Lower bounds for the parameterized complexity of Minimum Fill-in and other completion problems

Michał Pilipczuk

Institute of Informatics, University of Warsaw
Joint work with Ivan Bliznets, Marek Cygan, Paweł Komosa and Lukáš Mach
Simons Institute,
November $4^{\text {th }}, 2015$

Motivation

Motivation

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:
- Known reductions give $\mathcal{O}^{\star}\left(2^{o\left(n^{1 / 6}\right)}\right)$ and $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 9}\right)}\right)$ lower bounds, or worse.

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:
- Known reductions give $\mathcal{O}^{\star}\left(2^{o\left(n^{1 / 6}\right)}\right)$ and $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 9}\right)}\right)$ lower bounds, or worse.
- Fomin \& Villanger:

Here the big gap between what we suspect and what we know is frustrating.

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:
- Known reductions give $\mathcal{O}^{\star}\left(2^{o\left(n^{1 / 6}\right)}\right)$ and $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 9}\right)}\right)$ lower bounds, or worse.
- Fomin \& Villanger:

Here the big gap between what we suspect and what we know is frustrating.

- Arguments for the optimality of $k^{1 / 2}$:

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:
- Known reductions give $\mathcal{O}^{\star}\left(2^{o\left(n^{1 / 6}\right)}\right)$ and $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 9}\right)}\right)$ lower bounds, or worse.
- Fomin \& Villanger:

Here the big gap between what we suspect and what we know is frustrating.

- Arguments for the optimality of $k^{1 / 2}$:
- An $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 2}\right)}\right)$ algorithm implies also $2^{o(n)}$.

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:
- Known reductions give $\mathcal{O}^{\star}\left(2^{o\left(n^{1 / 6}\right)}\right)$ and $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 9}\right)}\right)$ lower bounds, or worse.
- Fomin \& Villanger:

Here the big gap between what we suspect and what we know is frustrating.

- Arguments for the optimality of $k^{1 / 2}$:
- An $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 2}\right)}\right)$ algorithm implies also $2^{o(n)}$.
- Fundamental trade-off between cheap and expensive vertices.

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:
- Known reductions give $\mathcal{O}^{\star}\left(2^{o\left(n^{1 / 6}\right)}\right)$ and $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 9}\right)}\right)$ lower bounds, or worse.
- Fomin \& Villanger:

Here the big gap between what we suspect and what we know is frustrating.

- Arguments for the optimality of $k^{1 / 2}$:
- An $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 2}\right)}\right)$ algorithm implies also $2^{o(n)}$.
- Fundamental trade-off between cheap and expensive vertices.
- Our answer: We corroborate the suspicion that $k^{1 / 2}$ is optimum.

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:
- Known reductions give $\mathcal{O}^{\star}\left(2^{o\left(n^{1 / 6}\right)}\right)$ and $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 9}\right)}\right)$ lower bounds, or worse.
- Fomin \& Villanger:

Here the big gap between what we suspect and what we know is frustrating.

- Arguments for the optimality of $k^{1 / 2}$:
- An $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 2}\right)}\right)$ algorithm implies also $2^{o(n)}$.
- Fundamental trade-off between cheap and expensive vertices.
- Our answer: We corroborate the suspicion that $k^{1 / 2}$ is optimum.
- Note: Ignore polylog factors.

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{o(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:
- Known reductions give $\mathcal{O}^{\star}\left(2^{o\left(n^{1 / 6}\right)}\right)$ and $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 9}\right)}\right)$ lower bounds, or worse.
- Fomin \& Villanger:

Here the big gap between what we suspect and what we know is frustrating.

- Arguments for the optimality of $k^{1 / 2}$:
- An $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 2}\right)}\right)$ algorithm implies also $2^{o(n)}$.
- Fundamental trade-off between cheap and expensive vertices.
- Our answer: We corroborate the suspicion that $k^{1 / 2}$ is optimum.
- Note: Ignore polylog factors.
- Personal opinion: $\log k$ in the exponent can be shaved off.

The square root phenomenon

- Planar graphs: Known NP-hardness reduction usually give $\mathcal{O}^{\star}\left(2^{\circ(\sqrt{k})}\right)$ lower bounds under ETH.
- Completion problems:
- Known reductions give $\mathcal{O}^{\star}\left(2^{o\left(n^{1 / 6}\right)}\right)$ and $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 9}\right)}\right)$ lower bounds, or worse.
- Fomin \& Villanger:

Here the big gap between what we suspect and what we know is frustrating.

- Arguments for the optimality of $k^{1 / 2}$:
- An $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 2}\right)}\right)$ algorithm implies also $2^{o(n)}$.
- Fundamental trade-off between cheap and expensive vertices.
- Our answer: We corroborate the suspicion that $k^{1 / 2}$ is optimum.
- Note: Ignore polylog factors.
- Personal opinion: $\log k$ in the exponent can be shaved off.
- Goal: Prove a $2^{\circ(n)}$ lower bound for Minimum Fill-in.

