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TO THE NA VIER-STOKES EQUATIONS 
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ToRan 

INTRODUCTION 

We study the asymptotic behavior of solutions to the Navier-Stokes equations 
in two and three space dimensions 

(1.1 ) 
u( + u'\7u + '\7p = ~u, 

divu = O. 

Our earlier work [4, 5] dealt with the upper bounas on the L 2 decay rates of 
solutions to the Navier-Stokes equations in three space dimensions with large 
data. It was established that if Uo E L 2 n LP , 1 ~ p < 2, then 

lu(" t)li2 ~ C(l + t)-Ct(p) , 

where a(p) = i(2/p - 1) and the constant C depends on the L2 and L P 

norms of the initial data uo' 
This paper deals with the more subtle problem of deriving lower bounds 

on the energy decay rates. We show that for a certain class of initial data the 
solutions u(x, t) to the 2D and 3D Navier-Stokes equations admit an algebraic 
lower bound on the energy decay. Specifically, there are two cases to consider. 
In the first case, the average of the initial data J Uo d x is nonzero. This case 
was treated in the earlier paper [5] where it was established that 

(1.2) lu(" t)li2 2: C(l + t)-nI2 

for n = 2, 3. In the second case the average is zero, i.e., the Fourier transform 
at the origin is zero. Here the lower bound on the velocity of decay rate depends 
on the order of the zero of the initial data. More precisely, if the zero is of order 
one and the data Uo E LI nHI and certain weighted L P spaces described below 
then there is a lower bound of the form 
(1.3) lu(" t)li2 2: C(1 + t)-Ct(n) , 
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424 M. E. SCHONBEK 

where a(n) = nl2 + 1 and C depends on a few parameters of the data. If 
the zero is of order greater than one and the data is taken outside a set M of 
radially equidistributed energy, then in two dimensions the lower bound will 
be described by (1.3). The lower bound obtained in 2D is uniform, the one in 
3D is not. The estimate in two dimensions is sharp. An example suggested by 
A. Majda shows that there are solutions to the Navier-Stokes equations with 
data in M that decay exponentially. 

The algebraic lower bound is a consequence of the nonlinear structure of the 
equations. In contrast, solutions to the heat equation decay at an exponential 
rate if the initial data is highly oscillatory. The inertial term div(u ® u) in 
the Navier-Stokes equations appears to convert short waves into long waves, 
reducing the decay rate. Even for most cases of highly oscillatory initial data 
(i.e., containing just short waves), energy will be transmitted to the lower end 
of the scale, thereby producing long waves that reduce the decay rate of the 
solutions. 

Our approach in the case of zero average data is first to find conditions for 
the data such that the corresponding solution to the heat equation decays at 
a very slow rate. These conditions will be met by the solution u(x, t) of the 
Navier-Stokes at some time to ~ O. That is, short waves are transformed into 
long waves. Hence the solution to the heat equation, which takes on as initial 
data u(x, to) for some appropriate to·~ 0, has a lower bound on their rate 
of decay. Specifically, if v is a solution of v t = dV, v(x, 0) = u(x, to) then 
Iv(" t)I~2 ~ (1 + t)-a(n). 

This information is used to insure that the solutions to the Navier-Stokes 
equations cannot decay any faster. The result follows using Fourier analysis of 
the Navier-Stokes equations. The argument relies on a technique that involves 
splitting the frequency space into two time-dependent sets. This technique was 
developed in [4] to study the upper bound. 

For solutions in two spatial dimensions, the results are valid for classical 
solutions. For three dimensions, the results are valid for suitable Leray-Hopf 
solutions in the sense of Caffarelli, Kohn, and Nirenberg [1]. We expect that the 
results can be extended to n dimensions, n > 3 , using the results of Wiegner 
[6], Kayikiya and Miyakawa [2]. 

2. ESTIMATES ON SOLUTIONS TO THE HEAT EQUATIONS 

In this section we describe a class of initial data D, for which the solutions to 
the heat equations admit a lower bound on the L 2 decay rate. In §3, it is shown 
that if u(x, t) is a solution to the Navier-Stokes in two spatial dimensions 
with data outside a set M of radially equidistributed energy, then there is 
to ~ 0 for which u(x, to) ED. Hence if u(x, to) is taken as initial data, 
the corresponding solution to the heat equation will have a lower bound on the 
L 2 decay. This information will be used to obtain a lower bound on the L 2 

rate of decay for solutions to the Navier-Stokes equations. For data in M, 
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SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 425 

an example is given in §5 of a solution to the 2D Navier-Stokes equation that 
decays exponentially fast. 

The section concludes with a lemma establishing an upper bound on the L 00 

rate of decay for the gradient of the solutions to the heat equation for solutions 
that decay in L 2 at a given rate. 

Theorem 2.1. Let Vo E L2(Rn). Let v be a solution to the heat equation with 
data vo. Suppose that there exist functions I and h such that the Fourier 
transform of Vo for lei ::; ~, ~ > 0, admits the representation 

where I and h satisfy the following conditions: 
(i) Ih(e)l::; Molel2 for some Mo > 0; 

(ii) I is homogeneous of degree zero; and 
(iii) 0:1 = ~WI=I 10) ./(0))12 dO) > o. 

Let MI = SUPlyl=1 I/(y)l, M2 = sUPo/2~IYI~1 IV/(y)l, K = max(Mo' M1, M2)· 
Then there exist constants Co and C1 such that 

Co(t + 1)-(n/2+1) ::; Iv(., t)I~2 ::; C1 (t + 1)-(n/2+1) , 

where Co and C1 both depend on n, Mo, M 1, ~, and IVoIL2 and Co also 
depends on K and 0:. 

Proof. Note first that condition (iii) is not necessary for the upper bound 
Iv(., t)li2. 

