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O⋆(kO(k1/2))

BFPP:

O⋆(kO(k2/3))

Is O⋆(2Õ(k1/2)) the correct answer?

Bliznets, Cygan, Komosa, Mach, Pilipczuk Completion problems: lower bounds 2/16



The square root phenomenon

Planar graphs: Known NP-hardness reduction usually give O⋆(2o(
√
k)) lower

bounds under ETH.
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The square root phenomenon

Planar graphs: Known NP-hardness reduction usually give O⋆(2o(
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k)) lower

bounds under ETH.

Completion problems:

Known reductions give O⋆(2o(n1/6)) and O⋆(2o(k1/9)) lower bounds, or worse.
Fomin & Villanger:
Here the big gap between what we suspect and what we know is frustrating.

Arguments for the optimality of k1/2:

An O⋆(2o(k1/2)) algorithm implies also 2o(n).
Fundamental trade-off between cheap and expensive vertices.

Our answer: We corroborate the suspicion that k1/2 is optimum.

Note: Ignore polylog factors.
Personal opinion: log k in the exponent can be shaved off.

Goal: Prove a 2o(n) lower bound for Minimum Fill-in.
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Results

Under ETH:

no 2O(n1/2/ logc n) algorithm for Minimum Fill-in;

consequently, no O⋆(2O(k1/4/ logc k)) FPT algorithm.

Under stronger assumptions:

no 2o(n) algorithm for Minimum Fill-in;

consequently, no O⋆(2o(k1/2)) FPT algorithm.

Same lower bounds for all the other completion problems.
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Optimum Linear Arrangement

Let π : V (G ) → {1, 2, . . . , n} be an ordering of V (G ).
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Optimum Linear Arrangement

Let π : V (G ) → {1, 2, . . . , n} be an ordering of V (G ).

The cost of an edge uv is c(uv) = |π(u) − π(v)|

The cost of π is
∑

e∈E(G) c(e).

Optimum Linear Arrangement: Find π with minimum cost.

Note: It can be as large as cubic.
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Reduction MaxCut OLA

Complement the graph.

G

K
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Complement the graph.

Add a clique K of size N = nc for a large c , and make it fully adjacent to the
rest of the graph.

G

K
A K B

Easy: K can be assumed to be consecutive.

Instead of minimizing the cost, maximize the cost of the non-edges.

We want to maximize the number of non-edges flying over K .

Every edge flying over K has to gain more than the total noise on the sides.

Hence K must be large to make this work.
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Idea

Start with an instance that has a gap.

Gap MaxCut[α,β]: distinguish between OPT ≤ αm and OPT ≥ βm.

Suppose Gap MaxCut[α,β] is hard for some 0 ≤ α < β ≤ 1.

Then set |K | = ⌈ 2
β−α⌉ · n.

Gap in MaxCut  Gap of ≥ 2nm on edges flying over K .

Maximum noise is smaller than nm, so the gap amortizes the noise.

Bliznets, Cygan, Komosa, Mach, Pilipczuk Completion problems: lower bounds 8/16



Hardness of Gap MaxCut

Sparsification lemma ⇒ 2o(m) hardness of 3SAT
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Sparsification lemma ⇒ 2o(m) hardness of 3SAT

Almost linear PCPs: Reduction from 3SAT to Gap 3SAT[r ,1] that
increases the size by logc m.

Corollary

Under ETH, there exists constants r < 1 and c such that there is no 2O(m/ logc
m)

algorithm for Gap 3SAT[r ,1].

Already observed and used by Marx in 2007 for proving lower bounds on the
running times of geometric PTASes.

Standard reductions to MaxCut preserve the gap ⇒
2O(m/ logc

m) hardness of Gap MaxCut[α,β].

Cor: Under ETH, there is no 2O(n/ logc
n) algorithm for OLA, for some c .
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Reductions
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3SAT Gap MaxCut OLA Fill-in

n
′ = O(m logc

m)

m
′ = O(m logc
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′′ = O(n′)

m
′′ = O((n′)2)

n
′′′ = O(∆ · n′′)

We obtained a 2O(n/ logc
n) lower bound for OLA, but not on sparse graphs.

This proves 2O(n1/2/ logc
n) lower bound for Minimum Fill-in.

Two routes to rescue the situation:

Plan 1: Show hardness of OLA on bounded degree graphs.
Plan 2: Find a better reduction from OLA to Minimum Fill-in.

Let’s look at the reduction OLA Minimum Fill-in first.
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Reduction of Yannakakis

Def. A bipartite graph (A,B ,E ) is a chain graph if {N(u)}u∈A form a chain
in the inclusion order.
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Chain Completion: Add at most k edges to a given bipartite graph with
a fixed bipartition to obtain a chain graph.
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Reduction of Yannakakis

Def. A bipartite graph (A,B ,E ) is a chain graph if {N(u)}u∈A form a chain
in the inclusion order.