Results

- Under ETH:

Results

- Under ETH:
- no $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ algorithm for Minimum Fill-in;

Results

- Under ETH:
- no $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ algorithm for Minimum Fill-in;
- consequently, no $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ FPT algorithm.

Results

- Under ETH:
- no $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ algorithm for Minimum Fill-IN;
- consequently, no $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ FPT algorithm.
- Under stronger assumptions:

Results

- Under ETH:
- no $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ algorithm for Minimum Fill-In;
- consequently, no $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ FPT algorithm.
- Under stronger assumptions:
- no $2^{o(n)}$ algorithm for Minimum Fill-in;

Results

- Under ETH:
- no $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ algorithm for Minimum Fill-in;
- consequently, no $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ FPT algorithm.
- Under stronger assumptions:
- no $2^{\text {o(n) }}$ algorithm for Minimum Fill-in;
- consequently, no $\mathcal{O}^{\star}\left(2^{0\left(k^{1 / 2}\right)}\right)$ FPT algorithm.

Results

- Under ETH:
- no $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ algorithm for Minimum Fill-In;
- consequently, no $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ FPT algorithm.
- Under stronger assumptions:
- no $2^{o(n)}$ algorithm for Minimum Fill-in;
- consequently, no $\mathcal{O}^{\star}\left(2^{o\left(k^{1 / 2}\right)}\right)$ FPT algorithm.
- Same lower bounds for all the other completion problems.

Known reductions

$$
\text { 3SAT } \longrightarrow \text { MAxCuT } \longrightarrow \text { OLA } \longrightarrow \text { FILL-IN }
$$

Known reductions

$$
\begin{aligned}
3 \mathrm{SAT} & \longrightarrow \mathrm{MAXCUT} \longrightarrow \text { FILL-IN } \\
n^{\prime} & =\mathcal{O}(n+m) \\
m^{\prime} & =\mathcal{O}(n+m)
\end{aligned}
$$

Known reductions

$$
\begin{aligned}
3 \text { SAT } & \longrightarrow \text { MAXCUT } & \longrightarrow \text { FILA } \longrightarrow \text { FILL-IN } \\
n^{\prime} & =\mathcal{O}(n+m) & n^{\prime \prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{3}\right) \\
m^{\prime} & =\mathcal{O}(n+m) & m^{\prime \prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{6}\right)
\end{aligned}
$$

Known reductions

$$
\begin{array}{rlrl}
3 \mathrm{SAT} & \longrightarrow \mathrm{OLA} \longrightarrow \text { MAXCUT } & \longrightarrow \text { FILL-IN } \\
n^{\prime} & =\mathcal{O}(n+m) & n^{\prime \prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{3}\right) \quad n^{\prime \prime \prime}=\mathcal{O}\left(\Delta \cdot n^{\prime \prime}\right) \\
m^{\prime} & =\mathcal{O}(n+m) & m^{\prime \prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{6}\right) &
\end{array}
$$

Known reductions

Optimum Linear Arrangement

- Let $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$ be an ordering of $V(G)$.

Optimum Linear Arrangement

- Let $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$ be an ordering of $V(G)$.
- The cost of an edge $u v$ is $c(u v)=|\pi(u)-\pi(v)|$

Optimum Linear Arrangement

- Let $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$ be an ordering of $V(G)$.
- The cost of an edge $u v$ is $c(u v)=|\pi(u)-\pi(v)|$
- The cost of π is $\sum_{e \in E(G)} c(e)$.

Optimum Linear Arrangement

- Let $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$ be an ordering of $V(G)$.
- The cost of an edge $u v$ is $c(u v)=|\pi(u)-\pi(v)|$
- The cost of π is $\sum_{e \in E(G)} c(e)$.
- Optimum Linear Arrangement: Find π with minimum cost.

Optimum Linear Arrangement

- Let $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$ be an ordering of $V(G)$.
- The cost of an edge $u v$ is $c(u v)=|\pi(u)-\pi(v)|$
- The cost of π is $\sum_{e \in E(G)} c(e)$.
- Optimum Linear Arrangement: Find π with minimum cost.
- Note: It can be as large as cubic.

Reduction MaxCut $\rightsquigarrow O L A$

- Complement the graph.

Reduction MaxCuTwOLA

- Complement the graph.
- Add a clique K of size $N=n^{c}$ for a large c, and make it fully adjacent to the rest of the graph.

Reduction MaxCuTwOLA

- Complement the graph.
- Add a clique K of size $N=n^{c}$ for a large c, and make it fully adjacent to the rest of the graph.

- Easy: K can be assumed to be consecutive.

Reduction MaxCuTwOLA

- Complement the graph.
- Add a clique K of size $N=n^{c}$ for a large c, and make it fully adjacent to the rest of the graph.

- Easy: K can be assumed to be consecutive.
- Instead of minimizing the cost, maximize the cost of the non-edges.

