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Abstract

We introduce a new method to derive lower bounds on randomized and

quantum communication complexity. Our method is based on factoriza-

tion norms, a notion from Banach Space theory. As we show, our bounds

compare favorably with previously known bounds. Aside from the new

results that we derive, our method yields new and more transparent proofs

of some known results as well. Among our new results we extend some

known lower bounds to the realm of quantum communication complexity

with entanglement.

1 Introduction

We study lower bounds for randomized and quantum communication complex-
ity. Our bounds are expressed in terms of factorization norms, a concept of great
interest in Banach Space Theory which we now introduce. Consider a matrix
M as a linear operator between two normed spaces M : (X, ‖ ·‖X) → (Y, ‖ ·‖Y ).
We define its operator norm ‖M‖‖·‖X→‖·‖Y

as the supremum of ‖Mx‖Y over all
x ∈ X with ‖x‖X = 1. Factorization norms, and in particular the γ2 norm are
defined by considering all possible ways of expressing M as the composition of
two linear operators via a given middle normed space. Specifically, the γ2 norm
of an m× n real matrix B is defined via: 1

γ2(B) = min
XY =B

‖X‖ℓ2→ℓm
∞‖Y ‖ℓn

1
→ℓ2 . (1)

We introduce here a variation on this definition that plays a key role in our
paper. Let A be a sign matrix and let α ≥ 1

γα
2 (A) = min γ2(B), (2)

where the minimum is over all matrices B such that 1 ≤ aijbij ≤ α for all i, j.
In particular γ∞2 (A) = minB: ∀i,j 1≤aijbij

γ2(B).

1In order to develop some intuition for this definition, it is useful to observe that ‖Y ‖ℓn
1
→ℓ2

is the largest ℓ2 norm of a column of Y , and ‖X‖ℓ2→ℓm∞ is the largest ℓ2 norm of a row of X.
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Let A be a sign matrix and let an error bound ǫ > 0 be given. We consider
A’s randomized communication complexity and quantum communication com-
plexity with entanglement and denote them by Rǫ(A) and Q∗

ǫ (A) respectively.
We are now able to state one of our main theorems:

Theorem 1 For every sign matrix A and any ǫ > 0

Rǫ(A) ≥ 2 log γαǫ

2 (A) − 2 logαǫ,

and
Q∗

ǫ (A) ≥ log γαǫ

2 (A) − logαǫ − 2,

where αǫ = 1
1−2ǫ . Both bounds are tight up to the additive term.

These bounds are proved in Sections 3.1 and 3.2. Although the two proofs are
rather different, they both rely on the key observation that γ2 and its variants are
complexity measures of matrices. It is this basic idea and its broad applicability
that we consider as the key contributions of our work.

The usefulness of the lower bounds in Theorem 1 is further elaborated in
Section 4. There we prove that these bounds extend and improve previously
known general bounds on randomized and quantum communication complexity.
It is shown that our bounds extend the discrepancy method initiated in [20, 1].
It also extends a general bound in terms of the trace norm from [18], and
bounds using the Fourier Transform of boolean functions studied in [17, 8].
(Some of the basic features of these methods are explained in Section 4). We
are also able to generalize other bounds, in terms of singular values, proved in
[8]. Thus, our work immediately yields simpler and more transparent proofs
of previously known bounds. It also implies that bounds based on discrepancy
arguments and on Fourier analysis apply to quantum communication complexity
with entanglement, thus answering a well-known open question in that area.

In Section 5 we prove an upper bound on communication complexity in terms
of factorization norms.

Claim 2 The one round probabilistic communication complexity with public
random bits of a matrix A is at most O((γ∞2 (A))2). The bound is tight.

We raise the possibility that a better bound may hold in which γ∞2 (A) is replaced
by γα

2 for some small α.
Another intriguing open question is whether Rǫ(A) ≥ Ω(log γ2) for every sign

matrix A. We are able to show that if γ2(A) ≥ Ω(
√
n) (a condition satisfied by

almost all n× n sign matrices), then indeed Rǫ(A), Q∗
ǫ (A) ≥ Ω(logn).

A main objective of this line of research is to expand the arsenal of proof
techniques for hardness results in communication complexity. This is comple-
mented in Section 6 where we consider interesting specific families of functions
and establish lower bounds on their communication complexity.
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2 Background and notations

We have already introduced the definition of the factorization norm γ2 and its
variations γα

2 . We next collect several basic properties of these parameters

Proposition 3 For every m× n sign matrix A and every α ≥ 1,

1. γ∞2 ≤ γα
2 (A) ≤ γ2(A) ≤

√

rank(A).

2. γα
2 (A) is a decreasing, convex function of α.

3. It is possible to express γα
2 (A) as the optimum of a semidefinite program

of size O(mn).

Most of these statements, are proved in [12], where the reader can find a more
thorough coverage of some of these subjects. That γα

2 (A) is a convex function

of α, means that γ
α+β

2

2 (A) ≤ γα
2 (A)+γβ

2
(A)

2 . Let B1 be an optimal matrix as
in the definition of γα

2 (A) (i.e., γ2(B) = γα
2 (A) and 1 ≤ aijbij ≤ α) and let

B2 correspond to the definition of γβ
2 (A). The desired inequality follows by

considering the matrix B = 1
2 (B1 +B2), keeping in mind that γ2 is a norm.

We recall Grothendieck’s inequality, which we use several times in this paper.

Theorem 4 (Grothendieck’s inequality) There is a universal constant
1.5 ≤ KG ≤ 1.8 such that for every real matrix B and every k ≥ 1

max
∑

bij〈ui, vj〉 ≤ KG max
∑

bijǫiδj . (3)

where the max are over the choice of u1, . . . , um, v1, . . . , vn as unit vectors in R
k

and ǫ1, . . . , ǫm, δ1, . . . , δn ∈ {±1}.
We denote by γ∗2 the dual norm of γ2, i.e. for every real matrix B

γ∗2 (B) = max
C:γ2(C)≤1

〈B,C〉.

We note that for any real matrix γ∗2 and ‖ · ‖∞→1 are equivalent up to a small
multiplicative factor, viz.

‖B‖∞→1 ≤ γ∗2 (B) ≤ KG‖B‖∞→1. (4)

The left inequality is easy, and the right inequality is a reformulation of
Grothendieck’s inequality. Both use the observation that the left hand side of
(3) equals γ∗2 (B), and the max term on the right hand side is ‖B‖∞→1.
Additional useful corollaries of Grothendieck’s inequality are collected below.

Lemma 5 Every real matrix B can be expressed as B =
∑

iwixiy
t
i , where

w1, . . . , ws are positive reals, and x1, . . . , xs, y1, . . . , ys are sign vectors such that

γ2(B) ≤
∑

i

wi ≤ KG · γ2(B). (5)
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Proof We recall ν, the nuclear norm from l1 to l∞ of a real matrix B, that is
defined as follows

ν(B) = min{
∑

|wi| such that B can be expressed as

∑

wixiy
t
i = B for some choice of sign vectors x1, x2, . . . , y1, y2 . . .}.

It is known that ν is the norm dual to ‖ · ‖∞→1. See [6] for more details.
It is a simple consequence of the definition of duality and (4) that for every

real matrix B
γ2(B) ≤ ν(B) ≤ KG · γ2(B). (6)

The claim follows now if we note that in the definition of ν(B) the wi can be
made positive, by replacing the appropriate xi by −xi.

The following corollary is a simple consequence of Lemma 5.

Corollary 6 Let B be a real matrix satisfying γ2(B) ≤ 1. Then for every δ > 0
there are sign vectors φ1, φ2 . . . , ψ1, ψ2 . . . ∈ {±1}k for some integer k such that

bij
KG

− δ ≤ 1

k
〈φi, ψj〉 ≤ bij + δ, (7)

for all i, j.