Upper bound. By Plancharel's theorem 

{ Ivl2 dx = { 1'1112 de = { Ivie -21C:12t de. 
JR" JR" JR" 

Let A = {e : lei ::; ~}. Then 

{ Ivl2 dx = {lvie-21 C:1 2/ de + { Ivie- 21 C: 12 t de JR" JA JAc ::; i Ivie-21 C: 12 t de + e-02/lvol~2. 
(2.1 ) 

To estimate the integral on the right-hand side, use the representation of Vo in 
terms of I and h. 
(2.2) i Ivie- 21C: 12 t de = i Ie ./(e)12e-21C:12/ de + 2Re (i e ./(e)"Ii"(e)e-21C: 12 t de) 

+ i Ih(e)12e-21C:12t de 

::; 2 i Ie ./(e)12e-21 C:12/ de + Mg i leI 4e-21 C:12t de. 
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426 M. E. SCHONBEK 

Recall that I(~) is homogeneous of degree zero. Combine (2.1) and (2.2) and 
make the change of variables y = ..,fIi~ . Then 
(2.3) 
r Ivl 2 dx ~ 2(2t)-n/2+1 r Iy ./(Y)12e-i dy + Mo(2t)-n/2-2 r lyl4e-i dy, JR" JA JA(t) 

where A(t) = {y : Iyl ~ J..,fIi}. Since MI = SUPlyl=l/(y) and I is homogeneous 
of degree zero, 

2 2 2 Iy ·/(y)1 ~ Iyl M) . 
Hence from (2.3) r Ivl 2 dx ~ C/(2t)n/2+1 , 

JR" 
where C depends on Mo' M) , J , and n. Recall that 

hence 

r Ivl 2 dx ~ IVol~2; JR' 

r Ivl 2 dx ~ C1 (t + 1)-(n/2+1) , 
JR' 

with C1 = C1 (Mo' M1, J, n, IVoIL2). 
Lower bound. Choose J1 < J such that 4MoM1JI ~ 0: 1 , and let Al = 

{~ : I~I ~ Jj}. Then 

llvl2dX~ llvie-21<!12td~~ 1 (1~·/(~)12_2MoMII~13)e-21<!12td~ 
R' Al Al 

For t < J;2 we have 

r Iv 12 dx = r Ivi e -21<!12t d~ ~ r Ivi e -21<!12<51-
2 d~ 

JR' JR" JR' 
~ (1 + t) -(n/2+1) r Ivi e _21<!1 2<51- 2 d~ . 

JR' 
The lower bound follows for 

C = . wn0:1e I' 12 -21<!1 <51- dJ: {
-I 1 2 2 } 

o mm 2(n + 2)' R" Vo e .. . 

Corollary 2.2. Let v be a solution to the heat equation with data Vo E L2(Rn) , 
where Vo has the Fourier representation described in Theorem 2.1 and I and h 
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satisfy (i), (ii). Ifin addition I satisfies 
(1) Wo ·/(wo) = 0: =I- 0 for some Wo E Sn-I and 
(2) C; ·/(C;) E CI(Rn\O) , 

then the conclusion of Theorem 2.1 holds. 

427 

Proof. It is necessary to show that (1) and (2) imply conditions of Theorem 2.1. 
Note that if Wo ·/(wo) = 0: =I- 0 for some Wo E Sn-I and C; ·/(C;) E C l (Rn\O) , it 
follows that there exists an open ball centered at wo' Br(wO) of radius r> 0, 
such that for WE Br(wO) ' w ·/(w) ~ 0:/2. Hence 

I. Iw ./(w)12 dw > ( Iw ./(w)12 dw ~ 0:/2L > 0, 
Iwl=1 J SnBr(wO) 

where L = fSnBr(Wo) dw and S = {w : Iwl = 1} . 

The next lemma establishes an upper bound on L 00 rate of decay for gradient 
of solutions to the heat equation which decay at a given rate in L 2 • 

Lemma2.3. Let v(x, t) beasolutiontotheheatequation. Suppose Iv(·, t)I~2::; 
C(t + 1)-(n/2+1). Then 

l\7v(·, t)loo < C(t)-(n/2+1) . 
Proof. 

3. THE INITIAL DATA 

In this section a class of initial data is found for which the solutions to the 
Navier-Stokes equations admit the Fourier representation 

uk(C;, to) = C; ·lk(C;, to) + hk(C;, to) 
for some to ~ O. Here Ik and hk satisfy the conditions given in Theorem 2.1. 
Hence the solution to the heat equation started at u(x, to) has a lower bound 
for L 2 decay. 

The initial data will belong to the intersection of L I , HI , some weighted 
spaces, and the complement of a set of radially equidistributed energy. The 
condition of not having equidistributed energy is essential in two dimensions. 
Specifically, an example will be given where the data has radially equidistributed 
energy and solution decays exponentially. 

The data to be considered has Fourier transform vanishing at the origin. For 
nonvanishing data, the reader is referred to [4]. There are two cases. 

Case 1. The zero of the origin is of order one. 
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Case 2. The zero is of order greater than one. 
In case one, the data can have equidistributed energy and to is O. For case 

two, the data has to lie outside a set of equidistributed energy. 
We define the following weighted spaces and norms. 

~ = {u: hn Ixl21uldx < oo} ; 
W2 = {u: hn lul21xl dx < oo} ; 

lulw. = f Ixl21ul dx; 
I JR" 

lul w2 = (hn lul21xl dX) 1/2 

Note that if u E WI n W2 n L2 then f Ixllul dx < 00, since 

f Ixllul dx = f Ixllul dx + f Ixllul dx 
JR" J1xl-5:.1 J1xI"?.1 

:::; f (lxl 2 + lul 2) dx + f Ixl 21ul dx < 00. 
J1XI -5:.1 J1xl'?l 

V(Rn) = C;'(Rn) n {u : V· u = O}, 

H = H(Rn) = closure of V in L 2 . 

Note that the choice of the weighted spaces insures that the data has at least 
two Fourier derivatives in L 2 • 

Theorem 3.1. Let g E H n ~ n Jf2(Rn), n = 2, 3. If g has a zero of order 
one at the origin, then there exists 0 > 0 such that for I~I :::; 0 

g(~) = ~ ·/(~) + h(~) , 

since I and h satisfy the hypothesis of Theorem 2.1, with Mo = sUPlxl-5:.,s IV2 g(~)1 
and a depending only on Vg(O). 
Proof· Since g E WI n W2 ' 

I {)~; g(~)1 :::; ! Ixllgl dx :::; C, 

I {)~~:~j g(~)1 :::;.hn Ix;llxjllgl dx :::; hn Ixl21g1 dx :::; C. 