Reduction MaxCuT $\rightsquigarrow O L A$

- Complement the graph.
- Add a clique K of size $N=n^{c}$ for a large c, and make it fully adjacent to the rest of the graph.

- Easy: K can be assumed to be consecutive.
- Instead of minimizing the cost, maximize the cost of the non-edges.
- We want to maximize the number of non-edges flying over K.

Reduction MaxCut $\rightsquigarrow O L A$

- Complement the graph.
- Add a clique K of size $N=n^{c}$ for a large c, and make it fully adjacent to the rest of the graph.

- Easy: K can be assumed to be consecutive.
- Instead of minimizing the cost, maximize the cost of the non-edges.
- We want to maximize the number of non-edges flying over K.
- Every edge flying over K has to gain more than the total noise on the sides.

Reduction MaxCut $\rightsquigarrow O L A$

- Complement the graph.
- Add a clique K of size $N=n^{c}$ for a large c, and make it fully adjacent to the rest of the graph.

- Easy: K can be assumed to be consecutive.
- Instead of minimizing the cost, maximize the cost of the non-edges.
- We want to maximize the number of non-edges flying over K.
- Every edge flying over K has to gain more than the total noise on the sides.
- Hence K must be large to make this work.

Idea

- Start with an instance that has a gap.

Idea

- Start with an instance that has a gap.
- Gap $\operatorname{MaxCut}_{[\alpha, \beta]}$: distinguish between $O P T \leq \alpha m$ and $O P T \geq \beta m$.

Idea

- Start with an instance that has a gap.
- Gap MaxCut ${ }_{[\alpha, \beta]}$: distinguish between $O P T \leq \alpha m$ and $O P T \geq \beta m$.
- Suppose Gap MaxCut ${ }_{[\alpha, \beta]}$ is hard for some $0 \leq \alpha<\beta \leq 1$.

Idea

- Start with an instance that has a gap.
- Gap MaxCut ${ }_{[\alpha, \beta]}$: distinguish between $O P T \leq \alpha m$ and $O P T \geq \beta m$.
- Suppose Gap MaxCut ${ }_{[\alpha, \beta]}$ is hard for some $0 \leq \alpha<\beta \leq 1$.
- Then set $|K|=\left\lceil\frac{2}{\beta-\alpha}\right\rceil \cdot n$.

Idea

- Start with an instance that has a gap.
- Gap MaxCut ${ }_{[\alpha, \beta]}$: distinguish between $O P T \leq \alpha m$ and $O P T \geq \beta m$.
- Suppose Gap MaxCut ${ }_{[\alpha, \beta]}$ is hard for some $0 \leq \alpha<\beta \leq 1$.
- Then set $|K|=\left\lceil\frac{2}{\beta-\alpha}\right\rceil \cdot n$.
- Gap in MaxCut \rightsquigarrow Gap of $\geq 2 n m$ on edges flying over K.

Idea

- Start with an instance that has a gap.
- Gap MaxCut ${ }_{[\alpha, \beta]}$: distinguish between $O P T \leq \alpha m$ and $O P T \geq \beta m$.
- Suppose Gap $\operatorname{MaxCut}_{[\alpha, \beta]}$ is hard for some $0 \leq \alpha<\beta \leq 1$.
- Then set $|K|=\left\lceil\frac{2}{\beta-\alpha}\right\rceil \cdot n$.
- Gap in MaxCut \rightsquigarrow Gap of $\geq 2 n m$ on edges flying over K.
- Maximum noise is smaller than $n m$, so the gap amortizes the noise.

Hardness of Gap MaxCut

- Sparsification lemma $\Rightarrow 2^{o(m)}$ hardness of 3SAT

Hardness of Gap MaxCut

- Sparsification lemma $\Rightarrow 2^{o(m)}$ hardness of 3SAT
- Almost linear PCPs: Reduction from 3SAT to GAP $3 \mathrm{SAT}_{[r, 1]}$ that increases the size by $\log ^{c} m$.

Hardness of Gap MaxCut

- Sparsification lemma $\Rightarrow 2^{\circ(m)}$ hardness of 3 SAT
- Almost linear PCPs: Reduction from 3SAT to GAP $3 \mathrm{SAT}_{[r, 1]}$ that increases the size by $\log ^{c} m$.

Corollary

Under ETH, there exists constants $r<1$ and c such that there is no $2^{\mathcal{O}\left(m / \log ^{c} m\right)}$ algorithm for GAP $3 \mathrm{SAT}_{[r, 1]}$.

Hardness of Gap MaxCut

- Sparsification lemma $\Rightarrow 2^{\circ(m)}$ hardness of 3 SAT
- Almost linear PCPs: Reduction from 3SAT to GAP $3 \mathrm{SAT}_{[r, 1]}$ that increases the size by $\log ^{c} m$.

Corollary

Under ETH, there exists constants $r<1$ and c such that there is no $2^{\mathcal{O}\left(m / \log ^{c} m\right)}$ algorithm for GAP $3 \mathrm{SAT}_{[r, 1]}$.

