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LOWER BOUNDS OF THE DISCRETIZATION ERROR FOR

PIECEWISE POLYNOMIALS

QUN LIN, HEHU XIE, AND JINCHAO XU

Abstract. Assume that Vh is a space of piecewise polynomials of a degree
less than r ≥ 1 on a family of quasi-uniform triangulation of size h. There
exists the well-known upper bound of the approximation error by Vh for a

sufficiently smooth function. In this paper, we prove that, roughly speaking,
if the function does not belong to Vh, the upper-bound error estimate is also
sharp.

This result is further extended to various situations including general shape
regular grids and many different types of finite element spaces. As an appli-
cation, the sharpness of finite element approximation of elliptic problems and
the corresponding eigenvalue problems is established.

1. Introduction

Error analyses for many numerical methods are mostly presented for upper-
bound estimates of the approximation error. This paper focuses on the lower-
bound error estimate and its applications for piecewise polynomial approximation
in Sobolev spaces. Our work was inspired by some recent studies of lower-bound
approximations of eigenvalues by finite element discretization for some elliptic par-
tial differential operators [10, 15]. One crucial technial ingredient that is needed
in the analysis in [10, 15] is some lower bound of the eigenfunction discretization
error by the finite element method.

Lower-bound error estimates have been studied in the literature for some special
cases. In Babuška and Miller [4, 5], lower bounds of the discretization error were
obtained for a second-order elliptic problem by a bilinear element discretization us-
ing the Taylor expansion method under the assumption that the solution is smooth
enough on the prescribed domain. More recently in Kř́ıžek, Roos, and Chen [13]
(one of the studies that inspired this paper), two-sided bounds where the constants
are almost 1 were obtained for the discretization error of linear and bilinear ele-
ments on the uniform meshes by superconvergence theory and interpolation error
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estimate. In Widlund [20, 21], a type of inverse theorem was given to indicate the
function conditions necessary for obtaining the desired level of accuracy. Subse-
quently, Babuška, Kellogg, and Pitkäranta [3] proved the optimality of the error
estimate for a second-order elliptic problem by the linear finite element method
on the polygonal domain with graded mesh. In Liu and Xu [16], a lower-bound
result by Hermite spline space for special functions is provided on one-dimensional
structured meshes.

The aim of this paper is to derive lower-bound results of the error by piecewise
polynomial approximation for much more general classes of problems under much
weaker and more natural assumptions on grids and smoothness of functions to be
approximated. As a special application, the lower bounds of the discretization
error by a variety of finite element spaces can easily be obtained. For example,
the following lower error bounds (see Sections 3 and 4) are valid for finite element
(consisting of piecewise polynomials of a degree less than r) approximation to 2m-th
order elliptic boundary value problems:

‖u− uh‖j,p,h ≥ Chr−j , 0 ≤ j ≤ r,

where the positive constant C is independent of the mesh size h. This kind of result
plays a very important role in the analysis of lower-bound eigenvalue approxima-
tions in [10, 15].

The outline of the rest of the paper is as follows. Section 2 focuses on the
general derivation of the lower bounds of the error arising from piecewise polynomial
approximation. Section 3 considers the lower bounds of the discretization error of
the second-order elliptic problem and the corresponding eigenpair problem by finite
element method. Section 4 concerns a generalization of the results from Section
3 to the 2m-th order elliptic problem and the corresponding eigenpair problem.
Section 5 presents some brief concluding remarks.

2. Notation and basic results

In this section, we introduce the used notation and then state some lower-bound
results associated with the piecewise polynomial approximation error, which is a
basic tool in this paper.

Here we assume that Ω ⊂ Rn (n ≥ 1) is a bounded polytopic domain with a
Lipschitz continuous boundary of ∂Ω. Throughout this paper, we use the standard
notation for the usual Sobolev spaces and the corresponding norms, semi-norms,
and inner products as in [6, 8]. Let us introduce the multi-index notation. A
multi-index α is an n-tuple of nonnegative integers αi. The length of α is given by

|α| =
n∑

i=1

αi.

The derivative Dαv is then defined by

Dαv =
( ∂

∂x1

)α1

· · ·
( ∂

∂xn

)αn

v.