Since g(O) = 0 for I~I :::; 0, 0 > 0, 

g(~) = Vg(O) . ~ + vzg(e)~2 . 
Since Vg(O) =F 0 by hypothesis, to finish the proof let 

I(~) = Vg(O) , h(~) = Vg(~)~2 . 
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Here Mo = sUPlxl~61V2g(~)1 and Wo E Sn-I is chosen so that wo· ~ f. o. 
The following notation will be used. 

o{ (to' u) = foto Ln lul-Iu/ dx dt, pf (to' u) = foto Ln uiuj dx dt, 

A{(Rn) = {u: Ln lul dx = Ln lu/ dX} , 

Bf = Bf (Rn) = { u : Ln uiu j dx = o} . 
The two-dimensional case is considered first. For sake of notation, let M = 

2 2 
AlnB I · 

Theorem 3.2. Let g E HI n H n Jf2 n Ar (R2). Let u(x, t) be a solution to the 
Navier-Stokes equations with data g. If g has zero of order greater than one, 
then there exist to and t5 > 0 such that for I~I ~ t5 

Uk(~' to) = ~ ·lk(~' to) + hk(~' to)' 

where to = to(lglHI , Igl w ) and lk(·' to) and hk(·, to) satisfy 
2 

(i) Ihk(~)1 ~ Mol~12 ; 
(ii) lk is homogeneous of degree zero; 
(iii) Wo ·lk(wo) = 0 f. 0 for some Wo E Sn-I and at least one component 

lk; and 
(iv) ~ ·lk(~) E CI(Rn\(O)). 
The constant Mo depends only on IgI L2, Igl w ' and t5. The constant 0 is a 

2 

multiple of 07(to' g). 
Proof. Take the Fourier transform of the Navier-Stokes equations 

2 - - -ut + I~I U = -uVu - Vp = -H, 
u(~ , 0) = g(~). 

Hence 

(3.1) Uk(~' t) = gk(~)e-I';12t - fot fik(~' s)e- I';1 2(t-s) ds. 

W.1.o.g. choose k = 1 . Recall that 

so that 
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430 M. E. SCHONBEK 

Let aij = «;iij' Then 

(3.2) HI (e, s) = - i (2: eiail - ei/lel 2 2: eiej aij ) 
2 

= - i(el(l-e:/leI2)all -e2(1- 2e:/leI2)aI2 - eleia22)' 
lei 

Note that 1 - e~ IIel2 = e;/leI2 ; hence 
~ . 2 2 2 2 

(3.3) HI (e, s) = -le· (e2/1el (all - a22 ) , (1 - 2el Ilel )aI2 )· 

Proposition A.l (see Appendix) establishes that for lei:::; c5 

IVeaiie, t)1 :::; c(t) , 

where C(t) denotes constant in e that depends on IgIL 2, Igl w ' c5 , and t. 
2 o Let aij = aij(O, t) . Thus aij can be represented as 

0--
(3.4) aij = aij + e· Veaij(e), 0:::; e :::; e. 
By (3.3) 

~ . 2200 2 20 ~ 

(3.5) HI (e , s) = - 1e . [(e2/1el )(a ll - a22 ) , (1 - 2el Ilel )a12 + hi (e, s)] 
. 0 ~ 

= 1e(HI (e, s) + hi (e, s)), 

and by (3.3) and (3.4) 

From (3.1) and (3.5) 

where 

Since 

e -leI 2(t-s) - 1 = O(leI2) ; 
~ 2 

Ie· hi (s)1 :::; Mlel form lei:::; c5, M depending on C(t); 

g(e) = O(le1 2) , 

it follows that Ihl (e, t)1 :::; Molel2, Mo depending only IgI L2, c5 , and t. Let 

12 (.t 2 20 0 t 2 20 ) 'I (e, t) = (/1 ' 'I) = -110 (e2/1el )(all - a22 ) ds, 10 (1 - 2el Ilel )a12 ds . 
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We first show that for some to > 0 and some Wo E S2, Wo ./1 (Wo , to) =f O. If 
uo ~ Ai choose Wo = (1, 1)/v'2; then 

(3.7) wo·/l(wo' to) = to ( ulu2 dxdyds. 10 1R2 
By Lemmas A.2 and A.3 of the appendix since g E if there exists to = 
to(lgI L 2, Iglw ' a) such that RHS of (3.6) and (3.7) are not zero. Hence 

2 

Wo . II (wo' to) =f 0 . 
Conditions (i), (ii), and (iv) are trivially satisfied for II (C; , to) and hi (C; , to) . 

Theorem 3.3. Let g E H n W2(R3). Let u(x, t) be a suitable Leray-Hopf 
solution in the sense of Caffarelli, Kohn, and Nirenberg with data g. Let g 
have a zero at the origin of order greater than one. If there exists to such that 

a1 (to' 3) = folD k31Uil2 -Iu/ dx dt =f 0, i,j=1,2,3 

or 
i =f j, 

where Ik(c;, to) and hk(c;, to) satisfy the same conditions as in Theorem 3.2. 
Proof. Recall that a weak solution with data g satisfies 
(3.8) 

(u(t), ¢(t)) - fot { \ u(s) :s ¢(s)) + (V'u(s), V'¢.(s)) 

+ ((u(s)· V')u(s), ¢(s)) } ds - (g, ¢(O)) = 0 

for all smooth vectors ¢ with compact support and div ¢ = O. Following 
Wiegner's argument [6], we choose ¢ to be the solution to the heat equation 
with data ¢o E C;' (R3) and div ¢o = O. This ¢ is smooth and bounded in 
L 00 and (3.8) holds for ¢ by approximation. Let to > 0 be fixed and t* > to' 
For 0 :::; s :::; t let 

¢(s) = F- I (F( ¢o) exp( -1c;1 2 , t* - s)) , 
which is the solution to the homogeneous heat system with data ¢o at time 
t* - s. It is easy to show that for such a choice of ¢, (3.8) yields 
(3.9) 

il, (e , to) = ~(dj, - e'~j )Iel-' (Kje -III", - 10" (;;(s).~;;;(s)e -,'U,-') dS) . 
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For more details we refer the reader to [6]. By hypothesis 
A A -- 2 - 2 -
g/~) = gj(O) + V g/O) . ~ + V gj(~)(~'~) = V g/~)(~,~). 

Hence we only have to consider the terms in 

3 Io~ 2 L(c5k . - ~k~ ·)1~1-2 UVu .(s)e-1C;1 (lo-s) ds. 
J J 0 J j=i 

By Note A.4 (see Appendix) the last expression can be rewritten as 

3 (IO 3 
(3.10) -i L(c5kj - ~k~)I~r2 10 L ~ja~/s) ds + h(~), 

j=i 0 j ,j=i 

where Ih(~)1 :::; KI~12 with K depending only on the L2, W2 norms of the 
data, and to. The vector function lk = (Ii, l~, l~) can be chosen so that the 
components have the form 

3 I 3 I! = -i L(c5kj - (~k~j))I~I-21o 0 L a~j(s) ds. 
j=i 0 j ,j=i 

From (3.9) and (3.10) it follows that 

Uk(~' to) = ~ ·lk(~' to) + hk(~' to) 

with Ihk(~' to)1 :::; Kol~12, and Ko depends only on sUPIc;I~t5I~(~)I, the 
L 2 ,Lw. norms of g and to. Conditions (i), (ii), and (iv) of Theorem 3.2 

2 

follow trivially. To establish (iii) choose Wo = (ljV2)(e j + e) if a{ =f. 0 with 
ej the ith element of the canonical basis of R3 . If pI =f. 0 

let Wo = ej if j =f. k or Wo = ej if i =f. k. 

