Lower Bounds in Communication Complexity Based on Factorization Norms

Nati Linial Adi Shraibman

October 12, 2006

Abstract

We introduce a new method to derive lower bounds on randomized and quantum communication complexity. Our method is based on factorization norms, a notion from Banach Space theory. As we show, our bounds compare favorably with previously known bounds. Aside from the new results that we derive, our method yields new and more transparent proofs of some known results as well. Among our new results we extend some known lower bounds to the realm of quantum communication complexity with entanglement.

1 Introduction

We study lower bounds for randomized and quantum communication complexity. Our bounds are expressed in terms of factorization norms, a concept of great interest in Banach Space Theory which we now introduce. Consider a matrix M as a linear operator between two normed spaces $M:\left(X,\|\cdot\|_{X}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)$. We define its operator norm $\|M\|_{\|\cdot\|_{X} \rightarrow\|\cdot\|_{Y}}$ as the supremum of $\|M x\|_{Y}$ over all $x \in X$ with $\|x\|_{X}=1$. Factorization norms, and in particular the γ_{2} norm are defined by considering all possible ways of expressing M as the composition of two linear operators via a given middle normed space. Specifically, the γ_{2} norm of an $m \times n$ real matrix B is defined via: ${ }^{1}$

$$
\begin{equation*}
\gamma_{2}(B)=\min _{X Y=B}\|X\|_{\ell_{2} \rightarrow \ell_{\infty}^{m}}\|Y\|_{\ell_{1}^{n} \rightarrow \ell_{2}} \tag{1}
\end{equation*}
$$

We introduce here a variation on this definition that plays a key role in our paper. Let A be a sign matrix and let $\alpha \geq 1$

$$
\begin{equation*}
\gamma_{2}^{\alpha}(A)=\min \gamma_{2}(B) \tag{2}
\end{equation*}
$$

where the minimum is over all matrices B such that $1 \leq a_{i j} b_{i j} \leq \alpha$ for all i, j. In particular $\gamma_{2}^{\infty}(A)=\min _{B: \forall i, j} 1 \leq a_{i j} b_{i j} \gamma_{2}(B)$.

[^0]Let A be a sign matrix and let an error bound $\epsilon>0$ be given. We consider A 's randomized communication complexity and quantum communication complexity with entanglement and denote them by $R_{\epsilon}(A)$ and $Q_{\epsilon}^{*}(A)$ respectively. We are now able to state one of our main theorems:

Theorem 1 For every sign matrix A and any $\epsilon>0$

$$
R_{\epsilon}(A) \geq 2 \log \gamma_{2}^{\alpha_{\epsilon}}(A)-2 \log \alpha_{\epsilon},
$$

and

$$
Q_{\epsilon}^{*}(A) \geq \log \gamma_{2}^{\alpha_{\epsilon}}(A)-\log \alpha_{\epsilon}-2
$$

where $\alpha_{\epsilon}=\frac{1}{1-2 \epsilon}$. Both bounds are tight up to the additive term.
These bounds are proved in Sections 3.1 and 3.2. Although the two proofs are rather different, they both rely on the key observation that γ_{2} and its variants are complexity measures of matrices. It is this basic idea and its broad applicability that we consider as the key contributions of our work.

The usefulness of the lower bounds in Theorem 1 is further elaborated in Section 4. There we prove that these bounds extend and improve previously known general bounds on randomized and quantum communication complexity. It is shown that our bounds extend the discrepancy method initiated in $[20,1]$. It also extends a general bound in terms of the trace norm from [18], and bounds using the Fourier Transform of boolean functions studied in [17, 8]. (Some of the basic features of these methods are explained in Section 4). We are also able to generalize other bounds, in terms of singular values, proved in [8]. Thus, our work immediately yields simpler and more transparent proofs of previously known bounds. It also implies that bounds based on discrepancy arguments and on Fourier analysis apply to quantum communication complexity with entanglement, thus answering a well-known open question in that area.

In Section 5 we prove an upper bound on communication complexity in terms of factorization norms.

Claim 2 The one round probabilistic communication complexity with public random bits of a matrix A is at most $O\left(\left(\gamma_{2}^{\infty}(A)\right)^{2}\right)$. The bound is tight.

We raise the possibility that a better bound may hold in which $\gamma_{2}^{\infty}(A)$ is replaced by γ_{2}^{α} for some small α.

Another intriguing open question is whether $R_{\epsilon}(A) \geq \Omega\left(\log \gamma_{2}\right)$ for every sign matrix A. We are able to show that if $\gamma_{2}(A) \geq \Omega(\sqrt{n})$ (a condition satisfied by almost all $n \times n$ sign matrices), then indeed $R_{\epsilon}(A), Q_{\epsilon}^{*}(A) \geq \Omega(\log n)$.

A main objective of this line of research is to expand the arsenal of proof techniques for hardness results in communication complexity. This is complemented in Section 6 where we consider interesting specific families of functions and establish lower bounds on their communication complexity.

2 Background and notations

We have already introduced the definition of the factorization norm γ_{2} and its variations γ_{2}^{α}. We next collect several basic properties of these parameters

Proposition 3 For every $m \times n$ sign matrix A and every $\alpha \geq 1$,

1. $\gamma_{2}^{\infty} \leq \gamma_{2}^{\alpha}(A) \leq \gamma_{2}(A) \leq \sqrt{\operatorname{rank}(A)}$.
2. $\gamma_{2}^{\alpha}(A)$ is a decreasing, convex function of α.
3. It is possible to express $\gamma_{2}^{\alpha}(A)$ as the optimum of a semidefinite program of size $O(m n)$.

Most of these statements, are proved in [12], where the reader can find a more thorough coverage of some of these subjects. That $\gamma_{2}^{\alpha}(A)$ is a convex function of α, means that $\gamma_{2}^{\frac{\alpha+\beta}{2}}(A) \leq \frac{\gamma_{2}^{\alpha}(A)+\gamma_{2}^{\beta}(A)}{2}$. Let B_{1} be an optimal matrix as in the definition of $\gamma_{2}^{\alpha}(A)$ (i.e., $\gamma_{2}(B)=\gamma_{2}^{\alpha}(A)$ and $1 \leq a_{i j} b_{i j} \leq \alpha$) and let B_{2} correspond to the definition of $\gamma_{2}^{\beta}(A)$. The desired inequality follows by considering the matrix $B=\frac{1}{2}\left(B_{1}+B_{2}\right)$, keeping in mind that γ_{2} is a norm.

We recall Grothendieck's inequality, which we use several times in this paper.
Theorem 4 (Grothendieck's inequality) There is a universal constant $1.5 \leq K_{G} \leq 1.8$ such that for every real matrix B and every $k \geq 1$

$$
\begin{equation*}
\max \sum b_{i j}\left\langle u_{i}, v_{j}\right\rangle \leq K_{G} \max \sum b_{i j} \epsilon_{i} \delta_{j} . \tag{3}
\end{equation*}
$$

where the max are over the choice of $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}$ as unit vectors in \mathbb{R}^{k} and $\epsilon_{1}, \ldots, \epsilon_{m}, \delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$.

We denote by γ_{2}^{*} the dual norm of γ_{2}, i.e. for every real matrix B

$$
\gamma_{2}^{*}(B)=\max _{C: \gamma_{2}(C) \leq 1}\langle B, C\rangle
$$

We note that for any real matrix γ_{2}^{*} and $\|\cdot\|_{\infty \rightarrow 1}$ are equivalent up to a small multiplicative factor, viz.

$$
\begin{equation*}
\|B\|_{\infty \rightarrow 1} \leq \gamma_{2}^{*}(B) \leq K_{G}\|B\|_{\infty \rightarrow 1} \tag{4}
\end{equation*}
$$

The left inequality is easy, and the right inequality is a reformulation of Grothendieck's inequality. Both use the observation that the left hand side of (3) equals $\gamma_{2}^{*}(B)$, and the max term on the right hand side is $\|B\|_{\infty \rightarrow 1}$. Additional useful corollaries of Grothendieck's inequality are collected below.

Lemma 5 Every real matrix B can be expressed as $B=\sum_{i} w_{i} x_{i} y_{i}^{t}$, where w_{1}, \ldots, w_{s} are positive reals, and $x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}$ are sign vectors such that

$$
\begin{equation*}
\gamma_{2}(B) \leq \sum_{i} w_{i} \leq K_{G} \cdot \gamma_{2}(B) \tag{5}
\end{equation*}
$$

Proof We recall ν, the nuclear norm from l_{1} to l_{∞} of a real matrix B, that is defined as follows

$$
\begin{aligned}
\nu(B) & =\min \left\{\sum\left|w_{i}\right| \text { such that } B\right. \text { can be expressed as } \\
\sum w_{i} x_{i} y_{i}^{t} & \left.=B \text { for some choice of sign vectors } x_{1}, x_{2}, \ldots, y_{1}, y_{2} \ldots\right\} .
\end{aligned}
$$

It is known that ν is the norm dual to $\|\cdot\|_{\infty \rightarrow 1}$. See [6] for more details.
It is a simple consequence of the definition of duality and (4) that for every real matrix B

$$
\begin{equation*}
\gamma_{2}(B) \leq \nu(B) \leq K_{G} \cdot \gamma_{2}(B) \tag{6}
\end{equation*}
$$

The claim follows now if we note that in the definition of $\nu(B)$ the w_{i} can be made positive, by replacing the appropriate x_{i} by $-x_{i}$.

The following corollary is a simple consequence of Lemma 5 .
Corollary 6 Let B be a real matrix satisfying $\gamma_{2}(B) \leq 1$. Then for every $\delta>0$ there are sign vectors $\phi_{1}, \phi_{2} \ldots, \psi_{1}, \psi_{2} \ldots \in\{ \pm 1\}^{k}$ for some integer k such that

$$
\begin{equation*}
\frac{b_{i j}}{K_{G}}-\delta \leq \frac{1}{k}\left\langle\phi_{i}, \psi_{j}\right\rangle \leq b_{i j}+\delta \tag{7}
\end{equation*}
$$

for all i, j.
Proof Let $M=\frac{1}{K_{G}} B$. By Inequality (6$), \nu(M) \leq 1$. Consider the expansion $M=\sum w_{i} x_{i} y_{i}^{t}$ with $w_{i}>0$ for which $\nu(M)=\sum w_{i}$. If the w_{i} happen to be rational, say $w_{i}=\frac{u_{i}}{k}$ (k is the common denominator), then we can satisfy the claim with $\delta=0$. Construct sign matrices P, Q that have u_{i} columns (rows) equal to x_{i} (resp. y_{i}) in this order. Then $\frac{B}{K_{G}}=M=\frac{1}{k} P Q$. The claim follows with ϕ_{i}, ψ_{j} being the rows (columns) of P and Q respectively. The general case follows by approximating the w_{i} 's by rationals.

Remark 7 To simplify notations, we discard the δ in applications of Corollary 6 when this causes no problems.