- Already observed and used by Marx in 2007 for proving lower bounds on the running times of geometric PTASes.

Hardness of Gap MaxCut

- Sparsification lemma $\Rightarrow 2^{o(m)}$ hardness of 3SAT
- Almost linear PCPs: Reduction from 3SAT to GAP $3 \mathrm{SAT}_{[r, 1]}$ that increases the size by $\log ^{c} m$.

Corollary

Under ETH, there exists constants $r<1$ and c such that there is no $2^{\mathcal{O}\left(m / \log ^{c} m\right)}$ algorithm for GAP $3 \mathrm{SAT}_{[r, 1]}$.

- Already observed and used by Marx in 2007 for proving lower bounds on the running times of geometric PTASes.
- Standard reductions to MaxCut preserve the gap \Rightarrow $2^{\mathcal{O}\left(m / \log ^{c} m\right)}$ hardness of Gap MaxCuT ${ }_{[\alpha, \beta]}$.

Hardness of Gap MaxCut

- Sparsification lemma $\Rightarrow 2^{o(m)}$ hardness of 3 SAT
- Almost linear PCPs: Reduction from 3SAT to GAP $3 \mathrm{SAT}_{[r, 1]}$ that increases the size by $\log ^{c} m$.

Corollary

Under ETH, there exists constants $r<1$ and c such that there is no $2^{\mathcal{O}\left(m / \log ^{c} m\right)}$ algorithm for GAP $3 \mathrm{SAT}_{[r, 1]}$.

- Already observed and used by Marx in 2007 for proving lower bounds on the running times of geometric PTASes.
- Standard reductions to MaxCut preserve the gap \Rightarrow $2^{\mathcal{O}\left(m / \log ^{c} \mathrm{~m}\right)}$ hardness of Gap MaxCuT $[\alpha, \beta]$.
- Cor: Under ETH, there is no $2^{\mathcal{O}\left(n / \log ^{c} n\right)}$ algorithm for OLA, for some c.

Reductions

$$
\begin{array}{rlr}
3 \mathrm{SAT} & \longrightarrow \mathrm{GAP} \text { MAXCUT } \longrightarrow \mathrm{OLA} \longrightarrow \\
n^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) & n^{\prime \prime}=\mathcal{O}\left(n^{\prime}\right) \\
m^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) & m^{\prime \prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{2}\right)
\end{array}
$$

Fill-IN

Reductions

$$
\begin{aligned}
3 \mathrm{SAT} & \longrightarrow \mathrm{GAP} \text { MAXCUT } \longrightarrow \mathrm{OLA} \longrightarrow \text { FILL-IN } \\
n^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \\
m^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right)
\end{aligned} \quad n^{\prime \prime}=\mathcal{O}\left(n^{\prime}\right) \quad m^{\prime \prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{2}\right) \quad l y \mathcal{O}\left(\Delta \cdot n^{\prime \prime}\right)
$$

Reductions

$$
\begin{aligned}
\text { 3SAT } & \longrightarrow \text { GAP MAXCUT } \longrightarrow \text { FLA } \longrightarrow \text { FILL-IN } \\
n^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \\
m^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \quad n^{\prime \prime}=\mathcal{O}\left(n^{\prime}\right) \quad n^{\prime \prime \prime}=\mathcal{O}\left(\Delta \cdot n^{\prime \prime}\right)
\end{aligned}
$$

- We obtained a $2^{\mathcal{O}\left(n / \log ^{c} n\right)}$ lower bound for OLA, but not on sparse graphs.

Reductions

$$
\begin{aligned}
\text { 3SAT } & \longrightarrow \text { GAP MAXCUT } \longrightarrow \text { FIA } \longrightarrow \text { FILL-IN } \\
n^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \\
m^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \quad n^{\prime \prime}=\mathcal{O}\left(n^{\prime}\right) \quad n^{\prime \prime \prime}=\mathcal{O}\left(\Delta \cdot n^{\prime \prime}\right)
\end{aligned}
$$

- We obtained a $2^{\mathcal{O}\left(n / \log ^{c} n\right)}$ lower bound for OLA, but not on sparse graphs.
- This proves $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ lower bound for Minimum Fill-in.

Reductions

$$
\begin{aligned}
\text { 3SAT } & \longrightarrow \text { GAP MAXCUT } \\
n^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \\
m^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right)
\end{aligned} \quad n^{\prime \prime}=\mathcal{O}\left(n^{\prime}\right) \quad m^{\prime \prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{2}\right) \quad l y \text { FILL-IN }
$$

- We obtained a $2^{\mathcal{O}\left(n / \log ^{c} n\right)}$ lower bound for OLA, but not on sparse graphs.
- This proves $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ lower bound for Minimum Fill-in.
- Two routes to rescue the situation:

Reductions

$$
\begin{aligned}
\text { 3SAT } & \longrightarrow \text { GAP MAXCUT } \\
n^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \\
m^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right)
\end{aligned} \quad n^{\prime \prime}=\mathcal{O}\left(n^{\prime}\right) \quad m^{\prime \prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{2}\right) \quad l y \text { FILL-IN }
$$

- We obtained a $2^{\mathcal{O}\left(n / \log ^{c} n\right)}$ lower bound for OLA, but not on sparse graphs.
- This proves $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ lower bound for Minimum Fill-in.
- Two routes to rescue the situation:
- Plan 1: Show hardness of OLA on bounded degree graphs.

