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Abstract

We derive an analytical lower bound for the concurrence of tripartite quantum mixed states. A

functional relation is established relating concurrence and the generalized partial transpositions.
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As the key physical resources in quantum information processing and quantum computa-

tion [1], the quantum entangled states have been investigated with a great deal of effort in

the past years [2-14]. So far for generic mixed states only partial solutions are known on de-

tection and quantification of entanglement in an operational way. Concurrence is one of the

well defined quantitative measures of entanglement. For two-qubit case another measure,

entanglement of formation [15, 16] is a monotonically increasing function of concurrence

and an elegant formula of concurrence was derived analytically by Wootters in [4], which

plays an essential role in describing quantum phase transition in various interacting quan-

tum many-body systems [17] and may affect macroscopic properties of solids significantly

[18]. What is more, it can be experimentally measured [19].

Nevertheless, calculation of the concurrence is a formidable task for higher dimensional

case. Therefore some nice algorithms and progresses have been concentrated on possible

lower bounds of the concurrence for qubit-qudit systems [11, 12] and for bipartite systems

in arbitrary dimensions [5, 14] but involving numerical optimization over a large number of

free parameters. In [20] an analytical lower bound of concurrence for any dimensional mixed

bipartite quantum states has been presented, which is further shown to be exact for some

special classes of states and detects many bound entangled states.

Although the lower bound for entanglement of formation can be similarly investigated for

bipartite case [21], for tripartite case the entanglement of formation is not yet well defined.

In contract, the concurrence for tripartite states is well defined. In this paper we consider

the lower bound of concurrence for tripartite states, by exploring the connection between

the generalized partial transposition (GPT) criterion and concurrence.

Let HA, HB and HC be three finite dimensional Hilbert spaces associated with the sub-

systems A, B and C, with dimensions dim A = m, dim B = n and dim C = p. The

concurrence for a general pure tripartite state |ψ〉 ∈ HA ⊗HB ⊗HC is defined by

C(|ψ〉) =
√

3 − Tr(ρ2
A + ρ2

B + ρ2
C), (1)

where the reduced density matrix ρA (resp. ρB, ρC) is obtained by tracing over the subsys-

tems B and C (resp. A and C, A and B). The concurrence for a tripartite mixed state ρ is

defined by the convex roof,

C(ρ) ≡ min
{pi,|ψi〉}

∑

i

piC(|ψi〉), (2)

2



for all possible ensemble realizations ρ =
∑

i pi|ψi〉〈ψi|, where |ψi〉 ∈ HA ⊗HB ⊗HC , pi ≥ 0

and
∑

i pi = 1. For any pure product state |ψ〉, C(|ψ〉) vanishes according to the definition.

Consequently, if a state ρ is separable, then C(ρ) = 0.

To get a lower bound of (2), we relate directly the concurrence to the generalized partial

transposition separability criterion. We first recall some notations used in various matrix

operations [9, 22, 23].

A generic matrix M can be always written as M =
∑

i,j

aij 〈j| ⊗ |i〉, where |i〉 , |j〉 are

vectors of a suitably selected normalized real orthogonal basis. We define the operations Tr

(resp. Tc) to be the row transposition (resp. column transposition) of M which transposes

the second (resp. first) vector in the above tensor product expression of M :

Tr(M) =
∑

i,j

aij 〈j| ⊗ 〈i| , Tc(M) =
∑

i,j

aij |j〉 ⊗ |i〉 . (3)

It is easily verified that TcTr(M) = TrTc(M) = M t, where t denotes matrix transposition.

We further define Trk
(resp. Tck

) (k = A,B,C,AB, BC, AC) to be the row (resp. column)

transpositions with respect to the subsystems k. Set T{x1,x2,...} ≡ Tx1
Tx2

... for x1, x2 ⊂
Γ ≡ {rA, cA, rB, cB, rC , cC , rAB, rAC , rBC , cAB, cAC , cBC}. We consider the generalized partial

transposition operations on a tripartite density matrix given by TY , where TY stands for all

partial transpositions contained in Y which is a subset of Γ. The GPT criterion says that

if a tripartite m× n× p density matrix is separable, then the trace norm ||ρTY || ≤ 1, where

ρTY = TY(ρ), for instance ρT{cA,rB,rC} ≡ T{cA}T{rB}T{rC}(ρ) and so on. In the following we

discuss three classes of Y :

I: Yi = {ck, rk}, where i = 1, 2, 3 for k = A,B,C respectively;

II: Y4 = {cA, rBC}, Y5 = {cAB, rC}, Y6 = {cAC , rB};
III: Y7 = {cA, rB}, Y8 = {cA, rC}, Y9 = {cB, rC}.
It is verified that ρTYi = ρTk , where k = A,B,C with respect to i = 1, 2, 3, Tk stands

for partial transposition with respect to the subsystem k. Hence the operations in class I

correspond to the partial transpositions of ρ. While the operations in class III correspond

to the realignments of a tripartite state ρ [9, 10].