Proof Let M = 1
KG

B. By Inequality (6), ν(M) ≤ 1. Consider the expansion

M =
∑

wixiy
t
i with wi > 0 for which ν(M) =

∑

wi. If the wi happen to be
rational, say wi = ui

k (k is the common denominator), then we can satisfy the
claim with δ = 0. Construct sign matrices P,Q that have ui columns (rows)
equal to xi (resp. yi) in this order. Then B

KG
= M = 1

kPQ. The claim follows
with φi, ψj being the rows (columns) of P and Q respectively. The general case
follows by approximating the wi’s by rationals.

Remark 7 To simplify notations, we discard the δ in applications of Corol-
lary 6 when this causes no problems.

Fourier analysis - some basics Identify {0, 1}n with Z
n
2 . For functions

f, g : {0, 1}n → R, define

〈f, g〉 =
1

2n

∑

x∈Z
n
2

f(x) · g(x),

and ‖f‖2 =
√

〈f, f〉. Corresponding to every z ∈ Z
n
2 , is a character of Z

n
2

denoted χz

χz(x) = (−1)〈z,x〉.

The Fourier coefficients of f are f̂z = 〈f, χz〉 for all z ∈ Z
n
2 . For M = 2m and

N = 2n, we occasionally consider a real M × N matrix B as a function from
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Z
m
2 ×Z

n
2 to R. Thus the (i, j)-entry of B, Bij , is also denoted Bz,z′ , where z and

z′ are the binary representations of i and j respectively. For B as above and
(z, z′) ∈ Z

m
2 ×Z

n
2 we denote the corresponding Fourier coefficient of B (thought

of as a function) by B̂z,z′ .
The following simple fact will serve us later:

Observation 8 Let B = xyt be a 2m × 2n sign matrix of rank 1. Then B̂z,z′ =
x̂z · ŷz′ for all z ∈ Z

m
2 and z′ ∈ Z

n
2 . Here x and y are viewed as real functions

on Z
m
2 resp. Z

n
2 .

Other For B a real matrix, s1(B) ≥ s2(B) ≥ . . . ≥ 0 are its singular val-
ues. ‖B‖1 is its ℓ1 (sum of absolute values) norm, ‖B‖2 is its ℓ2 (Frobenius)
norm, and ‖B‖∞ is its ℓ∞ (max) norm. For matrices A = (aij) and B = (bij),
〈A,B〉 =

∑

ij aijbij .
Notice that we have defined the inner product 〈·, ·〉 differently for boolean func-
tions and for matrices. For boolean matrices we took the normalized inner
product. And similarly for ‖ · ‖2.

3 A new lower bound technique in communica-
tion complexity

Let us recall some terminology:

• The deterministic communication complexity of a sign matrix A is denoted
by CC(A).

• Its quantum communication complexity is Qǫ(A). When prior entangle-
ment is allowed we denote it by Q∗

ǫ (A).

• The randomized communication complexity is Rǫ(A).

In the latter two definitions ǫ is the error bound. Since the value of ǫ is usually
immaterial, we simply omit it whenever this causes no confusion. That the
value of ǫ is inconsequential follows from a simple amplification-by-repetition
argument (e.g. [11]). For illustration, this argument yields e.g., Q∗

ǫ(A) ≤
O(Q∗

1/3(A) · log 1
ǫ ) for every sign matrix A and any ǫ > 0. When there is

no mention of ǫ it is assumed to be 1/3.
In this section we review some of the basic ideas in the field and prove our
results. In Section 4 we compare our bounds with previously known bounds.

We should note first, that a basic observation underlying our new bounds is
that γ2 is a complexity measure for matrices, in the same way that the rank has
long been used (explicitly or implicitly) as a measure of complexity for matrices.
For a more elaborate discussion on this subject, see [12].
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3.1 Randomized communication complexity

In order to find lower bounds on randomized communication complexity, one
uses the following observation

Observation 9 A sign matrix A satisfies Rǫ(A) ≤ c if and only if there are sign
matrices Di, i = 1, . . . ,m, satisfying CC(Di) ≤ c and a probability distribution
(p1, . . . , pm) such that

‖A−
m
∑

i=1

piDi‖∞ ≤ 2ǫ. (8)

Condition (8) can be combined with the fact that each of the matrices Di can
be partitioned into at most 2c monochromatic rectangles. These two facts are
used by the discrepancy method to derive a lower bound on Rǫ(A).
There is an alternative route (see [17]) that proceeds from here using Fourier
analysis.

As we observe next, γα
2 (A) fits very well into this general frame.

Theorem 10 For every sign matrix A and any ǫ > 0

Rǫ(A) ≥ 2 log γαǫ

2 (A) − 2 logαǫ,

where αǫ = 1
1−2ǫ .

Proof LetDi, i = 1, . . . ,m, and p be as above, and denoteB = 1
1−2ǫ

∑m
i=1 piDi.

Recall that log(rank(A)) ≤ CC(A) for every sign matrix A. Thus, for every
i = 1, . . . ,m

γ2(Di) ≤ (rank(Di))
1/2 ≤ 2CC(Di)/2 ≤ 2Rǫ(A)/2.

The first inequality is from Proposition 3. Since γ2 is a norm

γ2(B) =
1

1 − 2ǫ
γ2(

m
∑

i=1

piDi) ≤
1

1 − 2ǫ

m
∑

i=1

piγ2(Di) ≤
1

1 − 2ǫ
2Rǫ(A)/2.

On the other hand it follows from Equation (8) that 1 ≤ aijbij ≤ 1
1−2ǫ . Hence,

by the definition of γα
2 (Equation (2)), for α = 1

1−2ǫ

γα
2 (A) ≤ γ2(B) ≤ 1

1 − 2ǫ
2Rǫ(A)/2.

3.2 Quantum communication complexity

A possible first step in search of lower bounds in quantum communication com-
plexity is the following fact, variants of which were observed by several au-
thors [18, 21, 4, 9].
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Lemma 11 Given a sign matrix A, let P = (pij) be the acceptance probabilities
of a quantum protocol for A with complexity C. Then there are matrices X,Y
such that P = XY and

‖X‖2→∞, ‖Y ‖1→2 ≤ 2C/2. (9)

If prior entanglement is not used, then the matrices X and Y in Condition (9)
can be chosen to have rank at most 22C.

As mentioned, there are several similar statements in the literature, but we could
not find a reference for this precise statement, so we include a proof of Lemma
11 in Section 3.2.1. When there is no prior entanglement, lemma 11 yields
a condition analogous to observation 9 and then bounds via discrepancy and
Fourier analysis can be likewise derived. However, this was not known for the
model of quantum communication complexity with entanglement. Our method
provides a coherent way to extend previously known bounds (based on the dis-
crepancy and Fourier transform methods) for the model allowing entanglement.
The next theorem uses Lemma 11 to give a bound on quantum communication
complexity in terms of γα

2 .

Theorem 12 For every sign matrix A and any ǫ > 0

Q∗
ǫ (A) ≥ log γαǫ

2 (A) − logαǫ − 2,

where αǫ = 1
1−2ǫ .

Proof Let P = (pij) be the acceptance probabilities of an optimal quantum
protocol for A. By Lemma 11, γ2(P ) ≤ 2Q∗

ǫ (A).
On the other hand, by definition, pij ≤ ǫ when aij = −1 and pij ≥ 1 − ǫ

when aij = 1. Thus, if we let B = 1
1−2ǫ (2P − J), we get that bijaij ≥ 1 for all

i, j and

γ2(B) = γ2(
1

1 − 2ǫ
(2P − J)) ≤ 1

1 − 2ǫ
(2γ2(P ) + 1)

≤ 1

1 − 2ǫ

(

2Q∗
ǫ (A)+2

)

.