Reductions

$$
\begin{aligned}
\text { 3SAT } & \longrightarrow \text { GAP MAXCUT } \\
n^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \\
m^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right)
\end{aligned} \quad n^{\prime \prime}=\mathcal{O}\left(n^{\prime}\right) \quad m^{\prime \prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{2}\right) \quad l y \text { FILL-IN }
$$

- We obtained a $2^{\mathcal{O}\left(n / \log ^{c} n\right)}$ lower bound for OLA, but not on sparse graphs.
- This proves $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ lower bound for Minimum Fill-in.
- Two routes to rescue the situation:
- Plan 1: Show hardness of OLA on bounded degree graphs.
- Plan 2: Find a better reduction from OLA to Minimum Fill-in.

Reductions

$$
\begin{aligned}
\text { 3SAT } & \longrightarrow \text { GAP MAXCUT } \longrightarrow \text { FLA } \longrightarrow \text { FILL-IN } \\
n^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \\
m^{\prime} & =\mathcal{O}\left(m \log ^{c} m\right) \quad n^{\prime \prime}=\mathcal{O}\left(n^{\prime}\right) \quad n^{\prime \prime \prime}=\mathcal{O}\left(\Delta \cdot n^{\prime \prime}\right)
\end{aligned}
$$

- We obtained a $2^{\mathcal{O}\left(n / \log ^{c} n\right)}$ lower bound for OLA, but not on sparse graphs.
- This proves $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ lower bound for Minimum Fill-in.
- Two routes to rescue the situation:
- Plan 1: Show hardness of OLA on bounded degree graphs.
- Plan 2: Find a better reduction from OLA to Minimum Fill-in.
- Let's look at the reduction OLA \rightsquigarrow Minimum Fill-in first.

Reduction of Yannakakis

- Def. A bipartite graph (A, B, E) is a chain graph if $\{N(u)\}_{u \in A}$ form a chain in the inclusion order.

Reduction of Yannakakis

- Def. A bipartite graph (A, B, E) is a chain graph if $\{N(u)\}_{u \in A}$ form a chain in the inclusion order.
- Eq., this holds for $\{N(v)\}_{v \in B}$.

Reduction of Yannakakis

- Def. A bipartite graph (A, B, E) is a chain graph if $\{N(u)\}_{u \in A}$ form a chain in the inclusion order.
- Eq., this holds for $\{N(v)\}_{v \in B}$.
- Eq., there is an ordering π of A such that $N(u) \supseteq N(v)$ for $\pi(u) \leq \pi(v)$.

Reduction of Yannakakis

- Def. A bipartite graph (A, B, E) is a chain graph if $\{N(u)\}_{u \in A}$ form a chain in the inclusion order.
- Eq., this holds for $\{N(v)\}_{v \in B}$.
- Eq., there is an ordering π of A such that $N(u) \supseteq N(v)$ for $\pi(u) \leq \pi(v)$.
- Eq., neighborhoods of vertices of B are downward closed w.r.t. π.

Reduction of Yannakakis

- Def. A bipartite graph (A, B, E) is a chain graph if $\{N(u)\}_{u \in A}$ form a chain in the inclusion order.
- Eq., this holds for $\{N(v)\}_{v \in B}$.
- Eq., there is an ordering π of A such that $N(u) \supseteq N(v)$ for $\pi(u) \leq \pi(v)$.
- Eq., neighborhoods of vertices of B are downward closed w.r.t. π.

- Chain Completion: Add at most k edges to a given bipartite graph with a fixed bipartition to obtain a chain graph.

Reduction of Yannakakis

- Def. A bipartite graph (A, B, E) is a chain graph if $\{N(u)\}_{u \in A}$ form a chain in the inclusion order.
- Eq., this holds for $\{N(v)\}_{v \in B}$.
- Eq., there is an ordering π of A such that $N(u) \supseteq N(v)$ for $\pi(u) \leq \pi(v)$.
- Eq., neighborhoods of vertices of B are downward closed w.r.t. π.

- Chain Completion: Add at most k edges to a given bipartite graph with a fixed bipartition to obtain a chain graph.
- Chain Completion \rightsquigarrow Chordal/Interval/Proper Interval Completion: Make both A and B into cliques.

Reduction of Yannakakis

- Def. A bipartite graph (A, B, E) is a chain graph if $\{N(u)\}_{u \in A}$ form a chain in the inclusion order.
- Eq., this holds for $\{N(v)\}_{v \in B}$.
- Eq., there is an ordering π of A such that $N(u) \supseteq N(v)$ for $\pi(u) \leq \pi(v)$.
- Eq., neighborhoods of vertices of B are downward closed w.r.t. π.