For a subdomain G of Ω, the usual Sobolev spaces Wm,p(G) with the norm ‖·‖m,p,G

and the semi-norm | · |m,p,G are used. In the case of p = 2, we have Hm(G) =
Wm,2(G) and the index p is omitted. The L2-inner product on G is denoted by
(·, ·)G. For G ⊂ Ω, we write G ⊂⊂ Ω to indicate that dist(∂Ω, G) > 0 and
meas(G) > 0.
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We introduce a face-to-face partition Th of the computational domain Ω into
elements K (triangles, rectangles, tetrahedrons, bricks, etc.) such that

Ω̄ =
⋃

K∈Th

K

and where Eh denotes the set of all the (n − 1)-dimensional facets of all elements
K ∈ Th. Here h := maxK∈Th

hK and hK = diam K denote the global and local
mesh size, respectively [6, 8]. We also define T G

h =
{
K ∈ Th and K ⊂ G

}
and

hG = maxK∈T G
h
hK . A family of partitions Th is said to be regular, if it satisfies

the following condition [6]:

∃σ > 0 such that hK/τK > σ ∀K ∈ Th,

where τK is the maximum diameter of the inscribed ball in K ∈ Th. A regular
family of partitions Th is called quasi-uniform, if it satisfies the following condition
[6, 8]:

∃β > 0 such that max{h/hK , K ∈ Th} ≤ β.

Based on the partition Th, we build the finite element space Vh of piecewise
polynomial functions (see [6, 8]). In order to perform the error analysis, we define
the following piecewise-type semi-norm for v ∈ W j,p(G) ∪ Vh with G ⊆ Ω:

|v|j,p,G,h :=

⎛
⎝ ∑

K∈T G
h

∫
K

∑
|α|=j

|Dαv|pdK

⎞
⎠

1
p

, 1 ≤ p < ∞

and

|v|j,∞,G,h := max
K∈T G

h

|v|j,∞,K .

Then the corresponding norm can be defined by

‖v‖j,p,G,h :=

(
j∑

i=0

|v|pi,p,G,h

) 1
p

and

‖v‖j,∞,G,h := max
0≤i≤j

|v|i,∞,Ω,h.

We drop G when G = Ω. Throughout this paper, the symbol C (with or without
subscript) stands for a positive generic constant which may attain different values
at its different occurrences and which is independent of the mesh size h, but may
depend on the exact solution u.

Theorem 2.1. Assume u ∈ W r+δ,p(G) (δ > 0) and that a multi-index γ with
|γ| = r exists such that ‖Dγu‖0,p,G > 0 and Dγvh = 0 for all K ∈ T G

h and for all
vh ∈ Vh. Then the following lower bound of the approximation error holds when
the family of partitions {Th} is quasi-uniform:

(2.1) inf
vh∈Vh

‖u− vh‖j,p,G,h ≥ C1h
r−j , 0 ≤ j ≤ r,

where 1 ≤ p ≤ ∞ and C1 is dependent on u.
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Proof. We prove the result (2.1) by a process of reduction. The assumption that
(2.1) is not correct means that for an arbitrarily small ε > 0 there exist a small
enough h and vh ∈ Vh such that

‖u− vh‖j,p,G,h

hr−j
< ε.(2.2)

Furthermore, let h be small enough to satisfy hδ‖u‖r+δ,p,G < ε. Now we can show
that (2.2) leads to a contradiction.

Combining u ∈ W r+δ,p(G), (2.2), the quasi-uniform property of Th, and the
inverse inequality for finite element functions, we have

|u− vh|r,p,G,h ≤ ‖u−Πr
hu‖r,p,G,h + ‖Πr

hu− vh‖r,p,G,h

≤ C2h
δ‖u‖r+δ,p,G + C3h

j−r‖Πr
hu− vh‖j,p,G,h

≤ C2h
δ‖u‖r+δ,p,G + C3h

j−r‖Πr
hu− u‖j,p,G,h

+C3h
j−r‖u− vh‖j,p,G,h

≤ (C2 + C3C4)h
δ‖u‖r+δ,p,G + C2ε

≤ (C2 + C3C4 + C3)ε,(2.3)

where Πr
hu denotes a piecewise r degree polynomial interpolant of u (discontinuous

or continuous) such that

‖u−Πr
hu‖�,p,G,h ≤ C4h

r+δ−�‖u‖r+δ,p,G, 0 ≤ 
 ≤ r.

Then the condition Dγvh = 0 leads to

‖Dγu‖0,p,G = ‖Dγ(u− vh)‖0,p,G,h ≤ |u− vh|r,p,G,h ≤ Cε,

where C = C2+C3C4+C3. This contradicts the inequality ‖Dγu‖0,p,G > 0. Thus,
the assumption (2.2) is not true. Therefore, the lower-bound result (2.1) holds, and
the proof is complete. �

Remark 2.2. For j = r, we can improve the result (2.1) for δ = 0, as we have

‖Dγu‖0,p,G = ‖Dγ(u− vh)‖0,p,G,h ≤ |u− vh|r,p,G,h ≤ Cε

under the condition (2.2) for j = r. This contradicts the inequality ‖Dγu‖0,p,G > 0.