We first study the relation between GPT and the concurrence for three qubits (m =

n = p = 2). A three-qubit state |Ψ〉 can be written in terms of the generalized Schmidt
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decomposition [24],

|Ψ〉 = λ0|000〉 + λ1e
iψ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (4)

with normalization condition λi ≥ 0, 0 ≤ ψ ≤ π, where
∑

i µi = 1, µi ≡ λ2
i .

Defining ∆ ≡ |λ1λ4e
iψ − λ2λ3|2, we have, for ρ = |Ψ〉〈Ψ|

Trρ2
A = 1 − 2µ0(1 − µ0 − µ1),

T rρ2
B = 1 − 2µ0(1 − µ0 − µ1 − µ2) − 2∆,

T rρ2
C = 1 − 2µ0(1 − µ0 − µ1 − µ3) − 2∆.

Therefore

C2(ρ) = 2µ0(3 − 3µ0 − 3µ1 − µ2 − µ3) + 4∆, (5)

which varies smoothly from 0, for pure product states, to 3
2

for maximally entangled pure

states.

On the other hand, we have

ρTY1 =







































µ0 0 0 0 λ0λ1e
iψ 0 0 0

0 0 0 0 λ0λ2 0 0 0

0 0 0 0 λ0λ3 0 0 0

0 0 0 0 λ0λ4 0 0 0

λ0λ1e
−iψ λ0λ2 λ0λ3 λ0λ4 µ1 λ2λ1e

iψ λ3λ1e
iψ λ4λ1e

iψ

0 0 0 0 λ1λ2e
−iψ µ2 λ2λ3 λ2λ4

0 0 0 0 λ3λ1e
−iψ λ3λ2 µ3 λ3λ4

0 0 0 0 λ4λ1e
−iψ λ4λ2 λ4λ3 µ4







































.

As ρTY1 = ρTY1

†
, the square root of the eigenvalues of ρTY1ρTY1

†
is the absolute value of

the eigenvalues of ρTY1 : {0, 0, 0, 0,±
√

µ0(µ2 + µ3 + µ4),
1
2
(1 ±

√

1 − 4µ0(µ2 + µ3 + µ4))}.
Therefore the norm of ρTY1 is given by

||ρTY1 || = 1 + 2
√

µ0(µ2 + µ3 + µ4). (6)

Similarly we have

||ρTY2 || = 1 + 2
√

∆ + µ0(µ3 + µ4), (7)

||ρTY3 || = 1 + 2
√

∆ + µ0(µ2 + µ4). (8)
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A lower bound for the concurrence of three-qubit states is given by the following theorem.

[Theorem 1]. For any three-qubit mixed quantum state ρ, the concurrence C(ρ) satisfies

C(ρ) ≥ max

{

‖ρTYi‖ − 1,
1√
2
(‖ρTYj ‖ − 1)

}

, (9)

where i = 1, 2, 3, j = 4, 5, 6.

[Proof]. Let us assume that one has already found an optimal decomposition
∑

i piρ
i

for ρ to achieve the infimum of C(ρ), where ρi are pure state density matrices. Then

C(ρ) =
∑

i piC(ρi) by definition. Noticing that ‖ρTYj ‖ ≤ ∑

i pi‖(ρi)TYj ‖, for all possible j,

due to the convex property of the trace norm, one only needs to show C(ρi) ≥ (‖(ρi)TYj ‖−1)

for j = 1, 2, 3 and C(ρi) ≥ 1√
2
(‖(ρi)TYj ‖ − 1), for j = 4, 5, 6.

For a pure state ρi, from Eqs. (5) , (6), (7) and (8), we have

C2(ρi) − (‖(ρi)TY1‖ − 1)2 = 2µ0µ4 + 4∆ ≥ 0,

C2(ρi) − (‖(ρi)TY2‖ − 1)2 = 4µ0µ2 + 2µ0µ4 ≥ 0

and

C2(ρi) − (‖(ρi)TY3‖ − 1)2 = 4µ0µ3 + 2µ0µ4 ≥ 0.

That is C(ρi) ≥ (‖(ρi)TYj ‖ − 1) for j = 1, 2, 3.