- Chain Completion: Add at most k edges to a given bipartite graph with a fixed bipartition to obtain a chain graph.
- Chain Completion \rightsquigarrow Chordal/Interval/Proper Interval Completion: Make both A and B into cliques.
- Chain Completion \rightsquigarrow Threshold/Trivially Perfect Completion: Make A into a clique.

Reduction of Yannakakis

- Def. A bipartite graph (A, B, E) is a chain graph if $\{N(u)\}_{u \in A}$ form a chain in the inclusion order.
- Eq., this holds for $\{N(v)\}_{v \in B}$.
- Eq., there is an ordering π of A such that $N(u) \supseteq N(v)$ for $\pi(u) \leq \pi(v)$.
- Eq., neighborhoods of vertices of B are downward closed w.r.t. π.

- Chain Completion: Add at most k edges to a given bipartite graph with a fixed bipartition to obtain a chain graph.
- Chain Completion \rightsquigarrow Chordal/Interval/Proper Interval Completion: Make both A and B into cliques.
- Chain Completion \leadsto Threshold/Trivially Perfect Completion: Make A into a clique.
- Cor: Suffices to get reduction OLA \rightsquigarrow Chain Completion

Reduction of Yannakakis

- Set $A=V(G)$ and $B=E(G)$.

Reduction of Yannakakis

- Set $A=V(G)$ and $B=E(G)$.
- Connect $u \in A$ with $e \in B$ iff u is an endpoint of e.

Reduction of Yannakakis

- Set $A=V(G)$ and $B=E(G)$.
- Connect $u \in A$ with $e \in B$ iff u is an endpoint of e.
- Fix some ordering $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$, and suppose this is the target ordering of neighborhoods.

Reduction of Yannakakis

- Set $A=V(G)$ and $B=E(G)$.
- Connect $u \in A$ with $e \in B$ iff u is an endpoint of e.
- Fix some ordering $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$, and suppose this is the target ordering of neighborhoods.
- For every $u v \in E(G)=B$, we need to add $\max (\pi(u), \pi(v))-2$ edges.

Reduction of Yannakakis

- Set $A=V(G)$ and $B=E(G)$.
- Connect $u \in A$ with $e \in B$ iff u is an endpoint of e.
- Fix some ordering $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$, and suppose this is the target ordering of neighborhoods.
- For every $u v \in E(G)=B$, we need to add $\max (\pi(u), \pi(v))-2$ edges.
- Crucial observation:

$$
2 \cdot \max (\pi(u), \pi(v))=(\pi(u)+\pi(v))+|\pi(u)-\pi(v)|
$$

Reduction of Yannakakis

- Set $A=V(G)$ and $B=E(G)$.
- Connect $u \in A$ with $e \in B$ iff u is an endpoint of e.
- Fix some ordering $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$, and suppose this is the target ordering of neighborhoods.
- For every $u v \in E(G)=B$, we need to add $\max (\pi(u), \pi(v))-2$ edges.
- Crucial observation:

$$
2 \cdot \max (\pi(u), \pi(v))=(\pi(u)+\pi(v))+|\pi(u)-\pi(v)|
$$

- The sum of $\pi(u)+\pi(v)$ summands is constant if the input graph is regular.

Reduction of Yannakakis

- Set $A=V(G)$ and $B=E(G)$.
- Connect $u \in A$ with $e \in B$ iff u is an endpoint of e.
- Fix some ordering $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$, and suppose this is the target ordering of neighborhoods.
- For every $u v \in E(G)=B$, we need to add $\max (\pi(u), \pi(v))-2$ edges.
- Crucial observation:

$$
2 \cdot \max (\pi(u), \pi(v))=(\pi(u)+\pi(v))+|\pi(u)-\pi(v)|
$$

- The sum of $\pi(u)+\pi(v)$ summands is constant if the input graph is regular.
- Can be easily achieved by adding loops.

Reduction of Yannakakis

- Set $A=V(G)$ and $B=E(G)$.
- Connect $u \in A$ with $e \in B$ iff u is an endpoint of e.
- Fix some ordering $\pi: V(G) \rightarrow\{1,2, \ldots, n\}$, and suppose this is the target ordering of neighborhoods.
- For every $u v \in E(G)=B$, we need to add $\max (\pi(u), \pi(v))-2$ edges.
- Crucial observation:

$$
2 \cdot \max (\pi(u), \pi(v))=(\pi(u)+\pi(v))+|\pi(u)-\pi(v)|
$$

- The sum of $\pi(u)+\pi(v)$ summands is constant if the input graph is regular.
- Can be easily achieved by adding loops.
- Ergo: Minimization of the number of fill edges is equivalent to minimization of the OLA cost.

Issues

- Wanted: $2^{0(n)}$ hardness for OLA on bounded degree graphs.

