — 2 edges.
Crucial observation:

2-max(m(u), 7(v)) = (x(v) + 7(v)) + |7 (u) — w(v)]

The sum of w(u) + 7(v) summands is constant if the input graph is regular.
Can be easily achieved by adding loops.

Ergo: Minimization of the number of fill edges is equivalent to minimization
of the OLA cost.
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SIES

e Wanted: 2°(") hardness for OLA on bounded degree graphs.
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SIES

e Wanted: 2°(") hardness for OLA on bounded degree graphs.

@ Route via MAXCuTt: We would need hardness of MAXCUT on co-bounded
degree graphs.
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SIES

e Wanted: 2°(") hardness for OLA on bounded degree graphs.

@ Route via MAXCuTt: We would need hardness of MAXCUT on co-bounded
degree graphs.

@ Our approach:
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SIES

e Wanted: 2°(") hardness for OLA on bounded degree graphs.

@ Route via MAXCUT: We would need hardness of MAXCUT on co-bounded
degree graphs.
@ Our approach:
e Introduce a new hypothesis about approximability of MINIMUM BISECTION.
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SIES

e Wanted: 2°(" hardness for OLA on bounded degree graphs.

@ Route via MAXCuTt: We would need hardness of MAXCUT on co-bounded
degree graphs.

@ Our approach:

o Introduce a new hypothesis about approximability of MINIMUM BISECTION.
e Prove that starting with this hypothesis we can make this plan work.
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Hypothesis

@ MINBISECTION: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.
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Hypothesis

@ MINBISECTION: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.

@ What is known:

Bliznets, Cygan, Komosa, Mach, Pilipczuk Completion problems: lower bounds



Hypothesis

@ MINBISECTION: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.
@ What is known:
e NP-hard and APX-hard on bounded degree graphs.
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Hypothesis

@ MINBISECTION: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.
@ What is known:

o NP-hard and APX-hard on bounded degree graphs.
e The best known approximation has apx factor O(log OPT).
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Hypothesis

@ MINBISECTION: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.
@ What is known:

o NP-hard and APX-hard on bounded degree graphs.
o The best known approximation has apx factor O(log OPT).
e The problem is FPT.
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Hypothesis

@ MINBISECTION: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.
@ What is known:

NP-hard and APX-hard on bounded degree graphs.

The best known approximation has apx factor O(log OPT).
The problem is FPT.

No 2°(") lower bound on bounded degree graphs.
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Hypothesis

@ MINBISECTION: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.
@ What is known:

NP-hard and APX-hard on bounded degree graphs.

The best known approximation has apx factor O(log OPT).
The problem is FPT.

No 2°(") lower bound on bounded degree graphs.

There exist 0 < o < < 1 and d € N such that there is no 2°(")-time algorithm
for GAP MINBISECTION|, ) on d-regular graphs.
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Hypothesis

@ MINBISECTION: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.
@ What is known:

NP-hard and APX-hard on bounded degree graphs.

The best known approximation has apx factor O(log OPT).
The problem is FPT.

No 2°(") lower bound on bounded degree graphs.

There exist 0 < o < < 1 and d € N such that there is no 2°(")-time algorithm
for GAP MINBISECTION|, ) on d-regular graphs.

@ Intuition: MINBISECTION on bounded degree graphs does not admit a
subexponential-time approximation scheme.
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Reduction MINBISECTION~~OLA

o First attempt:
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Reduction MINBISECTION~~OLA

o First attempt:
o Start with a hard instance G of GAP MINBISECTION.

Bliznets, Cygan, Komosa, Mach, Pilipczuk Completion problems: lower bounds



Reduction MINBISECTION~~OLA

o First attempt:

e Start with a hard instance G of GAP MINBISECTION.
e Replace K with a large constant-degree expander.
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Reduction MINBISECTION~~OLA

o First attempt:
e Start with a hard instance G of GAP MINBISECTION.
o Replace K with a large constant-degree expander.
o What to do with the full join between K and the rest of the graph?
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Reduction MINBISECTION~~OLA

o First attempt:

e Start with a hard instance G of GAP MINBISECTION.
o Replace K with a large constant-degree expander.
o What to do with the full join between K and the rest of the graph?

@ Second attempt:
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Reduction MINBISECTION~~OLA

o First attempt:

e Start with a hard instance G of GAP MINBISECTION.
o Replace K with a large constant-degree expander.
o What to do with the full join between K and the rest of the graph?

@ Second attempt:

e Replace K with a careful construction consisting of a constant-length chain of
expanders of increasing degrees.
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Reduction MINBISECTION~~OLA

o First attempt:
e Start with a hard instance G of GAP MINBISECTION.
o Replace K with a large constant-degree expander.
o What to do with the full join between K and the rest of the graph?