Fourier analysis - some basics Identify $\{0,1\}^{n}$ with \mathbb{Z}_{2}^{n}. For functions $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$, define

$$
\langle f, g\rangle=\frac{1}{2^{n}} \sum_{x \in \mathbb{Z}_{2}^{n}} f(x) \cdot g(x)
$$

and $\|f\|_{2}=\sqrt{\langle f, f\rangle}$. Corresponding to every $z \in \mathbb{Z}_{2}^{n}$, is a character of \mathbb{Z}_{2}^{n} denoted χ_{z}

$$
\chi_{z}(x)=(-1)^{\langle z, x\rangle}
$$

The Fourier coefficients of f are $\hat{f}_{z}=\left\langle f, \chi_{z}\right\rangle$ for all $z \in \mathbb{Z}_{2}^{n}$. For $M=2^{m}$ and $N=2^{n}$, we occasionally consider a real $M \times N$ matrix B as a function from
$\mathbb{Z}_{2}^{m} \times \mathbb{Z}_{2}^{n}$ to \mathbb{R}. Thus the (i, j)-entry of $B, B_{i j}$, is also denoted $B_{z, z^{\prime}}$, where z and z^{\prime} are the binary representations of i and j respectively. For B as above and $\left(z, z^{\prime}\right) \in \mathbb{Z}_{2}^{m} \times \mathbb{Z}_{2}^{n}$ we denote the corresponding Fourier coefficient of B (thought of as a function) by $\hat{B}_{z, z^{\prime}}$.

The following simple fact will serve us later:
Observation 8 Let $B=x y^{t}$ be a $2^{m} \times 2^{n}$ sign matrix of rank 1 . Then $\hat{B}_{z, z^{\prime}}=$ $\hat{x}_{z} \cdot \hat{y}_{z^{\prime}}$ for all $z \in \mathbb{Z}_{2}^{m}$ and $z^{\prime} \in \mathbb{Z}_{2}^{n}$. Here x and y are viewed as real functions on \mathbb{Z}_{2}^{m} resp. \mathbb{Z}_{2}^{n}.

Other For B a real matrix, $s_{1}(B) \geq s_{2}(B) \geq \ldots \geq 0$ are its singular values. $\|B\|_{1}$ is its ℓ_{1} (sum of absolute values) norm, $\|B\|_{2}$ is its ℓ_{2} (Frobenius) norm, and $\|B\|_{\infty}$ is its $\ell_{\infty}(\max)$ norm. For matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, $\langle A, B\rangle=\sum_{i j} a_{i j} b_{i j}$.
Notice that we have defined the inner product $\langle\cdot, \cdot\rangle$ differently for boolean functions and for matrices. For boolean matrices we took the normalized inner product. And similarly for $\|\cdot\|_{2}$.

3 A new lower bound technique in communication complexity

Let us recall some terminology:

- The deterministic communication complexity of a sign matrix A is denoted by $C C(A)$.
- Its quantum communication complexity is $Q_{\epsilon}(A)$. When prior entanglement is allowed we denote it by $Q_{\epsilon}^{*}(A)$.
- The randomized communication complexity is $R_{\epsilon}(A)$.

In the latter two definitions ϵ is the error bound. Since the value of ϵ is usually immaterial, we simply omit it whenever this causes no confusion. That the value of ϵ is inconsequential follows from a simple amplification-by-repetition argument (e.g. [11]). For illustration, this argument yields e.g., $Q_{\epsilon}^{*}(A) \leq$ $O\left(Q_{1 / 3}^{*}(A) \cdot \log \frac{1}{\epsilon}\right)$ for every sign matrix A and any $\epsilon>0$. When there is no mention of ϵ it is assumed to be $1 / 3$.
In this section we review some of the basic ideas in the field and prove our results. In Section 4 we compare our bounds with previously known bounds.

We should note first, that a basic observation underlying our new bounds is that γ_{2} is a complexity measure for matrices, in the same way that the rank has long been used (explicitly or implicitly) as a measure of complexity for matrices. For a more elaborate discussion on this subject, see [12].

3.1 Randomized communication complexity

In order to find lower bounds on randomized communication complexity, one uses the following observation

Observation 9 A sign matrix A satisfies $R_{\epsilon}(A) \leq c$ if and only if there are sign matrices $D_{i}, i=1, \ldots, m$, satisfying $C C\left(D_{i}\right) \leq c$ and a probability distribution $\left(p_{1}, \ldots, p_{m}\right)$ such that

$$
\begin{equation*}
\left\|A-\sum_{i=1}^{m} p_{i} D_{i}\right\|_{\infty} \leq 2 \epsilon \tag{8}
\end{equation*}
$$

Condition (8) can be combined with the fact that each of the matrices D_{i} can be partitioned into at most 2^{c} monochromatic rectangles. These two facts are used by the discrepancy method to derive a lower bound on $R_{\epsilon}(A)$.
There is an alternative route (see [17]) that proceeds from here using Fourier analysis.

As we observe next, $\gamma_{2}^{\alpha}(A)$ fits very well into this general frame.
Theorem 10 For every sign matrix A and any $\epsilon>0$

$$
R_{\epsilon}(A) \geq 2 \log \gamma_{2}^{\alpha_{\epsilon}}(A)-2 \log \alpha_{\epsilon}
$$

where $\alpha_{\epsilon}=\frac{1}{1-2 \epsilon}$.
Proof Let $D_{i}, i=1, \ldots, m$, and p be as above, and denote $B=\frac{1}{1-2 \epsilon} \sum_{i=1}^{m} p_{i} D_{i}$. Recall that $\log (\operatorname{rank}(A)) \leq C C(A)$ for every sign matrix A. Thus, for every $i=1, \ldots, m$

$$
\gamma_{2}\left(D_{i}\right) \leq\left(\operatorname{rank}\left(D_{i}\right)\right)^{1 / 2} \leq 2^{C C\left(D_{i}\right) / 2} \leq 2^{R_{\epsilon}(A) / 2}
$$

The first inequality is from Proposition 3. Since γ_{2} is a norm

$$
\gamma_{2}(B)=\frac{1}{1-2 \epsilon} \gamma_{2}\left(\sum_{i=1}^{m} p_{i} D_{i}\right) \leq \frac{1}{1-2 \epsilon} \sum_{i=1}^{m} p_{i} \gamma_{2}\left(D_{i}\right) \leq \frac{1}{1-2 \epsilon} 2^{R_{\epsilon}(A) / 2}
$$

On the other hand it follows from Equation (8) that $1 \leq a_{i j} b_{i j} \leq \frac{1}{1-2 \epsilon}$. Hence, by the definition of γ_{2}^{α} (Equation (2)), for $\alpha=\frac{1}{1-2 \epsilon}$

$$
\gamma_{2}^{\alpha}(A) \leq \gamma_{2}(B) \leq \frac{1}{1-2 \epsilon} 2^{R_{\epsilon}(A) / 2}
$$

3.2 Quantum communication complexity

A possible first step in search of lower bounds in quantum communication complexity is the following fact, variants of which were observed by several authors [18, 21, 4, 9].

Lemma 11 Given a sign matrix A, let $P=\left(p_{i j}\right)$ be the acceptance probabilities of a quantum protocol for A with complexity C. Then there are matrices X, Y such that $P=X Y$ and

$$
\begin{equation*}
\|X\|_{2 \rightarrow \infty},\|Y\|_{1 \rightarrow 2} \leq 2^{C / 2} \tag{9}
\end{equation*}
$$

If prior entanglement is not used, then the matrices X and Y in Condition (9) can be chosen to have rank at most $2^{2 C}$.

As mentioned, there are several similar statements in the literature, but we could not find a reference for this precise statement, so we include a proof of Lemma 11 in Section 3.2.1. When there is no prior entanglement, lemma 11 yields a condition analogous to observation 9 and then bounds via discrepancy and Fourier analysis can be likewise derived. However, this was not known for the model of quantum communication complexity with entanglement. Our method provides a coherent way to extend previously known bounds (based on the discrepancy and Fourier transform methods) for the model allowing entanglement. The next theorem uses Lemma 11 to give a bound on quantum communication complexity in terms of γ_{2}^{α}.

Theorem 12 For every sign matrix A and any $\epsilon>0$

$$
Q_{\epsilon}^{*}(A) \geq \log \gamma_{2}^{\alpha_{\epsilon}}(A)-\log \alpha_{\epsilon}-2
$$

where $\alpha_{\epsilon}=\frac{1}{1-2 \epsilon}$.
Proof Let $P=\left(p_{i j}\right)$ be the acceptance probabilities of an optimal quantum protocol for A. By Lemma 11, $\gamma_{2}(P) \leq 2^{Q_{\epsilon}^{*}(A)}$.

On the other hand, by definition, $p_{i j} \leq \epsilon$ when $a_{i j}=-1$ and $p_{i j} \geq 1-\epsilon$ when $a_{i j}=1$. Thus, if we let $B=\frac{1}{1-2 \epsilon}(2 P-J)$, we get that $b_{i j} a_{i j} \geq 1$ for all i, j and

$$
\begin{aligned}
\gamma_{2}(B) & =\gamma_{2}\left(\frac{1}{1-2 \epsilon}(2 P-J)\right) \leq \frac{1}{1-2 \epsilon}\left(2 \gamma_{2}(P)+1\right) \\
& \leq \frac{1}{1-2 \epsilon}\left(2^{Q_{\epsilon}^{*}(A)+2}\right)
\end{aligned}
$$

We conclude that

$$
\gamma_{2}^{\alpha_{\epsilon}}(A) \leq \gamma_{2}(B) \leq \frac{1}{1-2 \epsilon} 2^{Q_{\epsilon}^{*}(A)+2}
$$

and hence

$$
Q_{\epsilon}^{*}(A) \geq \log \gamma_{2}^{\alpha_{\epsilon}}(A)-\log \alpha_{\epsilon}-2
$$

for $\alpha_{\epsilon}=\frac{1}{1-2 \epsilon}$.

3.2.1 Proof of Lemma 11

As mentioned, the present material seems to be essentially known to experts and is being included for completeness sake. We consider quantum communication protocols that use a 1 qubit channel. A (k-round) protocol is specified by a sequence $U_{1}, \cdot \ldots \cdot U_{k}$ of unitary transformations, where for odd i it's the rowplayer's turn and $U_{i}=U_{A} \otimes I$. For j even the column-player's step has the form $U_{i}=I \otimes U_{B}$. We consider first the case where no entanglement is allowed and later mention what happens with entanglement. Without entanglement the system starts from the state $e_{r} \otimes e_{0} \otimes e_{c}$, where r and c are the inputs to the row/column players. At time t, the new state is determined by multiplying the present state by the unitary matrix U_{t}.

It is a simple matter to prove by induction on t that the state at time t can be expressed as

$$
\begin{equation*}
\sum_{v \in V} x_{v}^{r} \otimes e_{0} \otimes y_{v}^{c}+\sum_{w \in W} x_{w}^{r} \otimes e_{1} \otimes y_{w}^{c} \tag{10}
\end{equation*}
$$

where the index sets $V=V_{t}$ and $W=W_{t}$ satisfy

$$
\left|V_{t}\right|+\left|W_{t}\right| \leq 2^{t},
$$

and

$$
\sum_{V_{t+2}}\left\|x_{v}^{r}\right\|_{2}^{2}+\sum_{W_{t+2}}\left\|x_{v}^{r}\right\|_{2}^{2} \leq 2\left(\sum_{V_{t}}\left\|x_{v}^{r}\right\|_{2}^{2}+\sum_{W_{t}}\left\|x_{v}^{r}\right\|_{2}^{2}\right)
$$

and similarly for y. This follows from the fact that the U_{t} are unitary. For example at time 1 the state has the form $x_{0} \otimes e_{0} \otimes e_{c}+x_{1} \otimes e_{1} \otimes e_{c}$ where $\left\|x_{0}\right\|_{2}^{2}+\left\|x_{1}\right\|_{2}^{2}=1$. At time 2, it is $x_{0} \otimes e_{0} \otimes y_{00}+x_{0} \otimes e_{0} \otimes y_{01}+x_{1} \otimes e_{1} \otimes$ $y_{10}+x_{0} \otimes e_{1} \otimes y_{11}$ where $\left\|y_{00}\right\|_{2}^{2}+\left\|y_{01}\right\|_{2}^{2}+\left\|y_{10}\right\|_{2}^{2}+\left\|y_{11}\right\|_{2}^{2} \leq 2$ etc.

