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LOWER BOUNDS FOR THE ZEROS OF BESSEL FUNCTIONS
ROGER C. MCCANN

ABSTRACT. Let j, , denote the nth positive zero of J,, p > 0. Then
1/2

Jpn > (B + 0?7
We begin by considering the eigenvalue problem

() () + x7ly =A%¥Y, A p >0,

(2) y(@=y(1)=0, 0<a<l

For simplicity of notation we will set ¢ = p~'. It is easily verified that the
general solution of (1) is

y(x) = CJ,(\gx"/?) + C,Y,(Agx'/?)
and that the eigenvalues are given by
J,(\q)Y,(Aga'/?) — J,(A\ga'/?)Y,(Aq) = O.
If z,(a, r) denotes the nth positive zero of J,(2)Y,(za'/?) — J,(za"/9)Y,(z) =
0, then the nth eigenvalue, A%(a), of (1), (2) is given by
©) N(a) = (z,(a. 9)/4)".
Let j,, denote the nth positive zero of J,. On p. 38 of [4] it is shown that

z,(a, r)—>j,, as a— 0% whenever r is a positive integer. The restriction on r
is extrinsic so that

) li%1+ z,(a,r)=j,,. r>0.
Let R[p, y] denote the Rayleigh quotient

R[p.y] =fal(—(xy’)’ +x7)y a’)‘/falxz""y2 dx.

It is well known }hat the eigenvalues {A2(p)} of (1), (2) can be obtained from
the Rayleigh quotient [5]. Let ¥ denote the linear space of all functions in
C?*((a, 1)) which satisfy the boundary conditions (2). Then

AM(p)= min R[p,y].

yEV,y+#0
Let y,, y5 . ..,», be n functions in ¥, A denote the subspace of V' spanned
by ¥, ¥y - - -, y, and A+ denote the orthogonal complement of A relative to
V. Then
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A2 =max min R[p,
wei(p) =max  min R[p.y]
where the maximum is taken over all sets of n functions in V.

Whenever p > 0 we have that x¥ ! < x~!for all x € (0, 1). Then
Jo—=()ydx  [lx"Y?dx

f",xz"’_'y2 dx f",xz"_'y2 dx

(&) R[py]= >Q[py]+1,

where

o[p.y] =fal— (%) dx/falle""y2 dx

is the Rayleigh quotient for the eigenvalue problem

© - ('Y = w7,
Q) y(a)=y(1)=0,

Equation (6) is equivalent to

®) xy" + yx' + px¥y = 0.

It is easily checked that the general solution of (8) and, hence, of (6) is (recall
thatg=p~ 1)

y(x) = CJo(ngx'/?) + C,Y, (pgx'/7)
and that the eigenvalues are given by
Jo(nq)Y,(nga'’?) = Jo(pga'/?)Y, (pg) = 0.
In particular the nth eigenvalue, u2(a), of (6), (7) is given by

©) u2(a) = (z,(a, 0)/q)"
From (3), (5), and (9) we obtain
(10) (z.(a, 9)/9)* > (z,(a, 0)/q)" + 1.

If we now replace g by p, let a - 0% in (10), and using (4) we find that
Upn/PY > Uon/9* + 1.

THEOREM. j, , > ((o,.)* + p?)'/? whenever p > 0.

COROLLARY. j,, > ((n — 3)’n* + p?)'/? whenever p > 0.

ProOOF. It is known (see [9, p. 489]) that the positive zeros of J, lie in the
intervals (mm + 3@, mr + Zx) for m=0,1,2,.... Hence, j,, > (n — D)m

+ 37 = (n — })7. The desired result follows.
In [8] it is shown that

pn=p+apP+bp P+ 0(p7") (n=12...),
where a, and b, are independent of p. Hence,
Ba=pHop + 0(pP)  (n=12,...)

where ¢, is independent of p. This shows that the second term of the lower
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bound for j,, given in the Theorem is of the wrong order. Other asymptotic
expansions for j, , may be found in [1], [2], and [6].
In [3] it is shown that for 0 < p <}

(11) pr/2 4 (n=5)7 < o

For p = 0 the result of the Theorem is exact, while the expression in (11) has
a strict inequality. Hence, our result is stronger than (11) whenever p is
sufficiently small. However, when p = %, the result in (11) is exact. Hence, for
0< p< % neither result implies the other. It should be emphasized that the
Theorem is valid for all p > 0, while (11) is valid only for 0 < p < %

I would like to thank the referee for his helpful suggestions and for
bringing [2], [3], and [4] to my attention.
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