We conclude that

γαǫ

2 (A) ≤ γ2(B) ≤ 1

1 − 2ǫ
2Q∗

ǫ (A)+2,

and hence
Q∗

ǫ (A) ≥ log γαǫ

2 (A) − logαǫ − 2,

for αǫ = 1
1−2ǫ .
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3.2.1 Proof of Lemma 11

As mentioned, the present material seems to be essentially known to experts and
is being included for completeness sake. We consider quantum communication
protocols that use a 1 qubit channel. A (k-round) protocol is specified by a
sequence U1, · . . . · Uk of unitary transformations, where for odd i it’s the row-
player’s turn and Ui = UA ⊗ I. For j even the column-player’s step has the
form Ui = I ⊗UB. We consider first the case where no entanglement is allowed
and later mention what happens with entanglement. Without entanglement the
system starts from the state er ⊗ e0 ⊗ ec, where r and c are the inputs to the
row/column players. At time t, the new state is determined by multiplying the
present state by the unitary matrix Ut.

It is a simple matter to prove by induction on t that the state at time t can
be expressed as

∑

v∈V

xr
v ⊗ e0 ⊗ yc

v +
∑

w∈W

xr
w ⊗ e1 ⊗ yc

w (10)

where the index sets V = Vt and W = Wt satisfy

|Vt| + |Wt| ≤ 2t,

and
∑

Vt+2

‖xr
v‖2

2 +
∑

Wt+2

‖xr
v‖2

2 ≤ 2(
∑

Vt

‖xr
v‖2

2 +
∑

Wt

‖xr
v‖2

2)

and similarly for y. This follows from the fact that the Ut are unitary. For
example at time 1 the state has the form x0 ⊗ e0 ⊗ ec + x1 ⊗ e1 ⊗ ec where
‖x0‖2

2 + ‖x1‖2
2 = 1. At time 2, it is x0 ⊗ e0 ⊗ y00 + x0 ⊗ e0 ⊗ y01 + x1 ⊗ e1 ⊗

y10 + x0 ⊗ e1 ⊗ y11 where ‖y00‖2
2 + ‖y01‖2

2 + ‖y10‖2
2 + ‖y11‖2

2 ≤ 2 etc.
Let A be a sign matrix and denote C = Qǫ(A). Let P = (prc) be the

acceptance probabilities of an optimal quantum protocol for A. It follows from
Equation 10 that

prc =
∑

u,w∈WC

〈xr
u, x

r
w〉〈yc

u, y
c
w〉. (11)

We seek to factor P = XY so that the rows of X (resp. the columns of Y )
have small ℓ2 norms. To this end we define the vectors xr = (〈xr

u, x
r
w〉)u,w∈WC

,
and yc = (〈yc

u, y
c
w〉)u,w∈WC

. We take X to be the matrix whose r-th row is xr,
and Y the matrix whose c-th column is yc. Indeed XY = P , as Equation 11
shows. Also, ‖X‖2→∞, ‖Y ‖1→2 ≤ 2C/2, since

‖xr‖2
2 =

∑

u,w∈WC

〈xr
u, x

r
w〉2

≤
(

∑

w∈WC

‖xr
w‖2

2

)2

≤ 2C ,
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similarly ‖yc‖2
2 ≤ 2C . Finally, the rank of X and Y is bounded by |WC |2 which

is at most 22C .
What changes when prior entanglement is allowed? The input vector is

∑

i∈I

αie
r
i ⊗ e0 ⊗ ec

i ,

where {αi}i∈I is an arbitrary unit vector. Using the previous considerations
and linearity, the state at time t can be expressed as

∑

i∈I

αi

(

∑

v∈V

xr
i,v ⊗ e0 ⊗ yc

i,v +
∑

w∈W

xr
i,w ⊗ e1 ⊗ yc

i,w

)

. (12)

Our choice of factorization vectors is now xr =
(

αi

〈

xr
i,u, x

r
i,w

〉)

u,w∈WC ,i∈I
and

similarly for y. The proof is completed by observing that

‖xr‖2
2 =

∑

i∈I

∑

u,w∈WC

α2
i

〈

xr
i,u, x

r
i,w

〉2

=
∑

i∈I

α2
i

∑

u,w∈WC

〈

xr
i,u, x

r
i,w

〉2

≤
∑

i∈I

α2
i

(

∑

w∈WC

‖xr
i,w‖2

2

)2

≤
∑

i∈I

α2
i · 2C

≤ 2C .

3.3 How does log γ2 fit in?

As we just saw, randomized and quantum communication complexity are bounded
below by log γα

2 . It is an interesting open question how these two parameters
compare with log γ2. For most m×n sign matrices A with m ≥ n, it holds that

1. γ2(A) = Θ(
√
n),

2. Rǫ(A) = logn−Oǫ(1),

3. Qǫ(A) = 1
2 logn− Oǫ(1).

The first item was shown in [12], alongside the fact that γ∞2 (A) = Θ(
√
n) for

random matrices. The other two items follow therefore, from Theorems 10
and 12. We show next that the first condition implies the other two.

Claim 13 Let A be an m×n sign matrix with m ≥ n. If γ2(A) ≥ Ω(
√
n), then

R(A) ≥ logn−O(1), and Q∗(A) ≥ 1
2 logn−O(1).

This claim is an easy consequence of the following lemma
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Lemma 14 Let A be an m×n sign matrix with m ≥ n. Then for every δ > 0,

γ2(A) ≤ γ1+δ
2 (A) +

δ

2
(
√
n+ 1). (13)

Proof Let B be a matrix with 1 ≤ aijbij ≤ 1 + δ and γ2(B) = γ1+δ
2 (A). Since

γ2 is a norm, we may write

γ2(A) ≤ γ2(B − δ

2
J) + γ2(B − δ

2
J −A).

Since all elements of the matrix B− δ
2J −A have absolute value ≤ δ

2 , the claim
follows using linearity of the norm, the fact that γ2 ≤ min{√m,√n} for every
m× n sign matrix (taking the trivial factorization A · I = A or I ·A = A), and
that γ2(J) = 1.

It is now a simple matter to prove Claim 13. If γ2(A) ≥ c
√
n, then γ1+c

2 (A) >
c
2 (
√
n− 1) from which the Claim follows, by Theorem 1.

We cannot rule out the intriguing possibility that Rǫ as well as Q∗
ǫ are always

polynomially equivalent to log γ2. In fact, we do not know any cases where Rǫ

and log γ2 differ by more than a constant factor. An example in Section 6.3
shows that there can be a quadratic gap between Q∗

ǫ and log γ2.

3.4 Employing duality

One interesting aspect of our main result is that it improves several previously
known bounds. This point is elaborated on in Section 4. Another noteworthy
point is that our bounds are expressed in terms of γα

2 (·), a quantity that can be
efficiently computed using SDP. A particularly useful consequence of this ob-
servation is that SDP duality makes it often possible to derive good (sometimes
even optimal) lower bounds on communication complexity. This technique will
be used throughout Sections 4 and 6.

It is not hard to express γ2 of a given matrix as the optimum of a semidefinite
program. We refer the reader to [12] for the simple details. Likewise, as shown
below, γα

2 can be expressed as the optimum of a semidefinite program. By SDP
duality this yields

Theorem 15 For every sign matrix A and α ≥ 1

γα
2 (A)−1 = min γ∗2 ((P −Q) ◦A)

s.t. P,Q ≥ 0
∑

pij − αqij = 1,

and also

γα
2 (A) = max 〈A,B〉 − (α− 1)

∑

ij:aij 6=sign(bij ) |bij |
s.t. γ∗2 (B) = 1 .
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In particular, for α = ∞
γ∞2 (A)−1 = min γ∗2 (P ◦A)

s.t. P ≥ 0
∑

pij = 1,

and also

γ∞2 (A) = max 〈A,B〉
s.t. sign(B) = A and γ∗2 (B) = 1.

As usual, the advantage of this result is that any feasible solution to the
SDPs in Theorem 15 yields a lower bound for γα

2 (A) or γ∞2 (A). What is left is
to find good feasible solutions.

Proof We start by showing that for every sign matrix A and α > 1

γα
2 (A)−1 = maxµ

s.t. for all i, j µ ≤ aijbij ≤ αµ (14)

γ2(B) ≤ 1.