Issues

- Wanted: $2^{0(n)}$ hardness for OLA on bounded degree graphs.
- Route via MaxCut: We would need hardness of MaxCut on co-bounded degree graphs.

Issues

- Wanted: $2^{0(n)}$ hardness for OLA on bounded degree graphs.
- Route via MaxCut: We would need hardness of MaxCut on co-bounded degree graphs.
- Our approach:

Issues

- Wanted: $2^{o(n)}$ hardness for OLA on bounded degree graphs.
- Route via MaxCut: We would need hardness of MaxCut on co-bounded degree graphs.
- Our approach:
- Introduce a new hypothesis about approximability of Minimum Bisection.

Issues

- Wanted: $2^{0(n)}$ hardness for OLA on bounded degree graphs.
- Route via MaxCut: We would need hardness of MaxCut on co-bounded degree graphs.
- Our approach:
- Introduce a new hypothesis about approximability of Minimum Bisection.
- Prove that starting with this hypothesis we can make this plan work.

Hypothesis

- MinBisection: Partition the vertex set into equal halves so that the number of edges crossing the partition is minimized.

Hypothesis

- MinBisection: Partition the vertex set into equal halves so that the number of edges crossing the partition is minimized.
- What is known:

Hypothesis

- MinBisection: Partition the vertex set into equal halves so that the number of edges crossing the partition is minimized.
- What is known:
- NP-hard and APX-hard on bounded degree graphs.

Hypothesis

- MinBisection: Partition the vertex set into equal halves so that the number of edges crossing the partition is minimized.
- What is known:
- NP-hard and APX-hard on bounded degree graphs.
- The best known approximation has apx factor $\mathcal{O}(\log O P T)$.

Hypothesis

- MinBisection: Partition the vertex set into equal halves so that the number of edges crossing the partition is minimized.
- What is known:
- NP-hard and APX-hard on bounded degree graphs.
- The best known approximation has apx factor $\mathcal{O}(\log O P T)$.
- The problem is FPT.

Hypothesis

- MinBisection: Partition the vertex set into equal halves so that the number of edges crossing the partition is minimized.
- What is known:
- NP-hard and APX-hard on bounded degree graphs.
- The best known approximation has apx factor $\mathcal{O}(\log O P T)$.
- The problem is FPT.
- No $2^{o(n)}$ lower bound on bounded degree graphs.

Hypothesis

- MinBisection: Partition the vertex set into equal halves so that the number of edges crossing the partition is minimized.
- What is known:
- NP-hard and APX-hard on bounded degree graphs.
- The best known approximation has apx factor $\mathcal{O}(\log O P T)$.
- The problem is FPT.
- No $2^{o(n)}$ lower bound on bounded degree graphs.

Hypothesis

There exist $0 \leq \alpha<\beta \leq 1$ and $d \in \mathbb{N}$ such that there is no $2^{o(n)}$-time algorithm for Gap MinBisection ${ }_{[\alpha, \beta]}$ on d-regular graphs.

Hypothesis

- MinBisection: Partition the vertex set into equal halves so that the number of edges crossing the partition is minimized.
- What is known:
- NP-hard and APX-hard on bounded degree graphs.
- The best known approximation has apx factor $\mathcal{O}(\log O P T)$.
- The problem is FPT.
- No $2^{o(n)}$ lower bound on bounded degree graphs.

Hypothesis

There exist $0 \leq \alpha<\beta \leq 1$ and $d \in \mathbb{N}$ such that there is no $2^{o(n)}$-time algorithm for Gap MinBisection ${ }_{[\alpha, \beta]}$ on d-regular graphs.

- Intuition: MinBisection on bounded degree graphs does not admit a subexponential-time approximation scheme.

Reduction MinBisection \rightsquigarrow OLA

- First attempt:

Reduction MinBisection \rightsquigarrow OLA

- First attempt:
- Start with a hard instance G of Gap MinBisection.

Reduction MinBisection \rightsquigarrow OLA

- First attempt:
- Start with a hard instance G of Gap MinBisection.
- Replace K with a large constant-degree expander.

Reduction MinBisection \rightsquigarrow OLA

- First attempt:
- Start with a hard instance G of Gap MinBisection.
- Replace K with a large constant-degree expander.
- What to do with the full join between K and the rest of the graph?

Reduction MinBisection \rightsquigarrow OLA

- First attempt:
- Start with a hard instance G of Gap MinBisection.
- Replace K with a large constant-degree expander.
- What to do with the full join between K and the rest of the graph?
- Second attempt:

Reduction MinBisection \rightsquigarrow OLA

- First attempt:
- Start with a hard instance G of Gap MinBisection.
- Replace K with a large constant-degree expander.
- What to do with the full join between K and the rest of the graph?
- Second attempt:
- Replace K with a careful construction consisting of a constant-length chain of expanders of increasing degrees.