4. THE KEY THEOREM 

The decay rates for L 2 norms of solutions to the heat equation are compared 
to the decay rates of L 2 norms of solutions to the Navier-Stokes equations. It 
is shown that if the upper bounds and lower bounds of decay rates of solutions 
to the heat equation are of order (t + 1)-(n/4+i/2) , then the same rates are valid 
for solutions to the Navier-Stokes equations starting with the same data. 

A formal argument is given for solutions in n dimensions, n ~ 2. The proof 
is rigorous for n = 2. For n = 3, the rigorous results are less strong, since 
they are obtained only under the supposition of the existence of a sequence 
of approximate solutions (such as those constructed by Caffarelli, Kohn, and 
Nirenberg [1]) which converge strongly in L 2([0, 1] x R3). Passing to the limit 
a lower bound will be obtained for almost all t. We expect that the result for 
n = 3 can be improved. For n > 3 it is expected that the proof can be applied 
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to the approximate solutions constructed by Kayikiya and Miyakawa [2] and 
passing to the limit. The upper limits of the rates of decay are included for 
completeness. The bounds for n = 2 were established by Wiegner in [6]. The 
bounds for n = 3 were established in [5, 6]. 

The proof for the lower bound is based on an analysis of the Fourier trans-
form of the difference between the solutions to the heat equation and the Navier-
Stokes equations starting with the same data. The argument is by contradiction. 

Theorem 4.1. Let Uo EL I n Jf2 n H(Rn) , n = 2, 3. Let v be a solution to the 
heat equation with data uo. Suppose 

(4.1) Co(1 + t)-(n/2+1) ::::; Iv(" t)I~2 ::::; C1(1 + t)-(n/2+1). 

For n = 2 let u(·, t) be a solution to the Navier-Stokes equations with data uo. 
Then there exist constants Mo and Ml such that 

(4.2) Mo(1 + t)-(n/2+1) ::::; lu(·, t)I~2 ::::; Ml (1 + t)-(n/2+1) , 

where Mo and Ml depend on C1 , n, and the L 1 and L 2 norms of uo' and 
Mo depends also on Co and the W2 norm of Uo . 

For n = 3, the upper bound in (4.2) holds for all t and the lower bound holds 
for a.e. t, where u(x, t) is a Leray-Hopf solution in the sense of Caffarelli, 
Kohn, and Nirenberg. 

Proof· 
Upper bound. See [5, 6]. 
Lower bound. We first present a proof that is rigorous for n = 2 and formal 

for n ~ 3. We will indicate the modifications necessary to make the proof 
rigorous for n = 3. 

Outline of the proof. There are two cases to consider. Let P be a fixed 
constant, which will be defined below. For n = 2 the cases are the following. 

Case 1. Given t there exists T > t such that 

IIo T In lul-luidXdxl < pFo and IIo T In UIU2dXdsi < pFo· 
Case 2. There exists To such that for all t ~ To 

llo t In lul-Iui dXdsl ~ pFo or llo t In UIU2dXdsi ~ pFo· 
If n > 2 the two cases are slightly different. 
Case 1 * . Given t there exists T > t such that 

IIo T In IU/ -IU/dXdSI < pFo, 1::::; i, j::::; n, 

and 

l::::;i,j::::;n, ii-j. 
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Case 2* . There exists To such that for all t ~ To 

lfo t k. IU/ -Iu/ dx dsl ~ PFa for at least one pair i, j 

or 

lfo t k. uiuj dx dsl ~ P Fa for at least one pair i, j with i t= j. 
Outlines of the proofs of Cases I and 2 are given first followed by a detailed 

proof of each one. 
Outline of Case 1. In this case an increasing sequence {rm} , rm = rm(p) , 

r m - 00 as m - 00 , can be constructed such that 
(4.3) 

lfo rm k. Iul- lui dx dsl < P Fa and lfo rm k. u, u2 dx dsl < P Fa· 
Let w = v - u be the difference of the solution to the heat equation and the 
solution to the Navier-Stokes equations with the same data uo' It will be shown 
first that for t sufficiently large 

(4.4) Iw(" t)I~2 < CU + 1)-2<> + O(U + 1)-Y), 

where 0: = n/4 + 1/2, }' > 20:, and C ~ Co/4. Briefly, inequality (4.4) is 
obtained as follows. The difference w can be considered as a solution to an 
inhomogeneous heat equation 

w t = !l.w+A, 
where A = -(uVu + Vp). Using the Fourier splitting method [4, 5], it follows 
that the L 2 norm of w is bounded by three terms. Two of these terms come 
from the inhomogeneous part and decrease at a faster rate than 0:. This faster 
decay is a consequence of the terms either being cubic in (w, u) or involving 
the gradient v, which improves the decay rate. The third term is the critical 
one and has the form 

( Iw(e!, t)1 2 de! , 
is(t) 

where Set) is a ball of radius (t + I)-nI2 and as such decays like (t + 1)-nI2 • 

The hypothesis of Case 1 is used (or Case 1* if n > 2) to show that 

Iw(e! , t)1 ~ [2P Fa + C2 ( 1 + r m) -n] le!I + O(Ie!12), 
where s ~ 2 and C2 is an appropriate constant. Hence 

( Iw(e!, t)1 2de! ~ [8P2CO+ 2C2(1 +rm)-2n](t+ 1)-(nI2+') +O(t-<>), 
is(t) 

where 0: > n/2 + 1. Here C2 and C3 depend on the L2 and L' norms of 
uo' Choosing P sufficiently small and r m sufficiently large, (4.4) will yield for 
t ~ To' To = To(l uoIL2, IUolLI , n, Co' C,) 

Iw(" t)I~2 ~ Co/4(t + 1)-(nI2+') . 
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Hence the lower bound of lu(·, t)IL2 follows for t ~ To. For t ~ To the bound 
is a consequence of the decay of energy of u. 