For a pure state ρi, we consider it as a 2⊗ 4, or 4⊗ 2 bipartite state, respectively. From

the results for bipartite systems [20], we have

1 − Tr((ρi
A)2) ≥ 1

2
(||(ρi)T{cA,rBC}|| − 1)2,

1 − Tr((ρi
B)2) ≥ 1

2
(||(ρi)T{cAC,rB}|| − 1)2,

1 − Tr((ρi
C)2) ≥ 1

2
(||(ρi)T{cAB,rC}|| − 1)2.

Therefore

C(ρi) =
√

3 − Tr((ρi
A)2) − Tr((ρi

B)2) − Tr((ρi
C)2) ≥

1√
2
max

{

(||(ρi)T{cA,rBC}|| − 1), (||(ρi)T{cAC,rB}|| − 1), (||(ρi)T{cAB,rC}|| − 1)
}

,

(10)

i.e.

C(ρi) ≥ 1√
2
max

{

||(ρi)TYj || − 1
}

, j = 4, 5, 6,

which ends the proof. ¤
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As an example, let us consider the Dür-Cirac -Tarrach states [25]:

ρ =
∑

σ=±
λσ

0 |Ψσ
0〉〈Ψσ

0 | +
3

∑

j=1

λj(|Ψ+
j 〉〈Ψ+

j | + |Ψ−
j 〉〈Ψ−

j |), (11)

where the orthonormal GHZ-basis

|Ψ±
j 〉 ≡

1√
2
(|j〉AB|0〉C ± |(3 − j)〉AB|1〉C),

|j〉AB ≡ |j1〉A|j2〉B with j = j1j2 in binary notation. For example, |Ψ±
0 〉 ≡ 1√

2
(|000〉 ± |111〉)

is the standard GHZ states.

A direct calculation gives rise to ||ρTY1 || = 4
3
, ||ρTY2 || = ||ρTY3 || = 1, and ||ρTYj || = 0.8727

for j = 4, 5, 6. Therefore, C(ρ) ≥ 1
3

according to theorem 1 for λ+
0 = 1

3
; λ1 = λ3 = 1

6
; λ−

0 =

λ2 = 0. This shows that the state is entangled, which is also a conclusion implied by [25, 26].

We have obtained lower bounds of the concurrence in terms of the generalized partial

transposition. Similar to the bipartite case, it is also possible to find lower bounds of the

concurrence in terms of the realignment operations, described in class III, which correspond

to the realignments of the density matrix ρ on A,B; A,C and B, C subsystems, while

leaving the remaining C; B and A subsystems unchanged. For instance, with respect to the

operation Y7, ρT{cA,rB} implies ρ
T{cA,rB}

ijm,kln = ρikm,jln, where the indices i(k, m) and j(l, n) are

viewed as the row and column indices for the subsystem A(B, C) respectively.

Let us consider a special-type of three-qubit states by setting λi = 0, i = 1, 2, 3 in (4),

|Φ〉 = λ0|000〉 + λ4|111〉 (12)

with normalization condition λ0, λ4 ≥ 0, λ2
0 + λ2

4 = 1. We get, for ρ0 = |Φ〉〈Φ|,

ρ
T{cA,rB}

0 = λ2
0|000〉〈000| + λ0λ4|010〉〈011| + λ0λ4|101〉〈100| + λ2

4|111〉〈111|.

Hence the sum of its singular values is ||ρT{cA,rB}

0 || = 1 + 2λ0λ4. Similarly, we have

||ρT{cA,rC}

0 || = ||ρT{cB,rC}

0 || = 1 + 2λ0λ4.

From Eqs. (5), (6), (7) , (8) and direct calculations we have at last C(ρ0) =
√

6µ0µ4,

||ρTYj

0 || = 2λ0λ4 + 1, j = 1, ..., 9. By using the procedure in proving Theorem 1, we arrive

at:

[Corollary]. For any three-qubit mixed state with decomposition ρ =
∑

i pi|Ψi〉〈Ψi|, if |Ψi〉
can be written in the form (12) for any i, then the concurrence C(ρ) satisfies

C(ρ) ≥ max{||ρTYj ||} − 1, j = 1, ..., 9. (13)
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We remark that once a density matrix has a decomposition with all the pure states

of the form (12), then its all other possible decompositions will also have the form (12),

since other decompositions can be obtained from the unitarily linear combinations of this

decomposition, and any linear combinations of the type (12) still have the form (12).

Although for general three-qubit states we do not have an analytical relation between

concurrence and the realignment operations (Class III), the numerical computations imply

that C(ρ) ≥ max{||ρTYj ||} − 1, j = 7, 8, 9, is still valid. We chose 106 random vectors

(λ0, λ1, λ2, λ3, λ4, ψ) for state (4), calculated C(ρ) and ||ρTYj || − 1, j = 7, 8, 9. All results

agree with the inequality in Corollary. From the proof of Theorem 1, it implies that the

inequality would be also correct for mixed states.