@ Second attempt:

e Replace K with a careful construction consisting of a constant-length chain of
expanders of increasing degrees.
e The chain behaves in a rigid manner.
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Reduction MINBISECTION~~OLA

o First attempt:
e Start with a hard instance G of GAP MINBISECTION.
o Replace K with a large constant-degree expander.
o What to do with the full join between K and the rest of the graph?

@ Second attempt:
e Replace K with a careful construction consisting of a constant-length chain of
expanders of increasing degrees.
e The chain behaves in a rigid manner.
e Replace the full join with ‘balanced’ connections between expanders and G.
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Reduction MINBISECTION~~OLA

o First attempt:
e Start with a hard instance G of GAP MINBISECTION.
o Replace K with a large constant-degree expander.
o What to do with the full join between K and the rest of the graph?

@ Second attempt:
e Replace K with a careful construction consisting of a constant-length chain of
expanders of increasing degrees.
e The chain behaves in a rigid manner.
e Replace the full join with ‘balanced’ connections between expanders and G.
e The neighborhoods of G are ‘uniformly distributed’ in K.
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Reduction MINBISECTION~~OLA

o First attempt:
e Start with a hard instance G of GAP MINBISECTION.
o Replace K with a large constant-degree expander.
o What to do with the full join between K and the rest of the graph?

@ Second attempt:

e Replace K with a careful construction consisting of a constant-length chain of
expanders of increasing degrees.
The chain behaves in a rigid manner.
Replace the full join with ‘balanced’ connections between expanders and G.
The neighborhoods of G are ‘uniformly distributed’ in K.
Do the maths to make sure that the gap swallows the possible noise.
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Conclusions

@ We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.
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Conclusions

@ We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.

@ Message: Look at approximation hardness for MINBISECTION first.
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Conclusions

@ We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.

@ Message: Look at approximation hardness for MINBISECTION first.

e Approach can be also used to get 20(""*/196°) and O*(20(K""*/ 18" k) |ower
bounds for FEEDBACK ARC SET IN TOURNAMENTS.
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Conclusions

@ We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.

@ Message: Look at approximation hardness for MINBISECTION first.

o Approach can be also used to get 20(7"/*/10g"n) 3nd (9*(20(’<1/4/"’gc “)) lower
bounds for FEEDBACK ARC SET IN TOURNAMENTS.
@ Open problems:
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Conclusions

@ We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.

@ Message: Look at approximation hardness for MINBISECTION first.
o Approach can be also used to get 20(7"/*/10g"n) 3nd (9*(20(’<1/4/"’gc “)) lower
bounds for FEEDBACK ARC SET IN TOURNAMENTS.
@ Open problems:
e Investigate the Hypothesis.
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Conclusions

@ We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.

@ Message: Look at approximation hardness for MINBISECTION first.

o Approach can be also used to get 20(7"/*/10g"n) 3nd (9*(20(’<1/4/"’gc “)) lower
bounds for FEEDBACK ARC SET IN TOURNAMENTS.

@ Open problems:

o Investigate the Hypothesis.
e Equivalence of OLA hardness and the Hypothesis?
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Conclusions

@ We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.

@ Message: Look at approximation hardness for MINBISECTION first.

o Approach can be also used to get 20(7"/*/10g"n) 3nd (9*(20(’<1/4/"’gc “)) lower
bounds for FEEDBACK ARC SET IN TOURNAMENTS.

@ Open problems:

o Investigate the Hypothesis.
o Equivalence of OLA hardness and the Hypothesis?
e Different route to hardness of MINIMUM FILL-IN?
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Conclusions

@ We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.

@ Message: Look at approximation hardness for MINBISECTION first.

o Approach can be also used to get 20(7"/*/10g"n) 3nd (9*(20(’<1/4/"’gc “)) lower
bounds for FEEDBACK ARC SET IN TOURNAMENTS.

@ Open problems:

Investigate the Hypothesis.

Equivalence of OLA hardness and the Hypothesis?

Different route to hardness of MINIMUM FILL-IN?

Tight lower bounds for FEEDBACK ARC SET IN TOURNAMENTS?
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Conclusions

@ We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.

@ Message: Look at approximation hardness for MINBISECTION first.

o Approach can be also used to get 20(7"/*/10g"n) 3nd (9*(20(’<1/4/"’gc “)) lower
bounds for FEEDBACK ARC SET IN TOURNAMENTS.

@ Open problems:

Investigate the Hypothesis.

Equivalence of OLA hardness and the Hypothesis?

Different route to hardness of MINIMUM FILL-IN?

Tight lower bounds for FEEDBACK ARC SET IN TOURNAMENTS?

@ Thanks for your attention!
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