The result in Theorem 2.1 can be extended to a regular family partitions and to
more general Sobolev space norms.

Theorem 2.3. Assume u ∈ W r+δ,p(G) (δ > 0) and that a multi-index γ with
|γ| = r exists such that ‖Dγu‖0,p,G > 0 and Dγvh = 0 for all K ∈ T G

h and for all
vh ∈ Vh. Then we have the following lower bound of the approximation error when
the family of partitions {Th} is regular:

inf
vh∈Vh

⎛
⎝ ∑

K∈T G
h

h
p(j−r)
K

∥∥u− vh
∥∥p
j,p,K

⎞
⎠

1
p

≥ C5, 0 ≤ j ≤ r(2.4)

and

inf
vh∈Vh

⎛
⎝ ∑

K∈T G
h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u− vh
∥∥p
j,q,K

⎞
⎠

1
p

≥ C6, 0 ≤ j ≤ r,(2.5)
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where 1 ≤ p < ∞, 1 ≤ q ≤ ∞ (W r+δ,p(G) can be embedded in W j,q(G)) and where
C5 and C6 are positive constants independent of mesh size hG, but dependent on u.

Proof. We only prove the result (2.5), as (2.4) can be deduced directly from (2.5).
To get (2.5), we use a similar reduction as in the proof of Theorem 2.1. The

assumption that (2.5) is not correct means that for an arbitrarily small ε > 0, there
exist a small enough hG and vh ∈ Vh such that⎛

⎝ ∑
K∈T G

h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u− vh
∥∥p
j,q,K

⎞
⎠

1
p

< ε.(2.6)

Furthermore, let hG be small enough to satisfy hδ
G‖u‖r+δ,p,G < ε.

We will show that this assumption leads to a contradiction. Combining u ∈
W r+δ,p(G), (2.6), and the inverse inequality for piecewise polynomial functions, we
have

|u− vh|r,p,G,h ≤ ‖u−Πr
hu‖r,p,G,h + ‖Πr

hu− vh‖r,p,G,h

≤ C7h
δ
G‖u‖r+δ,p,G +

⎛
⎝ ∑

K∈T G
h

C8,Kh
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥Πr
hu− vh

∥∥p
j,q,K

⎞
⎠

1
p

≤ C7h
δ
G‖u‖r+δ,p,G + C8

⎛
⎝ ∑

K∈T G
h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥Πr
hu− vh

∥∥p
j,q,K

⎞
⎠

1
p

≤ C7h
δ
G‖u‖r+δ,p,G + C8

⎛
⎝ ∑

K∈T G
h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u−Πr
hu

∥∥p
j,q,K

⎞
⎠

1
p

+C8

⎛
⎝ ∑

K∈T G
h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u− vh
∥∥p
j,q,K

⎞
⎠

1
p

≤ (C7 + C8C9)h
δ
G‖u‖r+δ,p,G + C8ε

≤ (C7 + C8C9 + C8)ε,(2.7)

where Πr
hu denotes a piecewise r degree polynomial interpolant of u (discontinuous

or continuous) for which we have the following error estimate [6, 8]:

‖u−Πr
hu‖�,q,K ≤ C9,Kh

r+δ−�+n
(

1
q−

1
p

)
K ‖u‖r+δ,p,K , 0 ≤ 
 ≤ r, ∀K ∈ Th.

In (2.7), the constants C8 and C9 defined, respectively, by

C8 := max
K∈T G

h

C8,K and C9 := max
K∈T G

h

C9,K ,

are dependent on the shape of the elements in T G
h . However, they are independent

in terms of size; i.e., C8 and C9 are independent of h.
Then combining (2.7) and the condition Dγvh = 0 (|γ| = r) leads to

‖Dγu‖0,p,G = ‖Dγ(u− vh)‖0,p,G,h ≤ |u− vh|r,p,G,h ≤ Cε,

where C = C7 + C8C9 + C8. This contradicts the condition |Dγu|0,p,G > 0. Thus,
the assumption (2.6) is not true. Hence, the lower-bound result (2.5) holds, and
the proof is complete. �
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Remark 2.4. Similar to Remark 2.2, when j = r, we can prove the results (2.4) and
(2.5) for δ = 0.

3. Lower bounds for a second-order elliptic problem

In this section, as an application of Theorems 2.1 and 2.3, we derive the lower
bounds of the discretization error for a second-order elliptic problem and the cor-
responding eigenpair problem by the finite element method.