Denote by µ(A) the maximum on the right hand side above. Let C be a matrix
such that γ2(C) = γα

2 (A) and 1 ≤ aijcij ≤ α, and take B = γα
2 (A)−1C. Then,

γ2(B) ≤ 1 and γα
2 (A)−1 ≤ aijbij ≤ αγα

2 (A)−1, implying that µ(A) ≥ γα
2 (A)−1.

To prove the inverse inequality, let B be a matrix such that γ2(B) ≤ 1 and
µ(A) ≤ aijbij ≤ αµ(A), and take C = µ(A)−1B. Then 1 ≤ aijcij ≤ α and
γ2(C) ≤ µ(A)−1, implying that γα

2 ≤ µ(A)−1 or equivalently µ(A) ≤ γα
2 (A)−1.

Note that (14) is a semidefinite program, since the condition γ2(B) ≤ 1 is
expressible as an SDP. By SDP duality

γα
2 (A)−1 = min γ∗2 ((P −Q) ◦A)

s.t. P,Q ≥ 0 (15)
∑

pij − αqij = 1,

proving the first identity. We use this to prove the second identity, i.e. that

γα
2 (A) = max 〈A,B〉 − (α− 1)

∑

ij:aij 6=sign(bij ) |bij |
s.t. γ∗2 (B) = 1 .

To see that the optimum of the above SDP is indeed equal to γα
2 (A), note that

by choosing B such that P −Q = B ◦A, the SDP in (15) is equivalent to

min γ∗2 (B)

s.t.
∑

ij:aij=sign(bij ) |bij | − α
∑

ij:aij 6=sign(bij) |bij | = 1 .

Since both γ∗2 (B) and
∑

ij:aij=sign(bij ) |bij | − α
∑

ij:aij 6=sign(bij ) |bij | are homo-
geneous in B, the optimum of this SDP is the inverse of

max 〈A,B〉 − (α− 1)
∑

ij:aij 6=sign(bij ) |bij |
s.t. γ∗2 (B) = 1 ,
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as required.
The statements regarding γ∞2 follow by considering the corresponding ex-

pressions for γα
2 and taking α to infinity.

Remark 16 Note that by Grothendieck’s inequality (Theorem 4, and Inequal-
ity (4)), we can replace γ∗2 with ‖ · ‖∞→1 in Theorem 15, without changing the
value of the SDPs by more than a factor of KG.

4 Relations with other bounds

We prove next that the bounds in Theorems 10 and 12 nicely generalize some of
the previously known bounds for communication complexity. In Section 4.1 we
consider the discrepancy method and in Section 4.2 bounds involving singular
values (Ky Fan norms and in particular the trace norm, are discussed). In
Sections 4.3 and 4.4 lower bounds that are based on Fourier analysis of boolean
functions are examined.

4.1 The discrepancy method

Let A be a sign matrix, and let P be a probability measure on the entries of
A. The P -discrepancy of A, denoted discP (A), is defined as the maximum over
all combinatorial rectangles R in A of |P+(R)− P−(R)|, where P+ [P−] is the
P -measure of the positive entries [negative entries]. The discrepancy of a sign
matrix A, denoted disc(A), is the minimum of discP (A) over all probability
measures P on the entries of A.

The discrepancy method, introduced in [20, 1], was the first general method
for deriving lower bounds for randomized communication complexity. It is based
on the following fact: for every sign matrix A

Qǫ(A), Rǫ(A) ≥ Ω

(

log

(

1 − 2ǫ

disc(A)

))

.

See [11] for a more elaborate discussion on this bound for randomized communi-
cation complexity, and [9] for the first proof extending this bound to the realm
of quantum communication complexity.

The following theorem was proved in [13] 2

Theorem 17 For every sign matrix A

1

8
γ∞2 (A) ≤ disc(A)−1 ≤ 8γ∞2 (A).

An immediate corollary of Theorem 17 and Theorems 10 and 12 is the following.

2As observed in [13], γ∞

2
is the same as margin complexity, a parameter of interest in the

field of machine learning.

12



Theorem 18 For every sign matrix A and any ǫ > 0

Rǫ(A) ≥ 2 log

(

1 − 2ǫ

disc(A)

)

−O(1),

and

Q∗
ǫ (A) ≥ log

(

1 − 2ǫ

disc(A)

)

−O(1).

Both bounds are tight up to the additive term.

This settles the widely known open question whether the discrepancy bound
holds for quantum communication complexity with entanglement.

Our bounds are it terms of γα
2 , and as mentioned above, γ∞2 (which is smaller

than γα
2 ) is equal up to a multiplicative constant to the inverse of discrepancy.

In Section 6.3 we show an example where γ∞2 is significantly smaller than γα
2

for small α. The behavior of γα
2 as a function of α is an interesting subject for

research, as further discussed in Sections 6.3 and 7.

4.1.1 VC dimension

It was shown in [10] that the one-round probabilistic communication complexity
of a sign matrix A, is at least its V C-dimension, V C(A). The same bound for
quantum communication complexity is proved in [7]. Here we compare these
bounds with discrepancy (equivalently γ∞2 )-based bounds, and conclude that
the two methods are, in general, incomparable.

Let Hk be a k × 2k sign matrix with no repeated columns. It is shown in
[12] that γ2(Hk) = γ∞2 (Hk) =

√
k. Consequently, V C(A) ≤ (γ∞2 (A))2 for every

sign matrix A, and this holds with equality for A = Hk.
Since our lower bounds on communication complexity are in terms of log(γα

2 ),
there are instances where the V C-based lower bound is exponentially larger.

On the other hand, as we know (e.g. [12]) γ∞2 ≥ Ω(
√
n) for almost all n× n

sign matrices. It is proved in [2] that for every d ≥ 2, almost every n × n sign

matrix with V C-dimension ≤ 2d satisfies γ∞2 (A) ≥ Ω(
√
n1−1/d−1/2d). In such

cases, the V C-type lower bound is only constant whereas the discrepancy bound
Ω(logn) has the largest possible order of magnitude.

4.2 Bounds involving singular values

4.2.1 The trace norm

We recall that the trace norm ‖A‖tr of a real matrix A is the sum of its singular
values. We introduce the following concept (from [18]), analogous to γα

2 :

‖A‖α
tr = min {‖B‖tr : 1 ≤ aijbij ≤ α} .

The following bound on Q∗
ǫ was proved in [18].

13



Theorem 19 For every n×n sign matrix A and any ǫ > 0, let αǫ = 1
1−2ǫ , then

Q∗
ǫ (A) ≥ Ω(log(‖A‖αǫ

tr /n)).

Here we use a relation between the trace norm and γ2 to prove that Theorem 19
is a consequence of Theorem 12. Moreover, as shown in Section 6.4, the bound
in Theorem 12 can be significantly better than what Theorem 19 yields.

While the bounds in terms of factorization norms are better than those
derived from discrepancy and from trace norm, the latter two methods are
incomparable. Examples in Sections 6.3 and 6.4 demonstrate that the inverse
of discrepancy can be much larger than ‖ · ‖αǫ

tr and vice versa.

trace norm and γ2 An alternative expression for the trace norm, that sug-
gests a relation with factorization norms is that for every matrix A,

‖A‖tr = min
XY =A

1

2

(

‖X‖2
F + ‖Y ‖2

F

)

,

where ‖ ·‖F stands for the Frobenius norm of a matrix. We omit the proof here,
and instead we refer the reader to [12, Sec. 3] for a proof that

‖A‖tr ≤ √
mn · γ2(A), (16)

for every real m× n matrix A.
It should be clear then, that ‖A‖α

tr ≤ √
mn · γα

2 (A) for every m × n sign
matrix A and every α ≥ 1.

4.2.2 Ky Fan norms

The Ky Fan k-norm of a matrix A which we denote by ‖ · ‖K is defined as
∑k

i=1 si(A), the sum of the k largest singular values of A. Two interesting
instances are the Ky Fan n-norm which is the trace norm and the Ky Fan 1-
norm - the operator norm from ℓ2 to ℓ2.
The following theorem was proved in [8]

Theorem 20 [8, th. 6.10] For every n× n sign matrix A:

If ‖A‖K ≥ n
√
k, then Q(f) ≥ Ω(log(‖A‖K

n )).