Outline of Case 2. Here we study the difference W = U - V where U = 
u(x, t + T) with T > To for some appropriate T and V is the solution to the 
heat equation 

v; = LlV, 
V(x, 0) = u(x, T). 

By Theorems 3.2 and 2.1 and the hypothesis of Case 2 (or Case 2* if n > 2) 
the L 2 norm of V has the following upper and lower bounds: 

for some appropriate constant PI . As in Case 1, W satisfies an inhomogeneous 
heat equation. Again using the Fourier splitting method, the critical term to 
bound is 

Hypothesis of Case 2 yields 

and as in Case 1, if T sufficiently large and t > T, it will follow that 

The details of the proof are given next. We give the proof for n = 2; if n > 2 
the hypotheses are given by Cases 1* and 2* and (3.5) needs to be modified 
appropriately. 

Detailed proofs of Cases 1 and 2 follow. 
Proof of Case 1. Let {rd be an increasing sequence such that (4.3) holds. 

Let w = v - u be the difference between the solution to the heat equation and 
the solution to the Navier-Stokes. Then 

(4.5) W t = Llw - (uVu + Vp). 

Multiplying (4.5) by wand integrating in space yields, after some integration 
by parts, 

dd r IW212 dx = - r IVwl2 dx - r (u - v)uVudx - r wVpdx. 
t JR" JR" JR" JR" 

Since div w = 0, the last integral vanishes. Moreover, since div u = 0, 
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J uuVU dx = O. Hence 

dl 1 n 1 n 8 -d Iwl2 dx = 2 IVwl2 dx - 2 L Vj L -8 (uiuj)dx t R" R" R" X. j=1 i=1 I 

where K = 2n2 . Using Plancherel's theorem the last equality reads 

dd { IwI2 de::; -2 { lel21wI2 de + Klvvloo ( lul2 dx. 
t~ ~ ~ 

Let 

S(t) = {e : lei ::; C ~ 1) 1/2} . 

Splitting the frequency domain to sets S(t) and S(tt, arguments of previous 
work done in [5], yields 
(4.6) 

dd ((t + 1)4n ( Iwl2 dX) ::; (t + 1)4n-1 [4 { IwI2 de + KIVvloo ( lul 2 dX] 
t JR" J s(t) JR" 

= II + 12 , 

Consider first 12 , By Lemma 2.1 

(4.7) I2::;KClt-n/2-1(t+1)4n-1 ( lul 2dx. 
JR" 

Recall that by the results of Wiegner [6] there is a constant C depending only 
on the norms of the initial data such that 

Iwli2 ::; C(t + 1)-(n/2+1) . 

Since 
Iv li2 ::; C(t + 1)-(n/2+1) , 

it follows that if C2 = C + CI then 

(4.8) lu(" t)li2 ::; C2(t + 1)-(n/2+1) . 

Hence by (4.8) and Lemma 2.1 there is a constant M such that for t ~ 1 

(4.9) 12 ::; M(t + 1 )3n-3 , 

where MI = KCI C2 . To bound integral II the following estimates on w(e, t) 
are necessary. Taking the Fourier transform on the equations for the difference 
yields 

2 ---.- -. 
Wk,t(e, t) + lei w k = -uVuk - VkP = -Hk' k = 1,2; 

wk(e, 0) = o. 
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For sake of notation, let (J)k = (J), Hk = H. Since 

it follows that 
~ 2 
IH(~, 1)1 :::; KII~llu(., 1)IL2 

with KI = n(n + 1). Hence for 1 ~ rm , where rm will be chosen below, 

Iw(~, 1)1 :::; Iw(~, r m)le -1c!12(t- rm) + KII~I jt e -1c!12(t-S)lu(., S)I~2 ds = I + II. 
rm 

Bound for I. Hypothesis for Case 1 (Case 1 * if n > 2) is used to show that 
w(~, r m) is sufficiently small. Then r m is chosen so large that the decay of the 
energy will imply that the coefficient of II is sufficiently small. Since r m was 
chosen so that 

and 

and by (3.5) 

• 0): (~i 0 0 2~: 0) (1):12) 
H(~, s) = l .. • 1~12 (all - a22 ), 1 - 1~12 al2 + 0 ... 

(Recall that if n > 2, fj will be modified appropriately.) It follows that 

Iw(~ , r m)1 :::; form Ifj(~ , s)1 ds :::; 2P fCol~1 + 0(1~12)r m . 

Bound for II. From (4.8) 

Hence 

II :::; (t + 1)4n-1 f [I + 11]2 d~ 
1s(t) 

:::; 4n(t + 1)4n-1 [4 p2Co2 f 1~12 d~ + 4n2(1 + rm)-nC~ f 1~12 d~ 1s(t) 1s(t) 

:::; (t + 1)4n-1 ~o (t + 1)-n/2-1 + O((t + 1)(7/2)n-3) , 

+ f 0(1~14)r! d~] 
1s(t) 
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where we let p be so that 16p2 An = 1/16 with An = 2n(2n)n/2+1 /(n + 2) and 
then choose rm so that An16n2(1 + rm)-nCi :s Co/16. Integrate (4.6) over 
[1, t] and use the bounds for II and 12 to obtain 

(4.10) {Iw(x, t)1 2 dx :S (t + 1)-4n ( Iw(x, 1)1 2 dx + M(t + 1)-(n+2) JRn JRn 
+ ~o(t+ 1)-(n/2+1) + H.O.T. 

Recall that 
2 2 2 2 

Iw(x, 1)IL2 :S lu(·, 1)IL2 + Iv(·, 1)IL2 :S 21 uo1L2. 

Hence (4.10) implies 

In Iw(x, t)1 2 dx:S ~o(t + 1)-(n/2+1) + H.O.T. 

By (3.5) 

where a ~ n/2 + 2. Hence for t ~ To with To depending only on r m' IUolLI , 
luolL2, IUol w ' and Co' 

2 

In Iw(x, t)1 2 dx :S ~O (t + 1)-(n/2+1). 