Here we are concerned with the Poisson problem

(3.1)

{
−Δu = f in Ω,

u = 0 on ∂Ω,

and the corresponding eigenpair problem:
Find (λ, u) such that ‖u‖0 = 1 and

(3.2)

{
−Δu = λu in Ω,

u = 0 on ∂Ω.

Based on the partition Th on Ω̄, we define a suitable finite element space Vh (con-
forming or nonconforming for the second-order elliptic problem) with piecewise
polynomials of a degree less than r.

Then the finite element approximation of (3.1) consists of finding uh ∈ Vh such
that

ah(uh, vh) = (f, vh) ∀vh ∈ Vh,(3.3)

where

ah(uh, vh) =
∑

K∈Th

∫
K

∇uh∇vhdK.

From the standard error estimate theory of the finite element method, it is known
that the upper bound of the discretization error (see [6, 8]) given as

‖u− uh‖�,p,h ≤ Chs−�‖u‖s,p, 0 ≤ 
 ≤ 1, 0 < s ≤ r, 1 < p < ∞,(3.4)

holds.
From Theorems 2.1 and 2.3, we state the following lower-bound results of the

discretization error.

Corollary 3.1. Assume a subdomain G ⊂⊂ Ω exists such that u ∈ W r+δ,p(G)
(δ > 0) and assume a multi-index γ with |γ| = r exists such that ‖Dγu‖0,p,G > 0
and for all K ∈ T G

h and for all vh ∈ Vh, D
γvh = 0. If the family of partitions {Th}

is quasi-uniform, the finite element solution uh ∈ Vh in (3.3) has the following
lower bound of the discretization error,

(3.5) ‖u− uh‖j,p,h ≥ C10h
r−j , 0 ≤ j ≤ r,

where 1 ≤ p ≤ ∞, C10 is a positive constant dependent on u and the error estimate
(3.4) is optimal for s = r and 0 ≤ 
 ≤ 1.

Proof. First we have the following property:

‖u− uh‖j,p,h
hr−j

≥ ‖u− uh‖j,p,G,h

hr−j
≥ inf

vh∈Vh

‖u− vh‖j,p,G,h

hr−j
.

Therefore the desired result (3.5) can be directly deduced by (2.1). �
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Remark 3.1. The interior regularity result u ∈ W r+δ,p(G) for a subdomain G ⊂⊂ Ω
and δ > 0 for the elliptic problem (3.1) can be obtained if the right-hand side f is
smooth enough (see [11, Theorem 8.10]).

Corollary 3.2. Assume a subdomain G ⊂⊂ Ω exists such that u ∈ W r+δ,p(G)
(δ > 0) and assume a multi-index γ with |γ| = r exists such that ‖Dγu‖0,p,G > 0
and for all K ∈ T G

h and for all vh ∈ Vh, Dγvh = 0. If the family of partitions
{Th} is regular, the finite element solution uh ∈ Vh in (3.3) has the following lower
bound of the discretization error:

(3.6)

⎛
⎝ ∑

K∈T G
h

h
p(j−r)
K

∥∥u− uh

∥∥p
j,p,K

⎞
⎠

1
p

≥ C11, 0 ≤ j ≤ r

and

(3.7)

⎛
⎝ ∑

K∈T G
h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u− uh

∥∥p
j,q,K

⎞
⎠

1
p

≥ C12, 0 ≤ j ≤ r,

where 1 ≤ p < ∞, 1 ≤ q ≤ ∞ (W r+δ,p(G) can be embedded in W j,q(G)) and where
C11 and C12 are positive constants dependent on u.

Proof. The proof can be given using the property∑
K∈T G

h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u− uh

∥∥p
j,q,K

≥ inf
vh∈Vh

∑
K∈T G

h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u− vh
∥∥p
j,q,K

and Theorem 2.3. �
Remark 3.2. In [7], the lower bound of the discretization error by the Wilson ele-
ment is analyzed under the conditions of the rectangular partition and the regularity
u ∈ W 3,∞(Ω).

Now let us consider the lower-bound analysis of the eigenpair problem (3.2) by
the finite element method. The finite element approximation (λh, uh) ∈ R× Vh of
(3.2) satisfies ‖uh‖0 = 1 and

ah(uh, vh) = λh(uh, vh) ∀vh ∈ Vh.(3.8)

For the eigenfunction approximation uh in (3.8), the following lower-bound results
hold.