If ‖A‖K ≤ n
√
k, then Q(f) ≥ Ω(log(‖A‖K

n ))/(log
√
k − log(‖A‖K

n ) + 1)).

We prove

Theorem 21 For every n× n sign matrix A and for every δ > 0

γ1+δ
2 (A) ≥ 1

n
‖A‖K − δ ·

√
k

14



Proof Let B be a matrix such that γ2(B) = γ1+δ
2 (A) and 1 ≤ aijbij ≤ 1 + δ.

By the triangle inequality

‖B‖K ≥ ‖A‖K − ‖A−B‖K ≥ ‖A‖K − δ
√
kn.

To prove the latter inequality, let M = A−B and note that

‖M‖K =

k
∑

1

si(M) ≤
√
k

√

√

√

√

k
∑

1

si(M)2 ≤
√
k

√

√

√

√

n
∑

1

si(M)2 =
√
k‖M‖2.

The first inequality is Cauchy-Schwartz and the last identity can be found e.g.,
in [3, p. 7]. It is left to observe that by (16)

‖B‖K ≤ ‖B‖tr ≤ γ2(B) · n = γ1+δ
2 (A) · n.

Theorems 12 and 21 imply that Klauck’s bound holds as well for quantum
communication complexity with entanglement

Theorem 22 For every n× n sign matrix A:

If ‖A‖K ≥ n
√
k, then Q∗(f) ≥ Ω(log(‖A‖K

n )).

If ‖A‖K ≤ n
√
k, then Q∗(f) ≥ Ω(log(‖A‖K

n ))/(log
√
k − log(‖A‖K

n ) + 1)).

Proof If ‖A‖K ≥ n
√
k then

Q∗
1/6(A) ≥ log γ

3/2
2 (A) −O(1) ≥ log(

‖A‖K
n

) −O(1).

The first inequality is by theorem 12 and the second follows from Theorem 21.

Consequently, Q∗(A) ≥ Ω(Q∗
1/3(A)) ≥ Ω(log(‖A‖K

n )).

If ‖A‖K ≤ n
√
k take ǫ =

‖A‖K
n
√

k

4+2
‖A‖K
n
√

k

, so that αǫ = 1 + ‖A‖K
2n

√
k
. We have

Q∗
ǫ (A) ≥ γαǫ

2 (A) −O(1) ≥ log(
‖A‖K
n

) −O(1),

As mentioned already

Q∗(A) ≥ Ω

(

Q∗
ǫ(A)

log ǫ−1

)

≥ Ω

(

log(‖A‖K
n )

log
√
k − log(‖A‖K

n ) + 1

)

.
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4.3 Fourier analysis

We prove here that the bounds on communication complexity in Theorems 10
and 12 subsume previous bounds using Fourier analysis [17, 8] which we review
next.

Any deterministic communication protocol for a sign matrix A naturally
partitions it into monochromatic combinatorial rectangles. By Observation 9, if
A has randomized communication complexity at most c then there are rectangles
Ri and weights wi ∈ [0, 1] such that

‖A−
∑

i

wiRi‖∞ ≤ ǫ,

and
∑

i wi ≤ 2c. Raz [17] used this observation and properties of the Fourier
transform to derive lower bounds on randomized communication complexity.
These ideas were extended by Klauck [8] to quantum communication complexity:

Theorem 23 [8, th. 4.1] Let A be a 2n × 2n sign matrix. Let E be a set of σ0

diagonal elements in A and denote σ1 =
∑

(z,z)∈E |Âz,z|.
If σ1 ≥ √

σ0, then Q(f) ≥ Ω(log(σ1)).
If σ1 ≤ √

σ0, then Q(f) ≥ Ω(log(σ1)/(log
√
σ0 − log σ1 + 1)).

These bounds can be useful in the study of certain specific matrices. In general,
e.g. for random matrices they are rather weak.

Ideas from Raz and Klauck’s proofs lead to the following theorem and the
conclusion that Theorem 12 yields bounds at least as good as those achieved by
Fourier analysis. What is more, this proof technique works as well for quantum
communication complexity with prior entanglement.

Theorem 24 Let A be a 2n × 2n sign matrix, and E be a set of σ0 diagonal
elements with σ1 =

∑

(z,z)∈E |Âz,z|. Then γ1+δ
2 (A) ≥ Ω(σ1 − δ · √σ0) for every

δ > 0.

Proof Let B be a real matrix such that

1. γ2(B) = γ1+δ
2 (A).

2. 1 ≤ bijaij ≤ 1 + δ for all i, j.

Condition 2 implies that ‖A−B‖∞ ≤ δ, and hence ‖A−B‖2 ≤ δ2n.
By Parseval identity

√

√

√

√

∑

(z,z)∈E

(

Âz,z − B̂z,z

)2

≤ 2−n‖A−B‖2 ≤ δ.
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By the triangle inequality and Cauchy-Schwartz

∑

E

|B̂z,z| ≥
∑

E

|Âz,z | −
∑

E

|Âz,z − B̂z,z|

≥
∑

E

|Âz,z | −
√

|E| ·
∑

E

(

Âz,z − B̂z,z

)2

≥ σ1 −
√
σ0 · δ.

By Lemma 5 it is possible to express B =
∑

iwixiy
t
i , where w1, . . . , ws are

positive reals with
∑

wi ≤ KGδ and x1, . . . , xs, y1, . . . , ys are sign vectors. Using
Observation 8 and the linearity of the Fourier transform, we obtain

∑

E

|B̂z,z | =
∑

E

∑

i

|wix̂i,z ŷi,z| =
∑

i

wi

∑

E

|x̂i,z ŷi,z| ≤
∑

i

wi,

where the inequality holds since x̂, ŷ are unit vectors. We conclude that

σ1 −
√
σ0 · δ ≤

∑

E

|B̂z,z| ≤
∑

i

wi ≤ KGγ
1+δ
2 (A),

as claimed.

A corollary of Theorem 24 and Theorem 12 is

Theorem 25 Let A be a 2n × 2n sign matrix. Let E be a set of σ0 diagonal
elements in A and denote σ1 =

∑

(z,z)∈E |Âz,z|.
If σ1 ≥ √

σ0, then Q∗(f) ≥ Ω(log(σ1)).
If σ1 ≤ √

σ0, then Q∗(f) ≥ Ω(log(σ1)/(log
√
σ0 − log σ1 + 1)).

Proof The proof is very similar to the proof of Theorem 22.

4.3.1 A proof technique

Let us point out a common theme that reveals itself in our proofs of Lemma 14,
and Theorems 21 and 24. We pick some sub-additive functional ϕ on n × n
matrices. In the proof of Lemma 14, ϕ = γ2, in Theorem 21 ϕ = ‖ · ‖K/n and
in Theorem 24 it is the sum of diagonal Fourier coefficients. In fact, in all three
cases ϕ is actually a norm. Consider a matrix B such that γ2(B) = γ1+δ

2 (A)
and 1 ≤ aijbij ≤ 1 + δ. By sub-additivity

ϕ(B) ≥ ϕ(A) − ϕ(A−B). (17)

In these three cases we observe next that ϕ(B) ≤ γ2(B) for every real matrix
B. In general it would be enough that ϕ(B) ≤ γ2(B)r always holds for some
r > 0. Together with (17) this yields

γ1+δ
2 (A)r = γ2(B)r ≥ ϕ(B) ≥ ϕ(A) − ϕ(A−B),
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which yields a lower bound on γ1+δ
2

γ1+δ
2 (A) ≥ (ϕ(A) − ϕ(A−B))

1/r
.