Generalizing the results of Theorem 1 to arbitrary dimensional tripartite quantum states,

we have the following lower bounds:

[Theorem 2]. For any m ⊗ n ⊗ p (m ≤ n, p) tripartite mixed quantum state ρ, the

concurrence C(ρ) satisfies

C(ρ) ≥ max

{√

1

m(m − 1)
(||ρTYa || − 1),

√

1

q(q − 1)
(||ρTYb || − 1),

√

1

r(r − 1)
(||ρTYc || − 1)

}

,

(14)

where q = min(n,mp) and r = min(p,mn), Ya = Y1 or Y4, Yb = Y2 or Y6, Yc = Y3 or Y5.

[Proof]. Let us assume that one has already found an optimal decomposition
∑

i piρ
i for

ρ to achieve the infimum of C(ρ), where ρi are pure state density matrices. Then C(ρ) =
∑

i piC(ρi) by definition. Noticing that ||ρTYk || ≤ ∑

i pi||(ρi)TYk ||, k = a, b, c, due to the

convex property of the trace norm, one only needs to show C(ρi) ≥
√

1
j(j−1)

(||(ρi)TYk || − 1),

where j = m, q, r for k = a, b, c, respectively. For a pure state ρi, we consider it as a

m ⊗ np, n ⊗ mp or mn ⊗ p bipartite state, respectively. From the result of [20], we obtain

1 − Tr((ρi
A)2) ≥ 1

m(m − 1)
(||(ρi)TYa || − 1)2,

1 − Tr((ρi
B)2) ≥ 1

q(q − 1)
(||(ρi)TYb || − 1)2,

1 − Tr((ρi
C)2) ≥ 1

r(r − 1)
(||(ρi)TYc || − 1)2.
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Therefore from the definition of C(ρi),

√

3 − Tr((ρi
A)2) − Tr((ρi

B)2) − Tr((ρi
C)2) ≥

max

{√

1

m(m − 1)
(||ρTYa || − 1),

√

1

q(q − 1)
(||ρTYb || − 1),

√

1

r(r − 1)
(||ρTYc || − 1)

}

.

(15)

¤

In summary, by making a novel connection with the generalized partial transpositions,

we have provided an entirely analytical formula for lower bound of concurrence for tripartite

systems. One only needs to calculate the trace norm of certain matrices, which avoids

complicated optimization procedure over a large number of free parameters in numerical

approaches. The results could be used to indicate possible quantum phase transitions in

condensed matter systems, and to analyze finite size or scaling behavior of entanglement in

various interacting quantum many-body systems. In principle one can similarly investigate

the lower bound for general multipartite quantum systems. However as the generalized

Schmidt decomposition of multipartite pure states becomes more complicated when the

number of subsystems increases, the problem would be more sophisticated.
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[14] F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett. 92, 167902 (2004);

F. Mintert, Ph.D. thesis, Measures and dynamics of entangled states, Munich University,

Munich, 2004.

[15] C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, Phys. Rev. A 54, 3824

(1996).

[16] M. Horodecki, Quant. Inf. Comp. 1, 3 (2001);

D. Bruß, J. Math. Phys. 43, 4237 (2002);

M.B. Plenio and S. Virmani, quant-ph/0504163.

[17] A. Osterloh et al., Nature 416, 608 (2002);

L.-A. Wu, M.S. Sarandy, and D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004).

[18] S. Ghosh, T.F. Rosenbaum, G. Aeppli, S.N. Coppersmith, Nature 425, 48 (2003);

V. Vedral, Nature 425, 28 (2003).

[19] S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich, F. Mintert and A. Buchleitner, Nature 440,

1022 (2006).

[20] K. Chen, S. Albeverio, and S. M. Fei, Phys. Rev. Lett. 95, 040504 (2005).

[21] K. Chen, S. Albeverio, and S. M. Fei, Phys. Rev. Lett. 95, 210501 (2005).

[22] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.

[23] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New

York, 1991.

9



[24] A. Acin, A. Andrianov, L. Costa, E. Jane, J.I. Latorre, R. Tarrach, Phys. Rev. Lett. 85, 1560

(2000).

[25] W. Dür, J. I. Cirac, and R. Tarrach, Phys. Rev. Lett. 83, 3562 (1999).

[26] C. S. Yu, and H. S. Song, Phys. Rev. A, 72, 022333 (2005).

10