Let A be a sign matrix and denote $C=Q_{\epsilon}(A)$. Let $P=\left(p_{r c}\right)$ be the acceptance probabilities of an optimal quantum protocol for A. It follows from Equation 10 that

$$
\begin{equation*}
p_{r c}=\sum_{u, w \in W_{C}}\left\langle x_{u}^{r}, x_{w}^{r}\right\rangle\left\langle y_{u}^{c}, y_{w}^{c}\right\rangle . \tag{11}
\end{equation*}
$$

We seek to factor $P=X Y$ so that the rows of X (resp. the columns of Y) have small ℓ_{2} norms. To this end we define the vectors $\mathbf{x}_{r}=\left(\left\langle x_{u}^{r}, x_{w}^{r}\right\rangle\right)_{u, w \in W_{C}}$, and $\mathbf{y}_{c}=\left(\left\langle y_{u}^{c}, y_{w}^{c}\right\rangle\right)_{u, w \in W_{C}}$. We take X to be the matrix whose r-th row is \mathbf{x}_{r}, and Y the matrix whose c-th column is \mathbf{y}_{c}. Indeed $X Y=P$, as Equation 11 shows. Also, $\|X\|_{2 \rightarrow \infty},\|Y\|_{1 \rightarrow 2} \leq 2^{C / 2}$, since

$$
\begin{aligned}
\left\|\mathbf{x}_{r}\right\|_{2}^{2} & =\sum_{u, w \in W_{C}}\left\langle x_{u}^{r}, x_{w}^{r}\right\rangle^{2} \\
& \leq\left(\sum_{w \in W_{C}}\left\|x_{w}^{r}\right\|_{2}^{2}\right)^{2} \\
& \leq 2^{C}
\end{aligned}
$$

similarly $\left\|\mathbf{y}_{c}\right\|_{2}^{2} \leq 2^{C}$. Finally, the rank of X and Y is bounded by $\left|W_{C}\right|^{2}$ which is at most $2^{2 C}$.

What changes when prior entanglement is allowed? The input vector is

$$
\sum_{i \in I} \alpha_{i} e_{i}^{r} \otimes e_{0} \otimes e_{i}^{c}
$$

where $\left\{\alpha_{i}\right\}_{i \in I}$ is an arbitrary unit vector. Using the previous considerations and linearity, the state at time t can be expressed as

$$
\begin{equation*}
\sum_{i \in I} \alpha_{i}\left(\sum_{v \in V} x_{i, v}^{r} \otimes e_{0} \otimes y_{i, v}^{c}+\sum_{w \in W} x_{i, w}^{r} \otimes e_{1} \otimes y_{i, w}^{c}\right) . \tag{12}
\end{equation*}
$$

Our choice of factorization vectors is now $\mathbf{x}_{r}=\left(\alpha_{i}\left\langle x_{i, u}^{r}, x_{i, w}^{r}\right\rangle\right)_{u, w \in W_{C}, i \in I}$ and similarly for \mathbf{y}. The proof is completed by observing that

$$
\begin{aligned}
\left\|\mathbf{x}_{r}\right\|_{2}^{2} & =\sum_{i \in I} \sum_{u, w \in W_{C}} \alpha_{i}^{2}\left\langle x_{i, u}^{r}, x_{i, w}^{r}\right\rangle^{2} \\
& =\sum_{i \in I} \alpha_{i}^{2} \sum_{u, w \in W_{C}}\left\langle x_{i, u}^{r}, x_{i, w}^{r}\right\rangle^{2} \\
& \leq \sum_{i \in I} \alpha_{i}^{2}\left(\sum_{w \in W_{C}}\left\|x_{i, w}^{r}\right\|_{2}^{2}\right)^{2} \\
& \leq \sum_{i \in I} \alpha_{i}^{2} \cdot 2^{C} \\
& \leq 2^{C} .
\end{aligned}
$$

3.3 How does $\log \gamma_{2}$ fit in?

As we just saw, randomized and quantum communication complexity are bounded below by $\log \gamma_{2}^{\alpha}$. It is an interesting open question how these two parameters compare with $\log \gamma_{2}$. For most $m \times n$ sign matrices A with $m \geq n$, it holds that

1. $\gamma_{2}(A)=\Theta(\sqrt{n})$,
2. $R_{\epsilon}(A)=\log n-O_{\epsilon}(1)$,
3. $Q_{\epsilon}(A)=\frac{1}{2} \log n-O_{\epsilon}(1)$.

The first item was shown in [12], alongside the fact that $\gamma_{2}^{\infty}(A)=\Theta(\sqrt{n})$ for random matrices. The other two items follow therefore, from Theorems 10 and 12 . We show next that the first condition implies the other two.

Claim 13 Let A be an $m \times n$ sign matrix with $m \geq n$. If $\gamma_{2}(A) \geq \Omega(\sqrt{n})$, then $R(A) \geq \log n-O(1)$, and $Q^{*}(A) \geq \frac{1}{2} \log n-O(1)$.

This claim is an easy consequence of the following lemma

Lemma 14 Let A be an $m \times n$ sign matrix with $m \geq n$. Then for every $\delta>0$,

$$
\begin{equation*}
\gamma_{2}(A) \leq \gamma_{2}^{1+\delta}(A)+\frac{\delta}{2}(\sqrt{n}+1) \tag{13}
\end{equation*}
$$

Proof Let B be a matrix with $1 \leq a_{i j} b_{i j} \leq 1+\delta$ and $\gamma_{2}(B)=\gamma_{2}^{1+\delta}(A)$. Since γ_{2} is a norm, we may write

$$
\gamma_{2}(A) \leq \gamma_{2}\left(B-\frac{\delta}{2} J\right)+\gamma_{2}\left(B-\frac{\delta}{2} J-A\right)
$$

Since all elements of the matrix $B-\frac{\delta}{2} J-A$ have absolute value $\leq \frac{\delta}{2}$, the claim follows using linearity of the norm, the fact that $\gamma_{2} \leq \min \{\sqrt{m}, \sqrt{n}\}$ for every $m \times n$ sign matrix (taking the trivial factorization $A \cdot I=A$ or $I \cdot A=A$), and that $\gamma_{2}(J)=1$.

It is now a simple matter to prove Claim 13. If $\gamma_{2}(A) \geq c \sqrt{n}$, then $\gamma_{2}^{1+c}(A)>$ $\frac{c}{2}(\sqrt{n}-1)$ from which the Claim follows, by Theorem 1.

We cannot rule out the intriguing possibility that R_{ϵ} as well as Q_{ϵ}^{*} are always polynomially equivalent to $\log \gamma_{2}$. In fact, we do not know any cases where R_{ϵ} and $\log \gamma_{2}$ differ by more than a constant factor. An example in Section 6.3 shows that there can be a quadratic gap between Q_{ϵ}^{*} and $\log \gamma_{2}$.

3.4 Employing duality

One interesting aspect of our main result is that it improves several previously known bounds. This point is elaborated on in Section 4. Another noteworthy point is that our bounds are expressed in terms of $\gamma_{2}^{\alpha}(\cdot)$, a quantity that can be efficiently computed using SDP. A particularly useful consequence of this observation is that $S D P$ duality makes it often possible to derive good (sometimes even optimal) lower bounds on communication complexity. This technique will be used throughout Sections 4 and 6 .

It is not hard to express γ_{2} of a given matrix as the optimum of a semidefinite program. We refer the reader to [12] for the simple details. Likewise, as shown below, γ_{2}^{α} can be expressed as the optimum of a semidefinite program. By SDP duality this yields

Theorem 15 For every sign matrix A and $\alpha \geq 1$

$$
\begin{aligned}
\gamma_{2}^{\alpha}(A)^{-1}=\min & \gamma_{2}^{*}((P-Q) \circ A) \\
\text { s.t. } & P, Q \geq 0 \\
& \sum p_{i j}-\alpha q_{i j}=1,
\end{aligned}
$$

and also

$$
\begin{array}{rc}
\gamma_{2}^{\alpha}(A)=\max & \langle A, B\rangle-(\alpha-1) \sum_{i j: a_{i j} \neq \operatorname{sign}\left(b_{i j}\right)}\left|b_{i j}\right| \\
\text { s.t. } & \gamma_{2}^{*}(B)=1
\end{array}
$$

In particular, for $\alpha=\infty$

$$
\begin{array}{rll}
\gamma_{2}^{\infty}(A)^{-1}=\min & \gamma_{2}^{*}(P \circ A) \\
\text { s.t. } & P \geq 0 \\
& \sum p_{i j}=1,
\end{array}
$$

and also

$$
\begin{aligned}
\gamma_{2}^{\infty}(A)=\max & \langle A, B\rangle \\
\text { s.t. } & \operatorname{sign}(B)=A \text { and } \gamma_{2}^{*}(B)=1
\end{aligned}
$$

As usual, the advantage of this result is that any feasible solution to the SDPs in Theorem 15 yields a lower bound for $\gamma_{2}^{\alpha}(A)$ or $\gamma_{2}^{\infty}(A)$. What is left is to find good feasible solutions.
Proof We start by showing that for every sign matrix A and $\alpha>1$

$$
\begin{array}{ll}
\gamma_{2}^{\alpha}(A)^{-1}=\quad & \max \mu \\
\text { s.t. for all } i, j & \mu \leq a_{i j} b_{i j} \leq \alpha \mu \tag{14}\\
& \gamma_{2}(B) \leq 1
\end{array}
$$

Denote by $\mu(A)$ the maximum on the right hand side above. Let C be a matrix such that $\gamma_{2}(C)=\gamma_{2}^{\alpha}(A)$ and $1 \leq a_{i j} c_{i j} \leq \alpha$, and take $B=\gamma_{2}^{\alpha}(A)^{-1} C$. Then, $\gamma_{2}(B) \leq 1$ and $\gamma_{2}^{\alpha}(A)^{-1} \leq a_{i j} b_{i j} \leq \alpha \gamma_{2}^{\alpha}(A)^{-1}$, implying that $\mu(A) \geq \gamma_{2}^{\alpha}(A)^{-1}$. To prove the inverse inequality, let B be a matrix such that $\gamma_{2}(B) \leq 1$ and $\mu(A) \leq a_{i j} b_{i j} \leq \alpha \mu(A)$, and take $C=\mu(A)^{-1} B$. Then $1 \leq a_{i j} c_{i j} \leq \alpha$ and $\gamma_{2}(C) \leq \mu(A)^{-1}$, implying that $\gamma_{2}^{\alpha} \leq \mu(A)^{-1}$ or equivalently $\mu(A) \leq \gamma_{2}^{\alpha}(A)^{-1}$.