In general all we know about A − B is that its ℓ∞ norm is at most δ. Thus,
what is needed now is an upper bound on ϕ(A−B) that depends only on simple
parameters of the problem, e.g. δ, the dimension n, |E| as in Theorem 24 or k
as in Theorem 21. We feel there should be other interesting candidates for ϕ,
in addition to γ2, ‖ · ‖K/n and the sum of diagonal Fourier coefficients.

4.4 A lower bound involving a single Fourier coefficient

For every function f : Z
n
2 → {±1}, we denote by Λf = (λxy) the 2n × 2n matrix

with λxy = f(x ∧ y). It was proved by Klauck [8] that

Theorem 26 For every function f : Z
n
2 → {±1} and all z ∈ Z

n
2

Q(Λf ) ≥ Ω

(

|z|
1 − log |f̂z|

)

.

(Here and below |z| stands for the Hamming weight of z). He also asked whether
the same lower bound holds when entanglement is allowed. We show that this
is indeed the case, namely:

Theorem 27 For every function f : Z
n
2 → {±1} and all z ∈ Z

n
2

Q∗(Λf ) ≥ Ω

(

|z|
1 − log |f̂z|

)

.

The main part of the proof consists of showing:

Theorem 28 For every function f : Z
n
2 → {±1} and all z ∈ Z

n
2

γ
1+|f̂z|/2
2 (Λf ) ≥ Ω

(

2|z|/4|f̂z|
)

.

We first show how this implies Theorem 27. By taking the logarithm in
Theorem 28, we obtain

log(γ
1+|f̂z|/2
2 (Λf )) ≥ |z|/4 + log |f̂z| −O(1).

By Theorem 12
Q∗

ǫ (Λf ) ≥ log γαǫ

2 (Λf ) − logαǫ − 2,

for any ǫ > 0 where αǫ = 1
1−2ǫ .

We apply this with ǫ = |f̂z|
4+2|f̂z|

(whence αǫ = 1 + |f̂z|/2). The two inequalities

combined yield

Q∗
ǫ(Λf ) ≥ |z|/4 − log |f̂z| − logαǫ −O(1).

18



As already mentioned, by a standard amplification argument (e.g. [11]),

Q∗(Λf ) ≥ Ω

(

Q∗
ǫ(Λf )

log ǫ−1

)

.

This yields

Q∗(Λf ) ≥ Ω

(

|z|/4 + log |f̂z| − logαǫ −O(1)

log ǫ−1

)

.

Theorem 27 follows when we notice that ǫ = Θ(|f̂z|) and − logαǫ = Θ(1).
We turn to the proof of Theorem 28:

Proof We assume w.l.o.g. that f̂z ≥ 0, to simplify the notations.
As stated in Theorem 15, for every sign matrix A,

γα
2 (A) = max 〈A,B〉 − (α− 1)

∑

xy:axy 6=sign(bxy) |bxy|
s.t. γ∗2 (B) ≤ 1 .

The proof proceeds by selecting for each z ∈ Z
n
2 a matrix B = Bz to yield

the desired lower bound. We first describe this choice of B, and then apply it
toward the lower bound.

Let P = Pn be the 2n×2n matrix, with rows and columns indexed by vectors
in {0, 1}n, where the x, y entry is ( 1√

2
)|x|(1 − 1√

2
)n−|x|( 1√

2
)|y|(1 − 1√

2
)n−|y|.

For what follows it is useful to observe that P induces a product probability
distribution on 2[n] × 2[n], each probability distribution being itself a bitwise
product distribution. It has the property that for every w ∈ {0, 1}n, the event
{(x, y) ∈ 2[n] × 2[n], s.t. x∧ y = w} has probability 2−n. For z ∈ Z

n
2 we choose

Bz = Pn ◦Λχz
. It is useful to observe that Λχz

= H|z|⊗ Jn−|z|, where Ht is the
2t × 2t Sylvester-Hadamard matrix, and Jt is the 2t × 2t matrix whose entries
are all 1.

To apply Theorem 15 we need to compute (or estimate) γ∗2 (Bz), and 〈A,Bz〉.
Indeed,

1. For every z ∈ Z
n
2 , 〈Bz,Λf 〉 = f̂z.

2. There is a constant c > 0 such that for every z ∈ Z
n
2

γ∗2 (Bz) ≤ c2−|z|/4.

For the first equality, observe that

〈Bz ,Λf〉 =
∑

x,y

P (x ∧ y)f(x ∧ y)χz(x ∧ y) =
1

2n

∑

w

f(w)χz(w) = f̂z

As for the second inequality - It follows from a similar inequality from [8] on
the ‖ · ‖∞→1 norm. The additional step is provided by Inequality (4). It is left
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to compute the result of applying Bz. Let Bz = (bxy) then

γ
1+f̂z/2
2 (Λf ) ≥ c−12|z|/4



〈Λf , Bz〉 −
f̂z

2

∑

xy:λxy 6=sign(bxy)

|bxy|





≥ c−12|z|/4

(

f̂z − f̂z

2
‖Bz‖1

)

= c−12|z|/4

(

f̂z − f̂z

2

)

= c−12|z|/4f̂z/2.

The third equality follows since Bz = Pn ◦ Λχz
is obtained by signing (via Λχz

- a sign matrix) the terms of a probability distribution - the entries of P .

4.5 Entropy

The entropy of a probability vector p is denoted H(p) = −∑i pi log pi. Let B
be an n× n real matrix, recall (e.g., [3, p. 7]) that

∑

i si(B)2 = ‖B‖2
2. Thus,

if we denote ŝi(B) = si(B)
‖B‖2

then the vector ŝ(B)2 = (ŝ1(B)2, . . . , ŝn(B)2) is a

probability vector. Klauck [8] proved

Theorem 29 For every n× n sign matrix A

Q(A) ≥ Ω

(

H(ŝ(A)2)

log logn

)

.

He used the following simple properties of entropy:

Lemma 30 Let p and q be probability vectors of dimension n, then

1. If ‖p− q‖1 ≤ 1/2 then |H(p) −H(q)| ≤ ‖p− q‖1 · logn−O(1).

2. ‖p− q‖1 ≤ 3‖p1/2 − q1/2‖2. Here p1/2 = (
√
p1, . . . ,

√
pn).

3. H(p) ≤ 2 log
(

1 + ‖p1/2‖1

)

.

We use the above lemma and Theorem 12 to generalize Klauck’s result

Theorem 31 For every sign matrix A and δ ≤ 1/6

log
(

1 + γ1+δ
2 (A)

)

≥ 1

2
H(ŝ(A)2) − 3

2
δ · logn.
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Proof For δ ≤ 1/6, let B be a real matrix satisfying γ2(B) = γ1+δ
2 (A) and

1 ≤ aijbij ≤ 1 + δ. By property (3) in Lemma 30,

H(ŝ(B)2) ≤ 2 log

(

1 +
‖B‖tr

‖B‖2

)

≤ 2 log

(

1 +
‖B‖tr

n

)

≤ 2 log (1 + γ2(B)) = 2 log
(

1 + γ1+δ
2 (A)

)

.

By the second property

‖ŝ(A)2 − ŝ(B)2‖1 ≤ 3‖ŝ(A) − ŝ(B)‖2

= 3‖s(A/‖A‖2) − s(B/|B‖2)‖2

≤ 3‖A/‖A‖2 −B/|B‖2‖2

≤ 3

‖A‖2
‖A−B‖2

≤ 3

n
δ · n

= 3δ.

For the second inequality see Theorem VI.4.1 and Exercise II.1.15 in [3]. The

third inequality follows from the simple fact that ‖ y
‖y‖2

− x
‖x‖2

‖2 ≤ ‖y−x‖2

‖x‖2
for

every two vectors with ‖y‖2 ≥ ‖x‖2 (Here x = A and y = B). Notice that
‖ŝ(A)2 − ŝ(B)2‖1 ≤ 3δ ≤ 1/2, the conditions of the first property in Lemma 30
are therefore satisfied, and we have

H(ŝ(B)2) ≥ H(ŝ(A)2) − ‖ŝ(A)2 − ŝ(B)2‖1 · logn−O(1)

≥ H(ŝ(A)2) − 3δ · logn−O(1).