Thus for t ~ To 

If t < To then 

[ t + 1 ] n/2+1 [ 1 ] n/2+1 
lu(·, t)I~2 ~ lu(" To)I~2 ~ Co/4 To + 1 t + 1 

~ ~O(To + 1)-(n/2+1)(t + 1)-(n/2+1) 

and this proves Case 1 since To depends only on luolLI, luolL2, IUolw ' n, and 
2 

Co' 
The following auxiliary computations will be needed for Case 2. 
1. Lower bound for 0: I . Recall from Theorems 2.1 and 3.2 that 

0: 1 = { IW'!I(w)1 2da, J1wl=1 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 439 

where 

Hence 

1. 2 4 (lot 0 0) 2 2 (lot ) 2 (}:I = W IW2 all -a22 ds +(1-2wI )w2 al2 ds du. 
Iwl=1 0 0 

Since by hypothesis of Case 2 for t ~ To ' 

it follows that 
2 1. 24 222 2 

(}:I ~ P CO WIW + (1- 2w l ) w2 du = P CoY. 
Iwl=1 

2. Lower bound for the solution to heat equation V(x, t) with data u(x, T I ), 

TI ~ To, To given by hypothesis of Case 2. By Theorems 2.1 and 3.2 

ul (~, TI ) = ~ ./1 (~, TI ) + hI (~, TI ) 

and JV(x, t)IL2 satisfies for t ~ t51 , t51 = (t5(TI»-1 (where 4t5MoMI ~ (}:I)' 

JV(', t)I~2 ~ Xo(t+ 1)-(n/2+1), 

where Xo = (}:Iwne-I /2(n + 2). By the computations for (}:I it follows that 
2 -I . 

Xo ~ P Coywne /2(n + 2) = XI . 

Hence for t ~ t5 = t51(TI ) 

(4.11) JV(', t)I~2 ~ XI(t+ 1)-(n/2+1), 

and X I is independent of TI . 
Proof of Case 2. Let V be the solution to the heat equation with data 

V(x, 0) = u(x, TI ), for TI satisfying 
(i) TI > To, To given by hypothesis of Case 2; 

(ii) 4n2C2(1 + TI)-n:::; XIA~I/8, 
where X I is given by the auxiliary computations 1. The constant C is such 
that lu(" t)li2 :::; C(t + 1)-(n/2+1) and An = 2n(2n)n/2+1/(n + 2). Thus by 
Theorems 2.1 and 3.2 it follows that for t ~ t51 = t5(TI )-1 

(4.12) XI(t+ 1)-(n/2+1):::; JV(', t)I~2:::; Ko(t+ 1)-(n/2+1), 
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. 2 
where Ko depends on the L norm of Uo and X I depends on p and Co' 
Note that X I is independent of TI ' but if TI tends to infinity then the lower 
bound of (4.12) is only valid for t ~ 01 = O(T)-I and O(TI)-I tends to infinity 
as TI tends to infinity. Let 

U(X, t) = u(x, t+ TI ). 

We study the difference W = V - U . Here the hypothesis of Case 2 (Case 2* if 
n > 2) together with the decay of energy of the solutions to Navier-Stokes will 
imply that IW(., t)I~2 :::; C(t + 1)-(n/2+1) with C sufficiently small. As in Case 
1, W satisfies an inhomogeneous heat equation. The Fourier splitting method 
will yield 
( 4.13) 

dd [(t+l)4n r IWI2 dX] :::;(t+l)4n-1 r IW12de+ K IV'vloo r lul 2dx. 
t JR" J s(t) JR" 

The second term can be bounded as in Case 1 for t ~ 1 

(4.14) KIV'Vloo r IUI2 dx :::; M(t + 1)3(n-I). 
JR" 

To bound the first term note that the Fourier transform of the equation for W 
yields 

w + lel2W = -UV'U - V'p = ii, 
~ 2 

where P(x, t) = p(x, t + TI ). As Before IH(e, t)1 :::; KlleIIU(" t)IL2; hence 

IW(e, t)1 :::; lot lii(e, s)1 ds:::; Kllel lot IU(x, S)I~2 ds 

lo t 2 !t+TI 2 = Kllel lu(x, s + TI )IL2 ds = Kllel lu(x, S)IL2 ds 
o ~ . 

:::; CKllel ~+TI [1 ~ s] n/2+1 ds :::; 2nClei [1 ~ TI ] n/2 

( 1 ) n/2 
= 2nClei 1 + TI 

Hence the first term in (4.13) can be bounded as follows: 

(t + 1)4n-1 r IWl 2 de:::; 4n2C2(1 + TI)-n(t + 1)4n-1 r lel 2 de h(n h(n 
:::; ~I (t + 1) 7/2n-2 . 

The last inequality follows by the choice of TI made at the beginning of Case 
2. Combining this last bound with (4.13) and (4.14) yields 

~ [(t + 1)4n { IWI2 dX] ::; XI (t + 1)7/2n-2 + M(t + 1)3(n-l) . 
dt Jr 8 
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Integrating over '[C>I ' t] gives 

r IWI2 dx ~ XSI (t + 1)-n/2-1 + M(t + 1)-n-2 + r IW(x, C>1)1 2 dx(t + 1)-2n. JRn JR" 
Note that 

r IW(x, C>1)1 2 dx ~ r W(x, 0)1 2 dx + r IU(x, 0)1 2 dx JR" JR" JRn 

~ 2 / lu(x, TI )12 dx ~ 2 / luo(x)12 dx. 

Hence 

( 4.15) 

for t large enough. That is for t ~ max(To' T2), where 

T2 = T2(l uo1LI , IUoIL2 , n, aI' C>I ' PI' Co)· 
The last inequality combined with (4.11) yields 

IU(·, t)IL2 ~ W(·, t)IL2 -IW(·, t)IL2 ~ (1 - 1/2)~(t + 1)-(n/2+1)/2; 

hence for t ~ T3 = TI + T2 

lu(·, t)IL2 ~ Vf (t + 1)-(n/2+1)/2 . 

For t <T3 the decay of energy of u yields 

lu(·, t)I~2 ~ lu(·, T3)1~2 ~ ~I [/++;I n
/

2+1 (1 +t)-(n/2+1). 

Thus for Case 2 let Mo = (XI/4)(T3 + 1)-(n/2+1) and the lower bound follows. 
In order to give the formal argument when n = 3 , the hypotheses needed are 
given by Case 2* and (3.5) has to be modified adequately. 

In order to make the proof rigorous for n = 3 , apply the formal proof with 
appropriate modifications to the subsequence ut5 of appropriate solutions that 
converges strongly in L~oc(R+ xRn). For n> 3, a similar argument should work 
if applied to the approximate solutions constructed by Kayikiya and Miyakawa. 
Let n = 3. Let us recall that the approximation solutions ut5 constructed by 
Caffarelli, Kohn, and Nirenberg satisfy 

where 1fIt5 = c>-4 1f1 * u and 

ut + 1fIt5 'ilu + 'ilp = .1u, 
divu = 0, 

u(x, 0) = g, 

IfI E COO , IfI ~ 0, / / IfI dx dt = 1, 

supp IfI C {(x, t) : Ixl2 < t, 1 < t < 2}, 
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and let D = R3 x (0, T) , 

it = { ~(x, t) (x, t) ED, 
otherwise. 