Note that (14) is a semidefinite program, since the condition $\gamma_{2}(B) \leq 1$ is expressible as an SDP. By SDP duality

$$
\begin{array}{rll}
\gamma_{2}^{\alpha}(A)^{-1}=\min & \gamma_{2}^{*}((P-Q) \circ A) \\
\text { s.t. } & P, Q \geq 0 \tag{15}\\
& \sum p_{i j}-\alpha q_{i j}=1
\end{array}
$$

proving the first identity. We use this to prove the second identity, i.e. that

$$
\begin{array}{rc}
\gamma_{2}^{\alpha}(A)=\max & \langle A, B\rangle-(\alpha-1) \sum_{i j: a_{i j} \neq \operatorname{sign}\left(b_{i j}\right)}\left|b_{i j}\right| \\
\text { s.t. } & \gamma_{2}^{*}(B)=1
\end{array}
$$

To see that the optimum of the above SDP is indeed equal to $\gamma_{2}^{\alpha}(A)$, note that by choosing B such that $P-Q=B \circ A$, the SDP in (15) is equivalent to

$$
\begin{array}{cc}
\text { min } & \gamma_{2}^{*}(B) \\
\text { s.t. } & \sum_{i j: a_{i j}=\operatorname{sign}\left(b_{i j}\right)}\left|b_{i j}\right|-\alpha \sum_{i j: a_{i j} \neq \operatorname{sign}\left(b_{i j}\right)}\left|b_{i j}\right|=1 .
\end{array}
$$

Since both $\gamma_{2}^{*}(B)$ and $\sum_{i j: a_{i j}=\operatorname{sign}\left(b_{i j}\right)}\left|b_{i j}\right|-\alpha \sum_{i j: a_{i j} \neq \operatorname{sign}\left(b_{i j}\right)}\left|b_{i j}\right|$ are homogeneous in B, the optimum of this SDP is the inverse of

$$
\begin{array}{rc}
\max & \langle A, B\rangle-(\alpha-1) \sum_{i j: a_{i j} \neq \operatorname{sign}\left(b_{i j}\right)}\left|b_{i j}\right| \\
\text { s.t. } & \gamma_{2}^{*}(B)=1
\end{array}
$$

as required.
The statements regarding γ_{2}^{∞} follow by considering the corresponding expressions for γ_{2}^{α} and taking α to infinity.

Remark 16 Note that by Grothendieck's inequality (Theorem 4, and Inequality (4)), we can replace γ_{2}^{*} with $\|\cdot\|_{\infty \rightarrow 1}$ in Theorem 15, without changing the value of the SDPs by more than a factor of K_{G}.

4 Relations with other bounds

We prove next that the bounds in Theorems 10 and 12 nicely generalize some of the previously known bounds for communication complexity. In Section 4.1 we consider the discrepancy method and in Section 4.2 bounds involving singular values (Ky Fan norms and in particular the trace norm, are discussed). In Sections 4.3 and 4.4 lower bounds that are based on Fourier analysis of boolean functions are examined.

4.1 The discrepancy method

Let A be a sign matrix, and let P be a probability measure on the entries of A. The P-discrepancy of A, denoted $\operatorname{disc}_{P}(A)$, is defined as the maximum over all combinatorial rectangles R in A of $\left|P^{+}(R)-P^{-}(R)\right|$, where $P^{+}\left[P^{-}\right]$is the P-measure of the positive entries [negative entries]. The discrepancy of a sign matrix A, denoted $\operatorname{disc}(A)$, is the minimum of $\operatorname{disc}_{P}(A)$ over all probability measures P on the entries of A.

The discrepancy method, introduced in [20, 1], was the first general method for deriving lower bounds for randomized communication complexity. It is based on the following fact: for every sign matrix A

$$
Q_{\epsilon}(A), R_{\epsilon}(A) \geq \Omega\left(\log \left(\frac{1-2 \epsilon}{\operatorname{disc}(A)}\right)\right)
$$

See [11] for a more elaborate discussion on this bound for randomized communication complexity, and [9] for the first proof extending this bound to the realm of quantum communication complexity.

The following theorem was proved in [13] ${ }^{2}$
Theorem 17 For every sign matrix A

$$
\frac{1}{8} \gamma_{2}^{\infty}(A) \leq \operatorname{disc}(A)^{-1} \leq 8 \gamma_{2}^{\infty}(A)
$$

An immediate corollary of Theorem 17 and Theorems 10 and 12 is the following.

[^1]Theorem 18 For every sign matrix A and any $\epsilon>0$

$$
R_{\epsilon}(A) \geq 2 \log \left(\frac{1-2 \epsilon}{\operatorname{disc}(A)}\right)-O(1)
$$

and

$$
Q_{\epsilon}^{*}(A) \geq \log \left(\frac{1-2 \epsilon}{\operatorname{disc}(A)}\right)-O(1)
$$

Both bounds are tight up to the additive term.
This settles the widely known open question whether the discrepancy bound holds for quantum communication complexity with entanglement.

Our bounds are it terms of γ_{2}^{α}, and as mentioned above, γ_{2}^{∞} (which is smaller than γ_{2}^{α}) is equal up to a multiplicative constant to the inverse of discrepancy. In Section 6.3 we show an example where γ_{2}^{∞} is significantly smaller than γ_{2}^{α} for small α. The behavior of γ_{2}^{α} as a function of α is an interesting subject for research, as further discussed in Sections 6.3 and 7.

4.1.1 VC dimension

It was shown in [10] that the one-round probabilistic communication complexity of a sign matrix A, is at least its $V C$-dimension, $V C(A)$. The same bound for quantum communication complexity is proved in [7]. Here we compare these bounds with discrepancy (equivalently γ_{2}^{∞})-based bounds, and conclude that the two methods are, in general, incomparable.

Let H_{k} be a $k \times 2^{k}$ sign matrix with no repeated columns. It is shown in [12] that $\gamma_{2}\left(H_{k}\right)=\gamma_{2}^{\infty}\left(H_{k}\right)=\sqrt{k}$. Consequently, $V C(A) \leq\left(\gamma_{2}^{\infty}(A)\right)^{2}$ for every sign matrix A, and this holds with equality for $A=H_{k}$.

Since our lower bounds on communication complexity are in terms of $\log \left(\gamma_{2}^{\alpha}\right)$, there are instances where the $V C$-based lower bound is exponentially larger.

On the other hand, as we know (e.g. [12]) $\gamma_{2}^{\infty} \geq \Omega(\sqrt{n})$ for almost all $n \times n$ sign matrices. It is proved in [2] that for every $d \geq 2$, almost every $n \times n$ sign matrix with $V C$-dimension $\leq 2 d$ satisfies $\gamma_{2}^{\infty}(A) \geq \Omega\left(\sqrt{n^{1-1 / d-1 / 2^{d}}}\right)$. In such cases, the $V C$-type lower bound is only constant whereas the discrepancy bound $\Omega(\log n)$ has the largest possible order of magnitude.

4.2 Bounds involving singular values

4.2.1 The trace norm

We recall that the trace norm $\|A\|_{t r}$ of a real matrix A is the sum of its singular values. We introduce the following concept (from [18]), analogous to γ_{2}^{α} :

$$
\|A\|_{t r}^{\alpha}=\min \left\{\|B\|_{t r}: 1 \leq a_{i j} b_{i j} \leq \alpha\right\} .
$$

The following bound on Q_{ϵ}^{*} was proved in [18].

Theorem 19 For every $n \times n$ sign matrix A and any $\epsilon>0$, let $\alpha_{\epsilon}=\frac{1}{1-2 \epsilon}$, then

$$
Q_{\epsilon}^{*}(A) \geq \Omega\left(\log \left(\|A\|_{t r}^{\alpha_{\epsilon}} / n\right)\right) .
$$

Here we use a relation between the trace norm and γ_{2} to prove that Theorem 19 is a consequence of Theorem 12. Moreover, as shown in Section 6.4, the bound in Theorem 12 can be significantly better than what Theorem 19 yields.

While the bounds in terms of factorization norms are better than those derived from discrepancy and from trace norm, the latter two methods are incomparable. Examples in Sections 6.3 and 6.4 demonstrate that the inverse of discrepancy can be much larger than $\|\cdot\|_{t r}^{\alpha_{\epsilon}}$ and vice versa.
trace norm and γ_{2} An alternative expression for the trace norm, that suggests a relation with factorization norms is that for every matrix A,

$$
\|A\|_{t r}=\min _{X Y=A} \frac{1}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right),
$$

where $\|\cdot\|_{F}$ stands for the Frobenius norm of a matrix. We omit the proof here, and instead we refer the reader to $[12$, Sec. 3] for a proof that

$$
\begin{equation*}
\|A\|_{t r} \leq \sqrt{m n} \cdot \gamma_{2}(A) \tag{16}
\end{equation*}
$$

for every real $m \times n$ matrix A.
It should be clear then, that $\|A\|_{t r}^{\alpha} \leq \sqrt{m n} \cdot \gamma_{2}^{\alpha}(A)$ for every $m \times n$ sign matrix A and every $\alpha \geq 1$.

4.2.2 Ky Fan norms

The Ky Fan k-norm of a matrix A which we denote by $\|\cdot\|_{\mathcal{K}}$ is defined as $\sum_{i=1}^{k} s_{i}(A)$, the sum of the k largest singular values of A. Two interesting instances are the Ky Fan n-norm which is the trace norm and the Ky Fan 1norm - the operator norm from ℓ_{2} to ℓ_{2}.
The following theorem was proved in [8]
Theorem 20 [8, th. 6.10] For every $n \times n$ sign matrix A :
If $\|A\|_{\mathcal{K}} \geq n \sqrt{k}$, then $Q(f) \geq \Omega\left(\log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)\right)$.
If $\|A\|_{\mathcal{K}} \leq n \sqrt{k}$, then $\left.Q(f) \geq \Omega\left(\log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)\right) /\left(\log \sqrt{k}-\log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)+1\right)\right)$.
We prove
Theorem 21 For every $n \times n$ sign matrix A and for every $\delta>0$

$$
\gamma_{2}^{1+\delta}(A) \geq \frac{1}{n}\|A\|_{\mathcal{K}}-\delta \cdot \sqrt{k}
$$

Proof Let B be a matrix such that $\gamma_{2}(B)=\gamma_{2}^{1+\delta}(A)$ and $1 \leq a_{i j} b_{i j} \leq 1+\delta$. By the triangle inequality

$$
\|B\|_{\mathcal{K}} \geq\|A\|_{\mathcal{K}}-\|A-B\|_{\mathcal{K}} \geq\|A\|_{\mathcal{K}}-\delta \sqrt{k} n
$$

To prove the latter inequality, let $M=A-B$ and note that

$$
\|M\|_{\mathcal{K}}=\sum_{1}^{k} s_{i}(M) \leq \sqrt{k} \sqrt{\sum_{1}^{k} s_{i}(M)^{2}} \leq \sqrt{k} \sqrt{\sum_{1}^{n} s_{i}(M)^{2}}=\sqrt{k}\|M\|_{2}
$$

The first inequality is Cauchy-Schwartz and the last identity can be found e.g., in $[3$, p. 7]. It is left to observe that by (16)

$$
\|B\|_{\mathcal{K}} \leq\|B\|_{t r} \leq \gamma_{2}(B) \cdot n=\gamma_{2}^{1+\delta}(A) \cdot n
$$

Theorems 12 and 21 imply that Klauck's bound holds as well for quantum communication complexity with entanglement

Theorem 22 For every $n \times n$ sign matrix A :
If $\|A\|_{\mathcal{K}} \geq n \sqrt{k}$, then $Q^{*}(f) \geq \Omega\left(\log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)\right)$.
If $\|A\|_{\mathcal{K}} \leq n \sqrt{k}$, then $\left.Q^{*}(f) \geq \Omega\left(\log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)\right) /\left(\log \sqrt{k}-\log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)+1\right)\right)$.
Proof If $\|A\|_{\mathcal{K}} \geq n \sqrt{k}$ then

$$
Q_{1 / 6}^{*}(A) \geq \log \gamma_{2}^{3 / 2}(A)-O(1) \geq \log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)-O(1)
$$

The first inequality is by theorem 12 and the second follows from Theorem 21. Consequently, $Q^{*}(A) \geq \Omega\left(Q_{1 / 3}^{*}(A)\right) \geq \Omega\left(\log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)\right)$.