By optmizing the choice of δ in Theorem 31, Theorem 12 yields

Theorem 32 For every n× n sign matrix A

Q∗(A) ≥ Ω

(

H(ŝ(A)2)

log log n
H(ŝ(A)2) + 1

)

.

It is worth while to compare the bound of Theorem 32 with the bound of Theo-
rem 22. 3 By the third property in Lemma 30 H(ŝ(A)2) ≤ 2 log (1 + ‖A‖tr/n),
hence the bound in Theorem 22 seems better at first sight. But notice that the
denominator in Theorem 32 is better behaved than that in Theorem 22. This
advantage becomes pronounced as ‖A‖tr decreases. Thus, when ‖A‖tr = nc for
c < 1/2 the bound in Theorem 22 becomes trivial, while the bound in Theo-
rem 32 can still be asymptotically optimal.

An analogous theorem to Theorem 29 in which the normalized vector of
squared singular values is replaced by the vector of diagonal Fourier coefficients
is also proved in [8]. This theorem can be similarly generalized.

3Here we refer to the bound using the Ky Fan n-norm - the trace norm.
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5 An upper bound in terms of γ
∞
2

We have established so far lower bounds on communication complexity in terms
of γα

2 . Here we show an upper bound that is “only” exponentially larger than
these lower bounds, in terms of γ∞2 . We also observe that this bound is essen-
tially tight, if we insist on using γ∞2 . It is not impossible that better bounds
exist which are expressed in terms of γα

2 with finite α. The idea behind Claim
33 is not new, e.g. [10], and is included for completeness sake.

Claim 33 The one round probabilistic communication complexity (with public
random bits) of a matrix A is at most O((γ∞2 (A))2).

Proof Let x be a vector of length k and let T be a multiset with elements in
[k]. We denote by x|T the restriction of x to the coordinates indexed by the
elements of T . For example if x = (10, 1, 17, 42, 8) and T = (1, 2, 2, 5), then
x|T = (10, 1, 1, 8). The communication protocol we consider is as follows: Let
B be a real matrix satisfying γ2(B) = γ∞2 (A) and 1 ≤ bijaij for all i, j. By
Corollary 6 (and Remark 7) there are sign vectors x1, . . . , xm, y1, . . . , yn ∈ {±1}k

for some k ≥ 1 such that

bij
KGγ2(B)

≤ 1

k
〈xi, yj〉 ≤

bij
γ2(B)

. (18)

for all i, j.
Given indices i and j, the row player uses the publicly available random bits

to select at random a multiset T with elements from [k]. He sends xi|T to the
column player who then computes 〈xi|T , yj|T 〉 and outputs the sign of the result.
Next we analyze the complexity and the error probability of this protocol.

Let µ > 0 and consider two sign vectors x and y of length k, such that
| 〈x, y〉 | ≥ µk. We wish to bound the probability that for a random multiset
T of size K with elements from [k], sign(〈x, y〉) 6= sign(〈x|T , y|T 〉). Assume
w.l.o.g. that x = (1, 1, . . . , 1) and that 〈x, y〉 > 0. Denote the number of
−1s in y by Qk, where by our assumptions Q ≤ 1−µ

2 . We should bound the
probability that yT contains at least K/2 −1’s for a random multiset T of size
K. This is exactly the probability of picking more −1’s than 1’s when we sample
independently K random bits each of which is −1 (resp. 1) with probability Q
(resp. 1 −Q.) By Chernoff bound the probability of this event is at most:

e−2(1/2−Q)2K ≤ e−Kµ2/2.

Thus, to achieve a constant probability of error it is enough to takeK = O(µ−2).
By Equation (18), |〈xi, yj〉| ≥ k

KGγ2(B) , thus the complexity of our protocol (with

constant probability of error) is at most O((γ2(B))2) = O((γ∞2 (A))2).

This bound is tight up to the (second) power of γ∞2 (A). This is illustrated
by the matrix Dk that corresponds to the disjointness function on k bits, as
seen in Section 6.3.
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6 Examples

So far we have concentrated on our new method and its application in commu-
nication complexity. A major stumbling block in our progress in this field is the
paucity of specific functions whose communication complexity (in the various
models) is known. The present section serves a dual purpose. Some of the ex-
amples we discuss are intended to illustrate the usefulness of our method. Other
examples help us in comparing the relative power of the different methods in
this area.

6.1 The complexity of (the matrix of) an expanding graph

For B a real symmetric matrix, we let s1(B) ≥ s2(B) ≥ . . . ≥ 0 be its singular
values, i.e., the absolute values of its eigenvalues.

Theorem 34 Let A be the adjacency matrix of a d-regular graph on N vertices
with d ≤ N

2 . If s2(A) ≤ dα for some α < 1 then

R(A), Q∗(A) = Θ(log d),

Proof We start with the lower bound: We denote S = 2A−J , the sign matrix
corresponding to A, and let L = A − d

N J . Note that A, S, and L share the
same eigenvectors. This is because (1, 1, . . . , 1) is the first eigenvector of A, and
also an eigenvector of J . Other eigenvectors of A are orthogonal to (1, 1, . . . , 1),
and are thus in the kernel of J . Consequently, if d = λ1 ≥ λ2 ≥ . . . λN are the
eigenvalues of A, then 0, λ2, λ3, . . . , λN are the eigenvalues of L. In particular,
the first singular value of L equals s2(A).

Since γ∗2 (M) ≤ Ns1(M) for every N ×N real matrix M (see [12, Sec. 3]),
we get that

γ∗2 (L) ≤ Ns1(L) = Ns2(A) ≤ Ndα,

and thus,

γ∞2 (S) ≥ 〈S,L/γ∗2(L)〉 ≥ 1

Ndα

〈

2A− J,A− d

N
J

〉

=
2dN − 2d2

Ndα
≥ Ω(d1−α),

as claimed. The first inequality follows from Theorem 15. The corresponding
bound on the communication complexity follows from Theorems 10 and 12.

The proof of the upper bound is fairly standard and can, in fact, be achieved
by a one-sided protocol. We conveniently identify each vertex with n = log2N
dimensional binary vectors. Let u be (the vector corresponding to) the vertex
of the row player. The row player picks t random vectors v1, . . . , vt ∈ Zn

2 using
public random bits, and transmits the t inner products 〈u, v1〉 , . . . , 〈u, vt〉. Let
w be one of the d neighbors of z - the column player’s vertex. If for any i it
holds that 〈u, vi〉 6= 〈w, vi〉, then clearly u 6= w. If this is the case for each of
the d neighbors we conclude (with certainty) that u and z are not adjacent.
Otherwise we conclude that they are. This protocol can clearly err only when
they are nonadjacent and the error probability is ≤ d

2t . The claim follows.
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6.2 Fourier analysis, revisited

Associated with every boolean function f : Z
n
2 → {±1} is a sign matrix Af =

(axy) with axy = f(x ⊕ y), where ⊕ stands for the bitwise xor of the vectors.
Some of the parameters related to factorization norms can be determined for
matrices in this class, and this has several interesting implications on their
communication complexity.

The eigenvalues of Af are exactly the Fourier coefficients of f . In fact,

Lemma 35 For every function f : Z
n
2 → {±1}

‖f̂‖1 = ‖Af‖tr = γ2(Af ) = ν(Af ).

Proof It is well known, and easy to check, that the characters {χz}z∈Z
n
2

form
a complete system of eigenvectors for Af , where the eigenvalue corresponding

to χz is f̂z. Thus, the spectral decomposition of Af has the form:

Af =
∑

z

f̂zχzχ
t
z.

Since χz is a sign vector, it follows that ν(Af ) ≤∑z |f̂z| = ‖Af‖tr. But

‖B‖tr ≤ γ2(B) ≤ ν(B),

for every real matrix B. Consequently

‖f̂‖1 = ‖Af‖tr = γ2(Af ) = ν(Af ).