Suppose that uJ is a subsequence that converges strongly to u in L~oc(D) where 
u is a Leray-Hopf solution of Navier-Stokes equations. The steps to show that 
the approximate solutions satisfy 

luJ (" t) IL2 ~ Mo(t + 1) -(n/2+1) 

are obtained combining the arguments of [5] with the formal proof. The lower 
bound for the limiting Leray-Hopf solution u(x, t) follows, a.e. in t, taking 
the limit as 0 --+ O. The details are omitted. 

5. THE LOWER BOUNDS 

The results obtained in the previous sections are combined to establish the 
lower bounds for the rates of decay for solutions to the Navier-Stokes equations 
in two and three spatial dimensions. 

Theorem 5.1. Let Uo ELI n H(Rn) , n = 2. Then 
(i) If u(O) = f u(x , t) dx = f u(x) dx =f. 0, then there exist constants Co and 

CI depending only on L I and 

Co(t+ 1)-n/2 ~ lu(" t)I~2 ~ CI(t+ 1)-n/2. 

If the average f u(x, t) dx = f u(x) dx = 0 then there are three cases to con-
sider. 

(ii) Let Uo E ~ n »2. Suppose that wo(C;) has a zero of order one at the 
origin; then there exist constants C2 and C3 such that 

CI (t + 1)-(n/2+1) ~ lu(" t)I~2 ~ C2(t + 1)-(n/2+1) . 

The constants depend only on the L 2 , ~ , and W2 norms of the data. 
(iii) Suppose that Uo E HI n Me n »2. If u(c;) has a zero at the origin of 

order greater than one, then there exist constants C4 ' Cs such that 
-2 2 -2 C4 (t + 1) ~ lu(" t)IL2 ~ Cs(t + 1) , 

where C4 depends only on the L I and L 2 norms of Uo and Cs depends on the 
L I , L 2 , HI , »2 norms of the data and 

1 02 02 1 0 0 a = lUll - IU21 dx or p = u l u2 dx . 
R2 R2 

Proof. 
Upper bound. Case (i). See [5]. Cases (ii), (iii) follow from Theorems 2.1, 

3.2, 3.3 and the decay rates for the difference OJ between the solution to the 
heat equation and the solution to the Navier-Stokes equation obtained by 
Wiegner [6]. 
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Lower bound. Case (i). The proof can be found in [5, Theorem (4.2)]. There 
are a few simple modifications. 

1. The more restrictive hypothesis of Theorem (4.2) [5], lu(~)1 =f:. 0 for 
I~I ~ J, can be deduced from U(O) =f:. 0, since Uo E L 1 implies u E C 1 • 

2. The necessary upper bounds for w when n = 2 can be found in [6]. 
Case (ii). Follows from Theorems 2.1, 3.1, and 4.1. 
Case (iii). Follows from Theorems 2.1, 3.2, and 4.1. 

Theorem 5.2. Let Uo E L 1 n H(Rn), n = 3. Let u(x, t) be a suitable Leray-
Hopf solution in the sense of Caffarelli, Kohn, and Nirenberg and the lower bound 
holds for almost all t. Then (i) and (ii) of Theorem 5.1 hold, where the upper 
bound is for all t and the lower bound is for a.e. t. 

(iii) If there exists to such that u E M: and also Uo E Jt;, then 
o 

C6(t + 1)-5/2 ~ lu(., t)I~2 ~ C7(t + 1)-5/2, 

where C7 depends only on the L 1 and L 2 norms of the data and C6 depends 
1 2 iii i on the L ,L , Jt; norms of the data and CY.j = CY.j(to' 3) and Pj = Pi to , 3), 

where CY.~ and pJ were defined in Theorem 3. 
Proof. 

Upper bound. See Theorem 5.1, apply proof to approximation solutions, and 
pass to the limit. 

Lower bound. Cases (i), (ii). Same steps as in Theorem 5.1 applied to special 
subsequence of approximate solutions, which is supposed to exist by hypothesis 
and pass to limit. Bound will be valid for a.e. t. 

Case (iii). Follows from Theorems 2.1, 3.3, and 4.1 applied to special se-
quence of approximate solutions existing by hypothesis and pass to the limit. 
The bound will hold for almost all t. 

We expect that Theorems 5.1 and 5.2 can be extended to n dimensions for all 
n ~ 4 using the approximate solutions constructed by Kayikiya and Miyakawa. 
The hypothesis on the data Uo E M' for n = 2 is optimal as the following 
example shows. In three dimensions we expect that the condition u E M tC (R3) 

o 
is necessary but we have not found an example where the lower bound fails if 
u E M t (R3). The example in two dimensions we will present was suggested by 

o 
A. Majda. 

Example 5.3. Exponentially decaying vorticity in 2 spatial dimensions with data 
Uo EM. 

Let u(x, t) be a solution to the 2D Navier-Stokes equation with radial vor-
ticity. Suppose also that Uo E M n L 1 n L 2 is such that curl Uo = Wo satisfies 

(i) Wo E L1 , 
(ii) Y'uo E L1 , 

(iii) w(~) = 0 for I~I ~ J, some J > O. 
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Then 
2 

U(X, t) = (-X2/~ ) [' sw(s) ds, 
xllr io 

(5.1 ) 

where w is the vorticity. Here uo(x) = u(x , 0) E M(R2) , since 

r u~(x,O)dx= r u;(x,O)dx 
iR2 iR2 

and 1 0 0 u l (x, 0)u2(x, 0) dx = O. 
R2 

The vorticity equation is reduced to 

wt =.1.w, 
w(lxl, 0) = w(x, 0) = wo(r). 

The term U· Y'w is zero, since the vorticity is radial. By (iii) follows 

r Iw(x, t)21 dx = r Iw(~, t)1 2 d~ = r IWo(~)12e _1~12t d~ 
iR2 iR2 iR2 

:::; e _02t r IWo(~)12 d~ . 
iR2 

Hence Iwli2 :::; ke-lol2t . We only give an outline for the estimate 

r lul 2 dx :::; Co exp( -CI t). 
iR2 

We use the explicit form of u and the decay of IwlL2 . This estimate will follow 
from the explicit form of u, v and the decay of IwIL2. 