If $\|A\|_{\mathcal{K}} \leq n \sqrt{k}$ take $\epsilon=\frac{\frac{\|A\|_{\mathcal{K}}}{n \sqrt{k}}}{4+2 \frac{\| A \mathcal{K}}{} \frac{\sqrt{k}}{}}$, so that $\alpha_{\epsilon}=1+\frac{\|A\|_{\mathcal{K}}}{2 n \sqrt{k}}$. We have

$$
Q_{\epsilon}^{*}(A) \geq \gamma_{2}^{\alpha_{\epsilon}}(A)-O(1) \geq \log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)-O(1)
$$

As mentioned already

$$
Q^{*}(A) \geq \Omega\left(\frac{Q_{\epsilon}^{*}(A)}{\log \epsilon^{-1}}\right) \geq \Omega\left(\frac{\log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)}{\log \sqrt{k}-\log \left(\frac{\|A\|_{\mathcal{K}}}{n}\right)+1}\right) .
$$

4.3 Fourier analysis

We prove here that the bounds on communication complexity in Theorems 10 and 12 subsume previous bounds using Fourier analysis [17, 8] which we review next.

Any deterministic communication protocol for a sign matrix A naturally partitions it into monochromatic combinatorial rectangles. By Observation 9, if A has randomized communication complexity at most c then there are rectangles R_{i} and weights $w_{i} \in[0,1]$ such that

$$
\left\|A-\sum_{i} w_{i} R_{i}\right\|_{\infty} \leq \epsilon
$$

and $\sum_{i} w_{i} \leq 2^{c}$. Raz [17] used this observation and properties of the Fourier transform to derive lower bounds on randomized communication complexity. These ideas were extended by Klauck [8] to quantum communication complexity:

Theorem 23 [8, th. 4.1] Let A be a $2^{n} \times 2^{n}$ sign matrix. Let E be a set of σ_{0} diagonal elements in A and denote $\sigma_{1}=\sum_{(z, z) \in E}\left|\hat{A}_{z, z}\right|$.
If $\sigma_{1} \geq \sqrt{\sigma_{0}}$, then $Q(f) \geq \Omega\left(\log \left(\sigma_{1}\right)\right)$.
If $\sigma_{1} \leq \sqrt{\sigma_{0}}$, then $Q(f) \geq \Omega\left(\log \left(\sigma_{1}\right) /\left(\log \sqrt{\sigma_{0}}-\log \sigma_{1}+1\right)\right)$.
These bounds can be useful in the study of certain specific matrices. In general, e.g. for random matrices they are rather weak.

Ideas from Raz and Klauck's proofs lead to the following theorem and the conclusion that Theorem 12 yields bounds at least as good as those achieved by Fourier analysis. What is more, this proof technique works as well for quantum communication complexity with prior entanglement.

Theorem 24 Let A be a $2^{n} \times 2^{n}$ sign matrix, and E be a set of σ_{0} diagonal elements with $\sigma_{1}=\sum_{(z, z) \in E}\left|\hat{A}_{z, z}\right|$. Then $\gamma_{2}^{1+\delta}(A) \geq \Omega\left(\sigma_{1}-\delta \cdot \sqrt{\sigma_{0}}\right)$ for every $\delta>0$.

Proof Let B be a real matrix such that

1. $\gamma_{2}(B)=\gamma_{2}^{1+\delta}(A)$.
2. $1 \leq b_{i j} a_{i j} \leq 1+\delta$ for all i, j.

Condition 2 implies that $\|A-B\|_{\infty} \leq \delta$, and hence $\|A-B\|_{2} \leq \delta 2^{n}$. By Parseval identity

$$
\sqrt{\sum_{(z, z) \in E}\left(\hat{A}_{z, z}-\hat{B}_{z, z}\right)^{2}} \leq 2^{-n}\|A-B\|_{2} \leq \delta
$$

By the triangle inequality and Cauchy-Schwartz

$$
\begin{aligned}
\sum_{E}\left|\hat{B}_{z, z}\right| & \geq \sum_{E}\left|\hat{A}_{z, z}\right|-\sum_{E}\left|\hat{A}_{z, z}-\hat{B}_{z, z}\right| \\
& \geq \sum_{E}\left|\hat{A}_{z, z}\right|-\sqrt{|E| \cdot \sum_{E}\left(\hat{A}_{z, z}-\hat{B}_{z, z}\right)^{2}} \\
& \geq \sigma_{1}-\sqrt{\sigma_{0}} \cdot \delta .
\end{aligned}
$$

By Lemma 5 it is possible to express $B=\sum_{i} w_{i} x_{i} y_{i}^{t}$, where w_{1}, \ldots, w_{s} are positive reals with $\sum w_{i} \leq K_{G} \delta$ and $x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}$ are sign vectors. Using Observation 8 and the linearity of the Fourier transform, we obtain

$$
\sum_{E}\left|\hat{B}_{z, z}\right|=\sum_{E} \sum_{i}\left|w_{i} \hat{x}_{i, z} \hat{y}_{i, z}\right|=\sum_{i} w_{i} \sum_{E}\left|\hat{x}_{i, z} \hat{y}_{i, z}\right| \leq \sum_{i} w_{i},
$$

where the inequality holds since \hat{x}, \hat{y} are unit vectors. We conclude that

$$
\sigma_{1}-\sqrt{\sigma_{0}} \cdot \delta \leq \sum_{E}\left|\hat{B}_{z, z}\right| \leq \sum_{i} w_{i} \leq K_{G} \gamma_{2}^{1+\delta}(A)
$$

as claimed.
A corollary of Theorem 24 and Theorem 12 is
Theorem 25 Let A be a $2^{n} \times 2^{n}$ sign matrix. Let E be a set of σ_{0} diagonal elements in A and denote $\sigma_{1}=\sum_{(z, z) \in E}\left|\hat{A}_{z, z}\right|$.
If $\sigma_{1} \geq \sqrt{\sigma_{0}}$, then $Q^{*}(f) \geq \Omega\left(\log \left(\sigma_{1}\right)\right)$.
If $\sigma_{1} \leq \sqrt{\sigma_{0}}$, then $Q^{*}(f) \geq \Omega\left(\log \left(\sigma_{1}\right) /\left(\log \sqrt{\sigma_{0}}-\log \sigma_{1}+1\right)\right)$.
Proof The proof is very similar to the proof of Theorem 22.

4.3.1 A proof technique

Let us point out a common theme that reveals itself in our proofs of Lemma 14, and Theorems 21 and 24. We pick some sub-additive functional φ on $n \times n$ matrices. In the proof of Lemma 14, $\varphi=\gamma_{2}$, in Theorem $21 \varphi=\|\cdot\|_{\mathcal{K}} / n$ and in Theorem 24 it is the sum of diagonal Fourier coefficients. In fact, in all three cases φ is actually a norm. Consider a matrix B such that $\gamma_{2}(B)=\gamma_{2}^{1+\delta}(A)$ and $1 \leq a_{i j} b_{i j} \leq 1+\delta$. By sub-additivity

$$
\begin{equation*}
\varphi(B) \geq \varphi(A)-\varphi(A-B) \tag{17}
\end{equation*}
$$

In these three cases we observe next that $\varphi(B) \leq \gamma_{2}(B)$ for every real matrix B. In general it would be enough that $\varphi(B) \leq \gamma_{2}(B)^{r}$ always holds for some $r>0$. Together with (17) this yields

$$
\gamma_{2}^{1+\delta}(A)^{r}=\gamma_{2}(B)^{r} \geq \varphi(B) \geq \varphi(A)-\varphi(A-B)
$$

which yields a lower bound on $\gamma_{2}^{1+\delta}$

$$
\gamma_{2}^{1+\delta}(A) \geq(\varphi(A)-\varphi(A-B))^{1 / r}
$$

In general all we know about $A-B$ is that its ℓ_{∞} norm is at most δ. Thus, what is needed now is an upper bound on $\varphi(A-B)$ that depends only on simple parameters of the problem, e.g. δ, the dimension $n,|E|$ as in Theorem 24 or k as in Theorem 21. We feel there should be other interesting candidates for φ, in addition to $\gamma_{2},\|\cdot\|_{\mathcal{K}} / n$ and the sum of diagonal Fourier coefficients.

4.4 A lower bound involving a single Fourier coefficient

For every function $f: \mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$, we denote by $\Lambda_{f}=\left(\lambda_{x y}\right)$ the $2^{n} \times 2^{n}$ matrix with $\lambda_{x y}=f(x \wedge y)$. It was proved by Klauck [8] that

Theorem 26 For every function $f: \mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$ and all $z \in \mathbb{Z}_{2}^{n}$

$$
Q\left(\Lambda_{f}\right) \geq \Omega\left(\frac{|z|}{1-\log \left|\hat{f}_{z}\right|}\right)
$$

(Here and below $|z|$ stands for the Hamming weight of z). He also asked whether the same lower bound holds when entanglement is allowed. We show that this is indeed the case, namely:

Theorem 27 For every function $f: \mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$ and all $z \in \mathbb{Z}_{2}^{n}$

$$
Q^{*}\left(\Lambda_{f}\right) \geq \Omega\left(\frac{|z|}{1-\log \left|\hat{f}_{z}\right|}\right)
$$

The main part of the proof consists of showing:
Theorem 28 For every function $f: \mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$ and all $z \in \mathbb{Z}_{2}^{n}$

$$
\gamma_{2}^{1+\left|\hat{f}_{z}\right| / 2}\left(\Lambda_{f}\right) \geq \Omega\left(2^{|z| / 4}\left|\hat{f}_{z}\right|\right)
$$

We first show how this implies Theorem 27. By taking the logarithm in Theorem 28, we obtain

$$
\log \left(\gamma_{2}^{1+\left|\hat{f}_{z}\right| / 2}\left(\Lambda_{f}\right)\right) \geq|z| / 4+\log \left|\hat{f}_{z}\right|-O(1)
$$