Reduction MinBisection \rightsquigarrow OLA

- First attempt:
- Start with a hard instance G of Gap MinBisection.
- Replace K with a large constant-degree expander.
- What to do with the full join between K and the rest of the graph?
- Second attempt:
- Replace K with a careful construction consisting of a constant-length chain of expanders of increasing degrees.
- The chain behaves in a rigid manner.

Reduction MinBisection \rightsquigarrow OLA

- First attempt:
- Start with a hard instance G of Gap MinBisection.
- Replace K with a large constant-degree expander.
- What to do with the full join between K and the rest of the graph?
- Second attempt:
- Replace K with a careful construction consisting of a constant-length chain of expanders of increasing degrees.
- The chain behaves in a rigid manner.
- Replace the full join with 'balanced' connections between expanders and G.

Reduction MinBisection \rightsquigarrow OLA

- First attempt:
- Start with a hard instance G of Gap MinBisection.
- Replace K with a large constant-degree expander.
- What to do with the full join between K and the rest of the graph?
- Second attempt:
- Replace K with a careful construction consisting of a constant-length chain of expanders of increasing degrees.
- The chain behaves in a rigid manner.
- Replace the full join with 'balanced' connections between expanders and G.
- The neighborhoods of G are 'uniformly distributed' in K.

Reduction MinBisection \rightsquigarrow OLA

- First attempt:
- Start with a hard instance G of Gap MinBisection.
- Replace K with a large constant-degree expander.
- What to do with the full join between K and the rest of the graph?
- Second attempt:
- Replace K with a careful construction consisting of a constant-length chain of expanders of increasing degrees.
- The chain behaves in a rigid manner.
- Replace the full join with 'balanced' connections between expanders and G.
- The neighborhoods of G are 'uniformly distributed' in K.
- Do the maths to make sure that the gap swallows the possible noise.

Conclusions

- We proved suboptimal lower bounds under ETH and almost tight lower bounds under the Hypothesis.

Conclusions

- We proved suboptimal lower bounds under ETH and almost tight lower bounds under the Hypothesis.
- Message: Look at approximation hardness for MinBisection first.

Conclusions

- We proved suboptimal lower bounds under ETH and almost tight lower bounds under the Hypothesis.
- Message: Look at approximation hardness for MinBisection first.
- Approach can be also used to get $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ and $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ lower bounds for Feedback Arc Set in Tournaments.

Conclusions

- We proved suboptimal lower bounds under ETH and almost tight lower bounds under the Hypothesis.
- Message: Look at approximation hardness for MinBisection first.
- Approach can be also used to get $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ and $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ lower bounds for Feedback Arc Set in Tournaments.
- Open problems:

Conclusions

- We proved suboptimal lower bounds under ETH and almost tight lower bounds under the Hypothesis.
- Message: Look at approximation hardness for MinBisection first.
- Approach can be also used to get $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ and $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ lower bounds for Feedback Arc Set in Tournaments.
- Open problems:
- Investigate the Hypothesis.

Conclusions

- We proved suboptimal lower bounds under ETH and almost tight lower bounds under the Hypothesis.
- Message: Look at approximation hardness for MinBisection first.
- Approach can be also used to get $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ and $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ lower bounds for Feedback Arc Set in Tournaments.
- Open problems:
- Investigate the Hypothesis.
- Equivalence of OLA hardness and the Hypothesis?

Conclusions

- We proved suboptimal lower bounds under ETH and almost tight lower bounds under the Hypothesis.
- Message: Look at approximation hardness for MinBisection first.
- Approach can be also used to get $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ and $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ lower bounds for Feedback Arc Set in Tournaments.
- Open problems:
- Investigate the Hypothesis.
- Equivalence of OLA hardness and the Hypothesis?
- Different route to hardness of Minimum Fill-in?

Conclusions

- We proved suboptimal lower bounds under ETH and almost tight lower bounds under the Hypothesis.
- Message: Look at approximation hardness for MinBisection first.
- Approach can be also used to get $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ and $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ lower bounds for Feedback Arc Set in Tournaments.
- Open problems:
- Investigate the Hypothesis.
- Equivalence of OLA hardness and the Hypothesis?
- Different route to hardness of Minimum Fill-in?
- Tight lower bounds for Feedback Arc Set in Tournaments?

Conclusions

- We proved suboptimal lower bounds under ETH and almost tight lower bounds under the Hypothesis.
- Message: Look at approximation hardness for MinBisection first.
- Approach can be also used to get $2^{\mathcal{O}\left(n^{1 / 2} / \log ^{c} n\right)}$ and $\mathcal{O}^{\star}\left(2^{\mathcal{O}\left(k^{1 / 4} / \log ^{c} k\right)}\right)$ lower bounds for Feedback Arc Set in Tournaments.
- Open problems:
- Investigate the Hypothesis.
- Equivalence of OLA hardness and the Hypothesis?
- Different route to hardness of Minimum Fill-in?
- Tight lower bounds for Feedback Arc Set in Tournaments?
- Thanks for your attention!