By the Jensen inequality and (5.1) it follows that 

lul 2 + Ivl 2 :::; r~ (for SWdS) :::; for /W2~S :::; 2~ fo211 for sw2 ds 

1 1 2 _02t = -2 Iwl dx:::; Coe ; 
11: R2 

hence 
2 lul oo + Ivloo :::; C exp( -c> tI2). 

The L 2 decay of u will follow from a time dependent L I estimate, more 
precisely from 

lu(" t)I L I :::; Ct, 
where C depends on L I , L 2 norms of u and wand also on the L I norm of 
Y'w. 

ApPENDIX 

Proposition A.I. Let Uo E H(R2) n u:-;. Then if u is a solution ofNavier-Stokes 
with data Uo 

1Y'~aij(~' t)1 :::; C(t), 
where aij = U;Uj and C(t) depends on luolL2. 
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Proof· 

(A.I) 

Hence we need to bound fR21xlluI2 dx in terms of the initial data. Multiply 
the Navier-Stokes equation by IXklu j and integrate in space. We do it compo-
nentwise and sum 

(A.2) 

dd r Ixklu.u.dx = - r IXklu.Lu.o.u.dx t iR2 J J iR2 J i I I J 

- L21XklUjOjPdX + L L21XklUjOssUjdX 
s 

=I+II+III; 

I = ~ ~ L2 signxkuiu~ dx ~ ~ L21.U12 + ~ L21UI4 
I 

~ ~ L21UI2 + ~ L2 1V'U1 2 , 

(A.3) 

where f luI 4 follows by Ladyzenkaya [3, Lemma 7]. 
For the second term it is convenient to bound the sum of all the terms and 

use that U is divergent free: 
(A.4) 

L II ~ L21 sign(xk)llujllpl dx 
J 

~ r luI 2 + r IpI 2 ~ r luI 2 + 4 r luI 4 ~ r luI2 + r lV'uI2. 
iR2 iR2 iR2 iR2 iR2 iR2 

The bound on P above follows by recalling that the pressure satisfies an ellip-
tic equation, which is obtained by taking the divergence of the Navier-Stokes 
equation, 

hence 

and 

(A.5) 
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Finally III is estimated as follows: 

(A.6) 
III = L { sign(xk)u/7S uj dx - { IXkllV'u/ dx 

S JR2 JR2 

~ 3 { lul 2 dx + { lV'ul 2 dx . JR2 JR2 
Hence integrating over [0, t] (A.2) and combining (A.l), (A.2), (A.3), (A.4), 
and (A.6) 

18~ aij(c!' t)1 ~ { IXkllul2 dx 
k JR2 

~ C (t { lul 2 dxds + t ( lV'ul 2 dXdS) + ( Ixkllui Jo JR2 Jo JR2 JR2 

~ CCt + 1) { lui dx + { Ixkllui dx, JR2 JR2 

where C ~ 40. 
I 2 c I 2 r 12 22d Lemma A.2. Let Uo = (uo' uo) E M n H (R ). Let a = JR21uoi -Iuol x =f-

o. There then exists to such that if u(x ,t) is a solution to the Navier-Stokes 
equation with data Uo 

IIo T l21Ul12 -lui dx dtl ~ (a/2)T 

for all T ~ to' to depending only on the HI norm of Uo. 
Proof. W.l.o.g. suppose that a> O. If not take 

1 22 12 a = IUol - IUol dx. 
R2 

Let 

The following estimate is needed. 

I :tF(t) I ~ c l21V'U12 dx. 

The last estimate follows from multiplying the equation for the first component 
of Navier-Stokes by u l ' the second by u2 ' and integrating in space. Hence 

I :tF(t)1 ~ Il2 ul L u;8;u I - ul81P + UI!lU I dx 
I 

-l2 u2 L u;8i u2 - u282P + U2!lU2 dxl· 
I 

Thus from (A.5) 
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By Lemma (7) in [3] it follows that if Iu(x, t)1 --> 0 as Ixl --> 00 , 

r lul4 dx ::; 2 r IVul2 dx r lul 2 dx ::; C r IVul2 dx 
iR2 iR2 iR2 iR2 

447 

with C = 4nCo' Co = IUoli2 . Recall that solutions to the Navier-Stokes equa-
tions in two spatial dimensions satisfy 

The last inequality follows from the special relation between the partial differ-
entials of the components of the gradient. This relation is a consequence of the 
solution being divergence free. By the mean value theorem it follows that 

Thus F(t) :::: F(O) - C I t ,where C I = C fR21vui dx. Integrating over [0, T] 
yields 

loT F(t) dt :::: F(O)T - CI T2/2 

and for any T::; F(0)/2CI it follows that 

loT F(t)dt:::: F(0)T/2. 

Let to = F(0)/2CI ' and the lemma follows. 

I 2 "re I r d 'h Lemma A.3. Let Uo = (uo' uo) E lV n H . Let a = JR2 UOu l X f:. O. T. en 
there exists to > 0 such that 

IIoT L2 UOu l dxl:::: a/2T 

for all T::; to' to depending only on the HI norms of Uo ' 

Proof. W.l.o.g. suppose a > O. Following the lines of the proof for Lemma 
A.2 we only need to show that 

where 
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Note that 

I ~t G(t)1 ~ Il2 U1 U2t + Ul/U2 dXI 

= 1- { U1 LU i8iu2 dx- { u182pdx+ { U1.6.u2 dx JR2 i JR2 JR2 
- { U2 L ui8iu1 dx - { u281P dx + { U2.6.U1 dXI JR2 i JR2 JR2 

~ C ({ luI4 dx + { l.6.ul 2 dx + ( IpI4 dX) JR2 JR2 JR2 
and from the observation in the previous lemma it follows that last term is 
bounded by the L 2 norm of the gradient of U and hence 

l;tG(t)1 ~ c lJ~ui dx. 

And the proof now is the same as for Lemma A.2. 

Note A.4. We recall that in Lemma (8.2) [1], Caffarelli, Kohn, and Nirenberg 
showed that for a suitable Leray-Hopf solution for almost all t 

( Iu(x, t)1 21xl dx ~ A(t) JR3 
with A(t) depending only on the L2 and W2 norms of the data. Let 

A = {t: I :eU;Uj(e, t)1 ~ A(t)} , 

where U = (u J ' u2 ' u3 ) is a suitable Leray-Hopf solution to Navier-Stokes. By 
Lemma 8.2 [1] such a set is nonempty. Moreover, A can be chosen so that 
m(Ac) = o. With the notation aij = U;Uj' a~j(t) = U;Uj(O, t) iff tEA 

o -
ai)e, t) = aij(t) + e . V' ~aij(e , t) . 
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