By Theorem 12

$$
Q_{\epsilon}^{*}\left(\Lambda_{f}\right) \geq \log \gamma_{2}^{\alpha_{\epsilon}}\left(\Lambda_{f}\right)-\log \alpha_{\epsilon}-2,
$$

for any $\epsilon>0$ where $\alpha_{\epsilon}=\frac{1}{1-2 \epsilon}$.
We apply this with $\epsilon=\frac{\left|\hat{f}_{z}\right|}{4+2\left|\hat{f}_{z}\right|}$ (whence $\alpha_{\epsilon}=1+\left|\hat{f}_{z}\right| / 2$). The two inequalities combined yield

$$
Q_{\epsilon}^{*}\left(\Lambda_{f}\right) \geq|z| / 4-\log \left|\hat{f}_{z}\right|-\log \alpha_{\epsilon}-O(1) .
$$

As already mentioned, by a standard amplification argument (e.g. [11]),

$$
Q^{*}\left(\Lambda_{f}\right) \geq \Omega\left(\frac{Q_{\epsilon}^{*}\left(\Lambda_{f}\right)}{\log \epsilon^{-1}}\right)
$$

This yields

$$
Q^{*}\left(\Lambda_{f}\right) \geq \Omega\left(\frac{|z| / 4+\log \left|\hat{f}_{z}\right|-\log \alpha_{\epsilon}-O(1)}{\log \epsilon^{-1}}\right)
$$

Theorem 27 follows when we notice that $\epsilon=\Theta\left(\left|\hat{f}_{z}\right|\right)$ and $-\log \alpha_{\epsilon}=\Theta(1)$.
We turn to the proof of Theorem 28:
Proof We assume w.l.o.g. that $\hat{f}_{z} \geq 0$, to simplify the notations.
As stated in Theorem 15, for every sign matrix A,

$$
\begin{array}{rc}
\gamma_{2}^{\alpha}(A)=\max & \langle A, B\rangle-(\alpha-1) \sum_{x y: a_{x y} \neq \operatorname{sign}\left(b_{x y}\right)}\left|b_{x y}\right| \\
\text { s.t. } & \gamma_{2}^{*}(B) \leq 1
\end{array}
$$

The proof proceeds by selecting for each $z \in \mathbb{Z}_{2}^{n}$ a matrix $B=B_{z}$ to yield the desired lower bound. We first describe this choice of B, and then apply it toward the lower bound.

Let $P=P_{n}$ be the $2^{n} \times 2^{n}$ matrix, with rows and columns indexed by vectors in $\{0,1\}^{n}$, where the x, y entry is $\left(\frac{1}{\sqrt{2}}\right)^{|x|}\left(1-\frac{1}{\sqrt{2}}\right)^{n-|x|}\left(\frac{1}{\sqrt{2}}\right)^{|y|}\left(1-\frac{1}{\sqrt{2}}\right)^{n-|y|}$. For what follows it is useful to observe that P induces a product probability distribution on $2^{[n]} \times 2^{[n]}$, each probability distribution being itself a bitwise product distribution. It has the property that for every $w \in\{0,1\}^{n}$, the event $\left\{(x, y) \in 2^{[n]} \times 2^{[n]}\right.$, s.t. $\left.x \wedge y=w\right\}$ has probability 2^{-n}. For $z \in \mathbb{Z}_{2}^{n}$ we choose $B_{z}=P_{n} \circ \Lambda_{\chi_{z}}$. It is useful to observe that $\Lambda_{\chi_{z}}=H_{|z|} \otimes J_{n-|z|}$, where H_{t} is the $2^{t} \times 2^{t}$ Sylvester-Hadamard matrix, and J_{t} is the $2^{t} \times 2^{t}$ matrix whose entries are all 1 .

To apply Theorem 15 we need to compute (or estimate) $\gamma_{2}^{*}\left(B_{z}\right)$, and $\left\langle A, B_{z}\right\rangle$. Indeed,

1. For every $z \in \mathbb{Z}_{2}^{n},\left\langle B_{z}, \Lambda_{f}\right\rangle=\hat{f}_{z}$.
2. There is a constant $c>0$ such that for every $z \in \mathbb{Z}_{2}^{n}$

$$
\gamma_{2}^{*}\left(B_{z}\right) \leq c 2^{-|z| / 4} .
$$

For the first equality, observe that

$$
\left\langle B_{z}, \Lambda_{f}\right\rangle=\sum_{x, y} P(x \wedge y) f(x \wedge y) \chi_{z}(x \wedge y)=\frac{1}{2^{n}} \sum_{w} f(w) \chi_{z}(w)=\hat{f}_{z}
$$

As for the second inequality - It follows from a similar inequality from [8] on the $\|\cdot\|_{\infty \rightarrow 1}$ norm. The additional step is provided by Inequality (4). It is left
to compute the result of applying B_{z}. Let $B_{z}=\left(b_{x y}\right)$ then

$$
\begin{aligned}
\gamma_{2}^{1+\hat{f}_{z} / 2}\left(\Lambda_{f}\right) & \geq c^{-1} 2^{|z| / 4}\left(\left\langle\Lambda_{f}, B_{z}\right\rangle-\frac{\hat{f}_{z}}{2} \sum_{x y: \lambda_{x y} \neq \operatorname{sign}\left(b_{x y}\right)}\left|b_{x y}\right|\right) \\
& \geq c^{-1} 2^{|z| / 4}\left(\hat{f}_{z}-\frac{\hat{f}_{z}}{2}\left\|B_{z}\right\|_{1}\right) \\
& =c^{-1} 2^{|z| / 4}\left(\hat{f}_{z}-\frac{\hat{f}_{z}}{2}\right) \\
& =c^{-1} 2^{|z| / 4} \hat{f}_{z} / 2
\end{aligned}
$$

The third equality follows since $B_{z}=P_{n} \circ \Lambda_{\chi z}$ is obtained by signing (via $\Lambda_{\chi_{z}}$ - a sign matrix) the terms of a probability distribution - the entries of P.

4.5 Entropy

The entropy of a probability vector p is denoted $H(p)=-\sum_{i} p_{i} \log p_{i}$. Let B be an $n \times n$ real matrix, recall (e.g., [3, p. 7]) that $\sum_{i} s_{i}(B)^{2}=\|B\|_{2}^{2}$. Thus, if we denote $\hat{s}_{i}(B)=\frac{s_{i}(B)}{\|B\|_{2}}$ then the vector $\hat{s}(B)^{2}=\left(\hat{s}_{1}(B)^{2}, \ldots, \hat{s}_{n}(B)^{2}\right)$ is a probability vector. Klauck [8] proved

Theorem 29 For every $n \times n$ sign matrix A

$$
Q(A) \geq \Omega\left(\frac{H\left(\hat{s}(A)^{2}\right)}{\log \log n}\right)
$$

He used the following simple properties of entropy:
Lemma 30 Let p and q be probability vectors of dimension n, then

1. If $\|p-q\|_{1} \leq 1 / 2$ then $|H(p)-H(q)| \leq\|p-q\|_{1} \cdot \log n-O(1)$.
2. $\|p-q\|_{1} \leq 3\left\|p^{1 / 2}-q^{1 / 2}\right\|_{2}$. Here $p^{1 / 2}=\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right)$.
3. $H(p) \leq 2 \log \left(1+\left\|p^{1 / 2}\right\|_{1}\right)$.

We use the above lemma and Theorem 12 to generalize Klauck's result
Theorem 31 For every sign matrix A and $\delta \leq 1 / 6$

$$
\log \left(1+\gamma_{2}^{1+\delta}(A)\right) \geq \frac{1}{2} H\left(\hat{s}(A)^{2}\right)-\frac{3}{2} \delta \cdot \log n
$$

Proof For $\delta \leq 1 / 6$, let B be a real matrix satisfying $\gamma_{2}(B)=\gamma_{2}^{1+\delta}(A)$ and $1 \leq a_{i j} b_{i j} \leq 1+\delta$. By property (3) in Lemma 30,

$$
\begin{aligned}
H\left(\hat{s}(B)^{2}\right) & \leq 2 \log \left(1+\frac{\|B\|_{t r}}{\|B\|_{2}}\right) \leq 2 \log \left(1+\frac{\|B\|_{t r}}{n}\right) \\
& \leq 2 \log \left(1+\gamma_{2}(B)\right)=2 \log \left(1+\gamma_{2}^{1+\delta}(A)\right)
\end{aligned}
$$

By the second property

$$
\begin{aligned}
\left\|\hat{s}(A)^{2}-\hat{s}(B)^{2}\right\|_{1} & \leq 3\|\hat{s}(A)-\hat{s}(B)\|_{2} \\
& =3\left\|s\left(A /\|A\|_{2}\right)-s\left(B / \mid B \|_{2}\right)\right\|_{2} \\
& \leq 3\|A /\| A\left\|_{2}-B / \mid B\right\|_{2} \|_{2} \\
& \leq \frac{3}{\|A\|_{2}}\|A-B\|_{2} \\
& \leq \frac{3}{n} \delta \cdot n \\
& =3 \delta
\end{aligned}
$$

For the second inequality see Theorem VI.4.1 and Exercise II.1.15 in [3]. The third inequality follows from the simple fact that $\left\|\frac{y}{\|y\|_{2}}-\frac{x}{\|x\|_{2}}\right\|_{2} \leq \frac{\|y-x\|_{2}}{\|x\|_{2}}$ for every two vectors with $\|y\|_{2} \geq\|x\|_{2}$ (Here $x=A$ and $y=B$). Notice that $\left\|\hat{s}(A)^{2}-\hat{s}(B)^{2}\right\|_{1} \leq 3 \delta \leq 1 / 2$, the conditions of the first property in Lemma 30 are therefore satisfied, and we have

$$
\begin{aligned}
H\left(\hat{s}(B)^{2}\right) & \geq H\left(\hat{s}(A)^{2}\right)-\left\|\hat{s}(A)^{2}-\hat{s}(B)^{2}\right\|_{1} \cdot \log n-O(1) \\
& \geq H\left(\hat{s}(A)^{2}\right)-3 \delta \cdot \log n-O(1)
\end{aligned}
$$

By optmizing the choice of δ in Theorem 31, Theorem 12 yields
Theorem 32 For every $n \times n$ sign matrix A

$$
Q^{*}(A) \geq \Omega\left(\frac{H\left(\hat{s}(A)^{2}\right)}{\log \frac{\log n}{H\left(\hat{s}(A)^{2}\right)}+1}\right)
$$

It is worth while to compare the bound of Theorem 32 with the bound of Theorem 22. ${ }^{3}$ By the third property in Lemma $30 H\left(\hat{s}(A)^{2}\right) \leq 2 \log \left(1+\|A\|_{t r} / n\right)$, hence the bound in Theorem 22 seems better at first sight. But notice that the denominator in Theorem 32 is better behaved than that in Theorem 22. This advantage becomes pronounced as $\|A\|_{t r}$ decreases. Thus, when $\|A\|_{t r}=n^{c}$ for $c<1 / 2$ the bound in Theorem 22 becomes trivial, while the bound in Theorem 32 can still be asymptotically optimal.

An analogous theorem to Theorem 29 in which the normalized vector of squared singular values is replaced by the vector of diagonal Fourier coefficients is also proved in [8]. This theorem can be similarly generalized.