Eq., this holds for {N(v)}v∈B .
Eq., there is an ordering π of A such that N(u) ⊇ N(v) for π(u) ≤ π(v).
Eq., neighborhoods of vertices of B are downward closed w.r.t. π.

A

B

Chain Completion: Add at most k edges to a given bipartite graph with
a fixed bipartition to obtain a chain graph.

Chain Completion Chordal/Interval/Proper Interval
Completion: Make both A and B into cliques.
Chain Completion Threshold/Trivially Perfect Completion:
Make A into a clique.

Cor: Suffices to get reduction OLA Chain Completion
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Reduction of Yannakakis

Set A = V (G ) and B = E (G ).
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Reduction of Yannakakis

Set A = V (G ) and B = E (G ).

Connect u ∈ A with e ∈ B iff u is an endpoint of e.

Fix some ordering π : V (G ) → {1, 2, . . . , n}, and suppose this is the target
ordering of neighborhoods.

For every uv ∈ E (G ) = B , we need to add max(π(u), π(v)) − 2 edges.

Crucial observation:

2 · max(π(u), π(v)) = (π(u) + π(v)) + |π(u) − π(v)|

The sum of π(u) + π(v) summands is constant if the input graph is regular.

Can be easily achieved by adding loops.

Ergo: Minimization of the number of fill edges is equivalent to minimization
of the OLA cost.
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Issues

Wanted: 2o(n) hardness for OLA on bounded degree graphs.
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Issues

Wanted: 2o(n) hardness for OLA on bounded degree graphs.

Route via MaxCut: We would need hardness of MaxCut on co-bounded
degree graphs.

Our approach:

Introduce a new hypothesis about approximability of Minimum Bisection.
Prove that starting with this hypothesis we can make this plan work.
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Hypothesis

MinBisection: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.
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MinBisection: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.

What is known:

NP-hard and APX-hard on bounded degree graphs.
The best known approximation has apx factor O(logOPT ).
The problem is FPT.
No 2o(n) lower bound on bounded degree graphs.

Hypothesis

There exist 0 ≤ α < β ≤ 1 and d ∈ N such that there is no 2o(n)-time algorithm
for Gap MinBisection[α,β] on d-regular graphs.
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Hypothesis

MinBisection: Partition the vertex set into equal halves so that the
number of edges crossing the partition is minimized.

What is known:

NP-hard and APX-hard on bounded degree graphs.
The best known approximation has apx factor O(logOPT ).
The problem is FPT.
No 2o(n) lower bound on bounded degree graphs.

Hypothesis

There exist 0 ≤ α < β ≤ 1 and d ∈ N such that there is no 2o(n)-time algorithm
for Gap MinBisection[α,β] on d-regular graphs.

Intuition: MinBisection on bounded degree graphs does not admit a
subexponential-time approximation scheme.
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Reduction MinBisection OLA

First attempt:
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Replace K with a careful construction consisting of a constant-length chain of
expanders of increasing degrees.
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What to do with the full join between K and the rest of the graph?

Second attempt:

Replace K with a careful construction consisting of a constant-length chain of
expanders of increasing degrees.
The chain behaves in a rigid manner.
Replace the full join with ‘balanced’ connections between expanders and G .
The neighborhoods of G are ‘uniformly distributed’ in K .
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Reduction MinBisection OLA

First attempt:

Start with a hard instance G of Gap MinBisection.
Replace K with a large constant-degree expander.
What to do with the full join between K and the rest of the graph?

Second attempt:

Replace K with a careful construction consisting of a constant-length chain of
expanders of increasing degrees.
The chain behaves in a rigid manner.
Replace the full join with ‘balanced’ connections between expanders and G .
The neighborhoods of G are ‘uniformly distributed’ in K .
Do the maths to make sure that the gap swallows the possible noise.

G H1 H2 H3 HZ
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Conclusions

We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.
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Conclusions

We proved suboptimal lower bounds under ETH and almost tight lower
bounds under the Hypothesis.

Message: Look at approximation hardness for MinBisection first.

Approach can be also used to get 2O(n1/2/ logc
n) and O⋆(2O(k1/4/ logc

k)) lower
bounds for Feedback Arc Set in Tournaments.

Open problems:

Investigate the Hypothesis.
Equivalence of OLA hardness and the Hypothesis?
Different route to hardness of Minimum Fill-in?
Tight lower bounds for Feedback Arc Set in Tournaments?

Thanks for your attention!
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