A corollary of Lemma 35 and Lemma 13 is

Corollary 36 Let f : Z
n
2 → {±1} satisfy ‖f̂‖1 ≥ Ω(

√
n). Then Rǫ(Af ), Q∗

ǫ (Af ) ≥
Ω(logn).

It follows that

Theorem 37 For almost all functions f : Z
n
2 → {±1}, the randomized and

quantum communication complexity of Af are Ω(logn).

Bent functions (see e.g. [19, 15]) constitute a concrete family of functions f :
Z

n
2 → {±1} for which Af has randomized/quantum communication complexity

≥ Ω(logn). We recall that f : Z
n
2 → {±1} is called a bent function if the only

values taken by f̂ are ±2−n/2. This claim follows immediately from Corollary 36.

6.3 Disjointness matrix

Many of the concrete examples analyzed in the literature on communication
complexity are symmetric functions. In particular - the disjointness function.
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Let Dk = (dxy) be a 2k × 2k matrix with rows and columns indexed by the
subsets of [k], where

dxy =

{

1 if x ∩ y 6= ∅
−1 if x ∩ y = ∅ (19)

There is a rich literature concerning the communication complexity of this
function. It is particularly interesting in the context of the present paper because
the various proof techniques mentioned here vary significantly in the bounds
they yield for the disjointness function. We now recall some of the key param-
eters of the disjointness matrix, and see what they imply for the complexity
measures at hand. The relevant references or proofs are then provided.

1. disc(Dk)−1 ≤ O(γ∞2 (Dk)) ≤ O(k).

2. For α = 3/2, 2Õ(
√

k) ≥ Q∗(Dk) ≥ γα
2 (Dk) ≥ ‖Dk‖α

tr/2
k ≥ 2Ω̃(

√
k). (Here

and below tildes indicate missing log factors).

3. o(2k/2) ≥ γ2(Dk) ≥ ‖Dk‖tr/2
k ≥

(√
5

2

)k

− 1.

It follows from properties (1-3) that γα
2 (Dk) decreases very rapidly as α

grows. In particular, this is an example where γ2 is much larger than γα
2 even

for small α, and there is an exponential gap between γ
3/2
2 and γ∞2 (equivalently,

the inverse of discrepancy). It is interesting to better understand the behavior
of γ2 as a function of α. Furthermore, the disjointness matrix is also an example
where the bound via the trace norm of Theorem 19 is exponentially better than
the discrepancy bound.

We turn to discuss the first item. The discrepancy of Dk can be estimated
by a simple explicit construction. Let Hk be the k × 2k (0, 1)-matrix with no
repeated columns, and B = 2(Ht

kHk) − J . Namely bxy = 2|x ∩ y| − 1, whence
bxydxy ≥ 1 for all x, y. Consequently,

γ∞2 (Dk) ≤ γ2(B) ≤ 2k + 1.

(For the last calculation use the fact that γ2 is a norm and that γ2(J) = 1.)
It follows that

disc(Dk)−1 ≤ O(γ∞2 (Dk)) ≤ O(k).

On the other hand it follows from [18] that for α = 3/2,

2Õ(
√

k) ≥ Q∗(Dk) ≥ ‖Dk‖α
tr/2

k ≥ 2Ω̃(
√

k).

Combining this with Theorem 12 and the discussion in Section 4.2 we get the
statement of (2) (γα

2 (Dk) falls between Q∗(Dk) and ‖Dk‖α
tr/2

k).
To estimate the trace norm of Dk and γ2(Dk) we introduce the matrix

Ek = 1
2 (Dk + J). We estimate the trace norm of Ek, and use the fact that

| ‖Dk‖tr − ‖Ek‖tr | ≤ 2k. Observe that Ek = E⊗k
1 , and that the singular

values of E1 are
√

5±1
2 . The 2k singular values of Ek consist of all the numbers
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expressible as the product of k terms, each of which is either 1+
√

5
2 or

√
5−1
2 .

Therefore, by the binomial identity ‖Ek‖tr = ‖E1‖k
tr = (

√
5)k, and

γ2(Dk) ≥ ‖Dk‖tr/2
k ≥

(√
5

2

)k

− 1.

Finally, it follows from Claim 13 and property (2) that γ2(Dk) ≤ o(2k/2), since

if it were the case that γ2(Dk) = Ω(2k/2), then by Claim 13 also γ
3/2
2 (Dk) =

Ω(2k/2) contradicting property (2).

6.4 γ2 vs. the trace norm

It is shown in [12] that γ∞2 (H) =
√
m for an m×m Hadamard matrix H . For

n = Θ(m3/2) let Z be an n×n matrix with H as a principal minor and all other
entries equal to 1. It is not hard to check that for every α ≥ 1

1 ≥ ‖Z‖tr/n ≥ ‖Z‖α
tr/n,

while
γα
2 (Z) ≥ γ∞2 (Z) ≥ O(n1/3).

So the inverse of discrepancy can be much larger than ‖ · ‖αǫ

tr . In such cases
Theorem 12 gives a bound that is significantly better than Theorem 19. Also,
combining this with the example in Section 6.3 we see that there is no general
inequality between the inverse of discrepancy and ‖ · ‖αǫ

tr and either one can be
significantly larger than the other.

7 Discussion and open problems

As we saw in Theorem 10, for every sign matrix A

Rǫ(A) ≥ Ω(log γα
2 (A)), (20)

where α = 1
1−2ǫ . For fixed ǫ, say ǫ = 1/3, can γα

2 (A) be replaced by γ2 in (20)?

Question 38 Is it true that for every sign matrix A there holds R1/3(A) ≥
Ω(log γ2(A)) ?

Claim 13 shows that the answer to Question 38 is positive for n × n matrices
with γ2 ≥ Ω(

√
n), a condition satisfied by almost all matrices. An affirmative

answer to Question 38 would yield tighter lower bounds on randomized commu-
nication complexity in several interesting specific instances. For example, for
the disjointness function (Section 6.3) there is a quadratic gap in (20) whereas
the same inequality with γ2 is tight up to a constant factor. Another interest-
ing aspect of Question 38 is that we seek general lower bounds for probabilistic
communication complexity that do not apply to quantum communication com-
plexity as well, and as shown in Section 6.3, log γ2 is not a lower bound on
quantum communication complexity.
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Also, although both γ2 and γα
2 are poly-time computable, in practice the

latter is harder to determine in cases of interest. Thus an affirmative answer
to Question 38 would facilitate the derivation of bounds on communication
complexity.

Claim 33 bounds the randomized communication complexity from above by
a power of γ∞2 . The bound is tight, as stated, but it is conceivable that much
tighter upper bounds hold, if we consider γα

2 instead. Perhaps even a power of
log(γα

2 ) suffices? This raises to following problem

Problem 39 Find the best upper bound on randomized communication com-
plexity in terms of γα

2 .

In view of Proposition 3, this problem is analogous to the log rank conjecture [16,
14], which asks whether

CC(A) ≤ (log rank(A))O(1),

for every sign matrix A, where CC stands for deterministic communication
complexity. 4 Lovász and Saks [14], proved the log rank conjecture is some
special cases.

Problem 39 raises the intriguing possibility that randomized communication
complexity and γ2 are closely related. An affirmative answer would be rather
surprising, in view of the fact that the two notions seem a priori unrelated. A
resolution of this question would presumably require some new and interesting
ideas. It is also interesting to note the relation between this question and work
by Grolmusz [5].

Our final question is this:

Problem 40 Fix a sign matrix A and consider γα
2 as a function of α. What

can be said about the behavior of such functions?

This function is, of course, decreasing and convex and some information about
the gap between γ2 = γ1

2 and γ∞2 can be found in [12]. The proof of Lemma 13
and the example in Section 6.3 also shed some light on the rate of decrease of
γα
2 as a function of α. However, very little is known in general, and even very

special cases, such as A = Dk, seem interesting and challenging.
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