[^2]
5 An upper bound in terms of γ_{2}^{∞}

We have established so far lower bounds on communication complexity in terms of γ_{2}^{α}. Here we show an upper bound that is "only" exponentially larger than these lower bounds, in terms of γ_{2}^{∞}. We also observe that this bound is essentially tight, if we insist on using γ_{2}^{∞}. It is not impossible that better bounds exist which are expressed in terms of γ_{2}^{α} with finite α. The idea behind Claim 33 is not new, e.g. [10], and is included for completeness sake.

Claim 33 The one round probabilistic communication complexity (with public random bits) of a matrix A is at most $O\left(\left(\gamma_{2}^{\infty}(A)\right)^{2}\right)$.

Proof Let x be a vector of length k and let T be a multiset with elements in $[k]$. We denote by $\left.x\right|_{T}$ the restriction of x to the coordinates indexed by the elements of T. For example if $x=(10,1,17,42,8)$ and $T=(1,2,2,5)$, then $\left.x\right|_{T}=(10,1,1,8)$. The communication protocol we consider is as follows: Let B be a real matrix satisfying $\gamma_{2}(B)=\gamma_{2}^{\infty}(A)$ and $1 \leq b_{i j} a_{i j}$ for all i, j. By Corollary 6 (and Remark 7) there are sign vectors $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in\{ \pm 1\}^{k}$ for some $k \geq 1$ such that

$$
\begin{equation*}
\frac{b_{i j}}{K_{G} \gamma_{2}(B)} \leq \frac{1}{k}\left\langle x_{i}, y_{j}\right\rangle \leq \frac{b_{i j}}{\gamma_{2}(B)} . \tag{18}
\end{equation*}
$$

for all i, j.
Given indices i and j, the row player uses the publicly available random bits to select at random a multiset T with elements from $[k]$. He sends $\left.x_{i}\right|_{T}$ to the column player who then computes $\left\langle\left. x_{i}\right|_{T},\left.y_{j}\right|_{T}\right\rangle$ and outputs the sign of the result. Next we analyze the complexity and the error probability of this protocol.

Let $\mu>0$ and consider two sign vectors x and y of length k, such that $|\langle x, y\rangle| \geq \mu k$. We wish to bound the probability that for a random multiset T of size K with elements from $[k], \operatorname{sign}(\langle x, y\rangle) \neq \operatorname{sign}\left(\left\langle\left. x\right|_{T},\left.y\right|_{T}\right\rangle\right)$. Assume w.l.o.g. that $x=(1,1, \ldots, 1)$ and that $\langle x, y\rangle>0$. Denote the number of -1 s in y by $Q k$, where by our assumptions $Q \leq \frac{1-\mu}{2}$. We should bound the probability that y_{T} contains at least $K / 2-1$'s for a random multiset T of size K. This is exactly the probability of picking more -1 's than 1 's when we sample independently K random bits each of which is -1 (resp. 1) with probability Q (resp. $1-Q$.) By Chernoff bound the probability of this event is at most:

$$
e^{-2(1 / 2-Q)^{2} K} \leq e^{-K \mu^{2} / 2} .
$$

Thus, to achieve a constant probability of error it is enough to take $K=O\left(\mu^{-2}\right)$. By Equation (18), $\left|\left\langle x_{i}, y_{j}\right\rangle\right| \geq \frac{k}{K_{G} \gamma_{2}(B)}$, thus the complexity of our protocol (with constant probability of error) is at most $O\left(\left(\gamma_{2}(B)\right)^{2}\right)=O\left(\left(\gamma_{2}^{\infty}(A)\right)^{2}\right)$.

This bound is tight up to the (second) power of $\gamma_{2}^{\infty}(A)$. This is illustrated by the matrix D_{k} that corresponds to the disjointness function on k bits, as seen in Section 6.3.

6 Examples

So far we have concentrated on our new method and its application in communication complexity. A major stumbling block in our progress in this field is the paucity of specific functions whose communication complexity (in the various models) is known. The present section serves a dual purpose. Some of the examples we discuss are intended to illustrate the usefulness of our method. Other examples help us in comparing the relative power of the different methods in this area.

6.1 The complexity of (the matrix of) an expanding graph

For B a real symmetric matrix, we let $s_{1}(B) \geq s_{2}(B) \geq \ldots \geq 0$ be its singular values, i.e., the absolute values of its eigenvalues.

Theorem 34 Let A be the adjacency matrix of a d-regular graph on N vertices with $d \leq \frac{N}{2}$. If $s_{2}(A) \leq d^{\alpha}$ for some $\alpha<1$ then

$$
R(A), Q^{*}(A)=\Theta(\log d)
$$

Proof We start with the lower bound: We denote $S=2 A-J$, the sign matrix corresponding to A, and let $L=A-\frac{d}{N} J$. Note that A, S, and L share the same eigenvectors. This is because $(1,1, \ldots, 1)$ is the first eigenvector of A, and also an eigenvector of J. Other eigenvectors of A are orthogonal to $(1,1, \ldots, 1)$, and are thus in the kernel of J. Consequently, if $d=\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{N}$ are the eigenvalues of A, then $0, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{N}$ are the eigenvalues of L. In particular, the first singular value of L equals $s_{2}(A)$.

Since $\gamma_{2}^{*}(M) \leq N s_{1}(M)$ for every $N \times N$ real matrix M (see [12, Sec. 3]), we get that

$$
\gamma_{2}^{*}(L) \leq N s_{1}(L)=N s_{2}(A) \leq N d^{\alpha},
$$

and thus,
$\gamma_{2}^{\infty}(S) \geq\left\langle S, L / \gamma_{2}^{*}(L)\right\rangle \geq \frac{1}{N d^{\alpha}}\left\langle 2 A-J, A-\frac{d}{N} J\right\rangle=\frac{2 d N-2 d^{2}}{N d^{\alpha}} \geq \Omega\left(d^{1-\alpha}\right)$,
as claimed. The first inequality follows from Theorem 15. The corresponding bound on the communication complexity follows from Theorems 10 and 12.

The proof of the upper bound is fairly standard and can, in fact, be achieved by a one-sided protocol. We conveniently identify each vertex with $n=\log _{2} N$ dimensional binary vectors. Let u be (the vector corresponding to) the vertex of the row player. The row player picks t random vectors $v_{1}, \ldots, v_{t} \in Z_{2}^{n}$ using public random bits, and transmits the t inner products $\left\langle u, v_{1}\right\rangle, \ldots,\left\langle u, v_{t}\right\rangle$. Let w be one of the d neighbors of z - the column player's vertex. If for any i it holds that $\left\langle u, v_{i}\right\rangle \neq\left\langle w, v_{i}\right\rangle$, then clearly $u \neq w$. If this is the case for each of the d neighbors we conclude (with certainty) that u and z are not adjacent. Otherwise we conclude that they are. This protocol can clearly err only when they are nonadjacent and the error probability is $\leq \frac{d}{2^{t}}$. The claim follows.

6.2 Fourier analysis, revisited

Associated with every boolean function $f: \mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$ is a sign matrix $A_{f}=$ ($a_{x y}$) with $a_{x y}=f(x \oplus y)$, where \oplus stands for the bitwise xor of the vectors. Some of the parameters related to factorization norms can be determined for matrices in this class, and this has several interesting implications on their communication complexity.

The eigenvalues of A_{f} are exactly the Fourier coefficients of f. In fact,
Lemma 35 For every function $f: \mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$

$$
\|\hat{f}\|_{1}=\left\|A_{f}\right\|_{t r}=\gamma_{2}\left(A_{f}\right)=\nu\left(A_{f}\right)
$$

Proof It is well known, and easy to check, that the characters $\left\{\chi_{z}\right\}_{z \in \mathbb{Z}_{2}^{n}}$ form a complete system of eigenvectors for A_{f}, where the eigenvalue corresponding to χ_{z} is \hat{f}_{z}. Thus, the spectral decomposition of A_{f} has the form:

$$
A_{f}=\sum_{z} \hat{f}_{z} \chi_{z} \chi_{z}^{t}
$$

Since χ_{z} is a sign vector, it follows that $\nu\left(A_{f}\right) \leq \sum_{z}\left|\hat{f}_{z}\right|=\left\|A_{f}\right\|_{t r}$. But

$$
\|B\|_{t r} \leq \gamma_{2}(B) \leq \nu(B),
$$

for every real matrix B. Consequently

$$
\|\hat{f}\|_{1}=\left\|A_{f}\right\|_{t r}=\gamma_{2}\left(A_{f}\right)=\nu\left(A_{f}\right) .
$$

A corollary of Lemma 35 and Lemma 13 is
Corollary 36 Let $f: \mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$ satisfy $\|\hat{f}\|_{1} \geq \Omega(\sqrt{n})$. Then $R_{\epsilon}\left(A_{f}\right), Q_{\epsilon}^{*}\left(A_{f}\right) \geq$ $\Omega(\log n)$.

It follows that
Theorem 37 For almost all functions $f: \mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$, the randomized and quantum communication complexity of A_{f} are $\Omega(\log n)$.

Bent functions (see e.g. $[19,15]$) constitute a concrete family of functions f : $\mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$ for which A_{f} has randomized/quantum communication complexity $\geq \Omega(\log n)$. We recall that $f: \mathbb{Z}_{2}^{n} \rightarrow\{ \pm 1\}$ is called a bent function if the only values taken by \hat{f} are $\pm 2^{-n / 2}$. This claim follows immediately from Corollary 36 .

6.3 Disjointness matrix

Many of the concrete examples analyzed in the literature on communication complexity are symmetric functions. In particular - the disjointness function.

Let $D_{k}=\left(d_{x y}\right)$ be a $2^{k} \times 2^{k}$ matrix with rows and columns indexed by the subsets of $[k]$, where

$$
d_{x y}=\left\{\begin{array}{cc}
1 & \text { if } x \cap y \neq \emptyset \tag{19}\\
-1 & \text { if } x \cap y=\emptyset
\end{array}\right.
$$

There is a rich literature concerning the communication complexity of this function. It is particularly interesting in the context of the present paper because the various proof techniques mentioned here vary significantly in the bounds they yield for the disjointness function. We now recall some of the key parameters of the disjointness matrix, and see what they imply for the complexity measures at hand. The relevant references or proofs are then provided.

1. $\operatorname{disc}\left(D_{k}\right)^{-1} \leq O\left(\gamma_{2}^{\infty}\left(D_{k}\right)\right) \leq O(k)$.
2. For $\alpha=3 / 2,2^{\tilde{O}(\sqrt{k})} \geq Q^{*}\left(D_{k}\right) \geq \gamma_{2}^{\alpha}\left(D_{k}\right) \geq\left\|D_{k}\right\|_{t r}^{\alpha} / 2^{k} \geq 2^{\tilde{\Omega}(\sqrt{k})}$. (Here and below tildes indicate missing log factors).
3. $o\left(2^{k / 2}\right) \geq \gamma_{2}\left(D_{k}\right) \geq\left\|D_{k}\right\|_{t r} / 2^{k} \geq\left(\frac{\sqrt{5}}{2}\right)^{k}-1$.

It follows from properties (1-3) that $\gamma_{2}^{\alpha}\left(D_{k}\right)$ decreases very rapidly as α grows. In particular, this is an example where γ_{2} is much larger than γ_{2}^{α} even for small α, and there is an exponential gap between $\gamma_{2}^{3 / 2}$ and γ_{2}^{∞} (equivalently, the inverse of discrepancy). It is interesting to better understand the behavior of γ_{2} as a function of α. Furthermore, the disjointness matrix is also an example where the bound via the trace norm of Theorem 19 is exponentially better than the discrepancy bound.

We turn to discuss the first item. The discrepancy of D_{k} can be estimated by a simple explicit construction. Let H_{k} be the $k \times 2^{k}(0,1)$-matrix with no repeated columns, and $B=2\left(H_{k}^{t} H_{k}\right)-J$. Namely $b_{x y}=2|x \cap y|-1$, whence $b_{x y} d_{x y} \geq 1$ for all x, y. Consequently,

$$
\gamma_{2}^{\infty}\left(D_{k}\right) \leq \gamma_{2}(B) \leq 2 k+1
$$

(For the last calculation use the fact that γ_{2} is a norm and that $\gamma_{2}(J)=1$.) It follows that

$$
\operatorname{disc}\left(D_{k}\right)^{-1} \leq O\left(\gamma_{2}^{\infty}\left(D_{k}\right)\right) \leq O(k)
$$

On the other hand it follows from [18] that for $\alpha=3 / 2$,

$$
2^{\tilde{O}(\sqrt{k})} \geq Q^{*}\left(D_{k}\right) \geq\left\|D_{k}\right\|_{t r}^{\alpha} / 2^{k} \geq 2^{\tilde{\Omega}(\sqrt{k})}
$$

Combining this with Theorem 12 and the discussion in Section 4.2 we get the statement of $(2)\left(\gamma_{2}^{\alpha}\left(D_{k}\right)\right.$ falls between $Q^{*}\left(D_{k}\right)$ and $\left.\left\|D_{k}\right\|_{t r}^{\alpha} / 2^{k}\right)$.

To estimate the trace norm of D_{k} and $\gamma_{2}\left(D_{k}\right)$ we introduce the matrix $E_{k}=\frac{1}{2}\left(D_{k}+J\right)$. We estimate the trace norm of E_{k}, and use the fact that $\left|\left\|D_{k}\right\|_{t r}-\left\|E_{k}\right\|_{t r}\right| \leq 2^{k}$. Observe that $E_{k}=E_{1}^{\otimes k}$, and that the singular values of E_{1} are $\frac{\sqrt{5} \pm 1}{2}$. The 2^{k} singular values of E_{k} consist of all the numbers
expressible as the product of k terms, each of which is either $\frac{1+\sqrt{5}}{2}$ or $\frac{\sqrt{5}-1}{2}$. Therefore, by the binomial identity $\left\|E_{k}\right\|_{t r}=\left\|E_{1}\right\|_{t r}^{k}=(\sqrt{5})^{k}$, and

$$
\gamma_{2}\left(D_{k}\right) \geq\left\|D_{k}\right\|_{t r} / 2^{k} \geq\left(\frac{\sqrt{5}}{2}\right)^{k}-1
$$

Finally, it follows from Claim 13 and property (2) that $\gamma_{2}\left(D_{k}\right) \leq o\left(2^{k / 2}\right)$, since if it were the case that $\gamma_{2}\left(D_{k}\right)=\Omega\left(2^{k / 2}\right)$, then by Claim 13 also $\gamma_{2}^{3 / 2}\left(D_{k}\right)=$ $\Omega\left(2^{k / 2}\right)$ contradicting property (2).

6.4 $\quad \gamma_{2}$ vs. the trace norm

It is shown in [12] that $\gamma_{2}^{\infty}(H)=\sqrt{m}$ for an $m \times m$ Hadamard matrix H. For $n=\Theta\left(m^{3 / 2}\right)$ let Z be an $n \times n$ matrix with H as a principal minor and all other entries equal to 1 . It is not hard to check that for every $\alpha \geq 1$

$$
1 \geq\|Z\|_{t r} / n \geq\|Z\|_{t r}^{\alpha} / n
$$

while

$$
\gamma_{2}^{\alpha}(Z) \geq \gamma_{2}^{\infty}(Z) \geq O\left(n^{1 / 3}\right)
$$

So the inverse of discrepancy can be much larger than $\|\cdot\|_{t r}^{\alpha_{\epsilon}}$. In such cases Theorem 12 gives a bound that is significantly better than Theorem 19. Also, combining this with the example in Section 6.3 we see that there is no general inequality between the inverse of discrepancy and $\|\cdot\|_{t r}^{\alpha_{\epsilon}}$ and either one can be significantly larger than the other.

7 Discussion and open problems

As we saw in Theorem 10, for every sign matrix A

$$
\begin{equation*}
R_{\epsilon}(A) \geq \Omega\left(\log \gamma_{2}^{\alpha}(A)\right) \tag{20}
\end{equation*}
$$

where $\alpha=\frac{1}{1-2 \epsilon}$. For fixed ϵ, say $\epsilon=1 / 3$, can $\gamma_{2}^{\alpha}(A)$ be replaced by γ_{2} in (20)?
Question 38 Is it true that for every sign matrix A there holds $R_{1 / 3}(A) \geq$ $\Omega\left(\log \gamma_{2}(A)\right)$?
Claim 13 shows that the answer to Question 38 is positive for $n \times n$ matrices with $\gamma_{2} \geq \Omega(\sqrt{n})$, a condition satisfied by almost all matrices. An affirmative answer to Question 38 would yield tighter lower bounds on randomized communication complexity in several interesting specific instances. For example, for the disjointness function (Section 6.3) there is a quadratic gap in (20) whereas the same inequality with γ_{2} is tight up to a constant factor. Another interesting aspect of Question 38 is that we seek general lower bounds for probabilistic communication complexity that do not apply to quantum communication complexity as well, and as shown in Section 6.3, $\log \gamma_{2}$ is not a lower bound on quantum communication complexity.

Also, although both γ_{2} and γ_{2}^{α} are poly-time computable, in practice the latter is harder to determine in cases of interest. Thus an affirmative answer to Question 38 would facilitate the derivation of bounds on communication complexity.

Claim 33 bounds the randomized communication complexity from above by a power of γ_{2}^{∞}. The bound is tight, as stated, but it is conceivable that much tighter upper bounds hold, if we consider γ_{2}^{α} instead. Perhaps even a power of $\log \left(\gamma_{2}^{\alpha}\right)$ suffices? This raises to following problem

Problem 39 Find the best upper bound on randomized communication complexity in terms of γ_{2}^{α}.

In view of Proposition 3, this problem is analogous to the log rank conjecture [16, 14], which asks whether

$$
C C(A) \leq(\log \operatorname{rank}(A))^{O(1)}
$$

for every sign matrix A, where $C C$ stands for deterministic communication complexity. ${ }^{4}$ Lovász and Saks [14], proved the log rank conjecture is some special cases.

Problem 39 raises the intriguing possibility that randomized communication complexity and γ_{2} are closely related. An affirmative answer would be rather surprising, in view of the fact that the two notions seem a priori unrelated. A resolution of this question would presumably require some new and interesting ideas. It is also interesting to note the relation between this question and work by Grolmusz [5].

Our final question is this:
Problem 40 Fix a sign matrix A and consider γ_{2}^{α} as a function of α. What can be said about the behavior of such functions?

This function is, of course, decreasing and convex and some information about the gap between $\gamma_{2}=\gamma_{2}^{1}$ and γ_{2}^{∞} can be found in [12]. The proof of Lemma 13 and the example in Section 6.3 also shed some light on the rate of decrease of γ_{2}^{α} as a function of α. However, very little is known in general, and even very special cases, such as $A=D_{k}$, seem interesting and challenging.

References

[1] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity. In Proceedings of the 27th IEEE FOCS, pages 337-347, 1986.
[2] S. Ben-David, N. Eiron, and H.U. Simon. Limitations of learning via embeddings in Euclidean half-spaces. In 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, The

[^3]Netherlands, July 2001, Proceedings, volume 2111, pages 385-401. Springer, Berlin, 2001.
[3] R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997.
[4] D. Gavinsky, J. Kempe, and R. de Wolf. Strength and weaknesses of quantum fingerprinting, 2006. accepted to CCC"06.
[5] V. Grolmusz. Harmonic analysis, real approximation, and the communication complexity of boolean functions. Algorithmica, 23(4):341-353, 1999.
[6] G. J. O. Jameson. Summing and nuclear norms in Banach space theory. London mathematical society student texts. Cambridge university press, 1987.
[7] H. Klauck. On quantum and probabilistic communication: Las vegas and oneway protocols. In Proceedings of the 32nd ACM STOC, pages 644-651, 2000.
[8] H. Klauck. Lower bounds for quantum communication complexity. In Proceedings of the 42nd IEEE FOCS, pages 288-297, 2001.
[9] I. Kremer. Quantum communication. In Master's thesis. Hebrew University of Jerusalem, 1995.
[10] I. Kremer, N. Nisan, and D. Ron. On randomized one-round communication complexity. In Proceedings of the 35th IEEE FOCS, 1994.
[11] E. Kushilevitz and N. Nisan. Communication Complexity. Cambride University Press, 1997.
[12] N. Linial, S. Mendelson, G. Schechtman, and A. Shraibman. Complexity measures of sign matrices. Combinatorica, to appear. Available at http: //www.cs.huji.ac.il/~nati/PAPERS/complexity_matrices.ps.gz.
[13] N. Linial and A. Shraibman. Learning complexity and communication. Manuscript, 2006.
[14] L. Lovasz and M. Saks. Latices, Mobius functions, and communication complexity. In Proceedings of the 29th IEEE FOCS, pages 81-90, 1988.
[15] F. MacWilliams and N. Sloane. The theory of error correcting codes. North Holland, Amsterdam/New York/Oxford, 1977.
[16] N. Nisan and A. Wigderson. On rank vs. communication complexity. In Proceedings of the 35th IEEE FOCS, pages 831-836, 1994.
[17] R. Raz. Fourier analysis for probabilistic communication complexity. Computational Complexity, 5(3/4):205-221, 1995.
[18] A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya of the Russian Academy of Science, Mathematics, 67:145159, 2002.
[19] O. S. Rothaus. On bent functions. J. Comb. Theory, 20:300-305, 1976.
[20] A. Yao. Lower bounds by probabilistic arguments. In Proceedings of the 15th ACM STOC, pages 420-428, 1983.
[21] A. Yao. Quantum circuit complexity. In Proceedings of the 34th IEEE FOCS, pages 352-361, 1993.

[^0]: ${ }^{1}$ In order to develop some intuition for this definition, it is useful to observe that $\|Y\|_{\ell_{1}^{n} \rightarrow \ell_{2}}$ is the largest ℓ_{2} norm of a column of Y, and $\|X\|_{\ell_{2} \rightarrow \ell_{\infty}^{m}}$ is the largest ℓ_{2} norm of a row of X.

[^1]: ${ }^{2}$ As observed in [13], γ_{2}^{∞} is the same as margin complexity, a parameter of interest in the field of machine learning.

[^2]: ${ }^{3}$ Here we refer to the bound using the Ky Fan n-norm - the trace norm.

[^3]: ${ }^{4}$ As mentioned, $\log (\operatorname{rank}(A)) \leq C C(A)$ for every sign matrix A.