Corollary 3.3. Assume a multi-index γ with |γ| = r exists such that Dγvh = 0 for
all K ∈ Th and for all vh ∈ Vh. If the family of partitions {Th} is quasi-uniform,
the eigenpair approximation (λh, uh) ∈ R×Vh in (3.8) satisfies this lower bound of
the discretization error

(3.9) ‖u− uh‖j,p,h ≥ C13h
r−j , 0 ≤ j ≤ r,

where 1 ≤ p ≤ ∞ and C13 is a positive constant dependent on u.
Furthermore, if the family of partitions {Th} is regular, (λh, uh) has the following

lower bounds of the discretization error

(3.10)

⎛
⎝ ∑

K∈T G
h

h
p(j−r)
K

∥∥u− uh

∥∥p
j,p,K

⎞
⎠

1
p

≥ C14, 0 ≤ j ≤ r
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and

(3.11)

⎛
⎝ ∑

K∈T G
h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u− uh

∥∥p
j,q,K

⎞
⎠

1
p

≥ C15, 0 ≤ j ≤ r,

where 1 ≤ p < ∞, 1 ≤ q ≤ ∞, C14 and C15 are positive constants dependent on u.

Proof. First, it is easy to show that the eigenfunctions of problem (3.2) cannot be
polynomial of the bounded degree on any subdomain G ⊂⊂ Ω. We prove this by a
process of reduction. Assume that the exact eigenfunction is a polynomial function
and that u ∈ P�(G) for some integer 
 > 0. Directly from the definition of problem
(3.2), we have

−Δ� �
2 �u = (−1)�

�
2 �−1λ� �

2 �u,(3.12)

where  �
2� denotes the smallest integer not smaller than �

2 . As −Δ� �
2 �u = 0, we

have u = 0 on G. This means the exact eigenfunction cannot be polynomial of the
bounded degree and has the property of

|u|r,p,G > 0.

The proof of this corollary can be obtained with the same argument as in the proof
of Corollaries 3.1 and 3.2. �

Now, we present some conforming and nonconforming elements that yield the
lower bound of the discretization error with the help of Corollaries 3.1, 3.2, and 3.3.

In order to describe the results, we introduce the index set

Indr :=
{
multi index α with |α| = r

}
.(3.13)

First we obtain the lower-bound results for the standard Lagrange-type elements

Vh =
{
vh|K ∈ P�(K) or Q�(K) ∀K ∈ Th

}
,(3.14)

where P�(K) denotes the space of polynomials with a degree not greater than 
 and
Q�(K) denotes the space of polynomials with a degree not greater than 
 for each
variable. From Corollaries 3.1, 3.2, and 3.3, the lower-bound results in this section
hold with r = 
+ 1 and γ ∈ Indr for the P�(K) case and they hold with r = 
+ 1
and γ ∈ Indr\IndQ,� for the Q�(K) case with

IndQ,� :=
{
multi index α with αi ≤ 


}
.

Then it is also easy to check the lower-bound results for four types of noncon-
forming elements: the Crouzeix–Raviart (CR), the Extension of Crouzeix–Raviart
(ECR), the Q1 rotation (Qrot

1 ), and the Extension of the Q1 rotation (EQrot
1 ):

• The CR element space proposed by Crouzeix and Raviart [9] is defined on
simplicial partitions by

Vh =
{
v ∈ L2(Ω) : v|K ∈ P1(K),∫

F

v|K1
ds =

∫
F

v|K2
ds if K1 ∩K2 = F ∈ Eh

}
.

The lower-bound result holds with r = 2 and γ ∈ Ind2.
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• The ECR element space, proposed by Hu, Huang, and Lin [10] and by Lin,
Xie, Luo, and Li [15], is defined on simplicial partitions by

Vh =
{
v ∈ L2(Ω) : v|K ∈ PECR(K),∫

F

v|K1
ds =

∫
F

v|K2
ds if K1 ∩K2 = F ∈ Eh

}
,

where PECR(K) = P1(K)+span
{∑n

i=1 x
2
i

}
. The lower-bound result holds

with r = 2 and γ with γi = 1, γj = 1, 1 ≤ i < j ≤ n.
• The Qrot

1 element space, proposed by Rannacher and Turek [17] and by
Arbogast and Chen [2], is defined on n-dimensional block partitions by

Vh =
{
v ∈ L2(Ω) : v|K ∈ QRot(K),∫

F

v|K1
ds =

∫
F

v|K2
ds if K1 ∩K2 = F ∈ Eh

}
,

where QRot(K) = P1(K) + span
{
x2
i − x2

i+1 | 1 ≤ i ≤ n − 1
}
. The lower-

bound result holds with r = 2 and γ with γi = 1, γj = 1, 1 ≤ i < j ≤ n.
• The EQrot

1 element space, proposed by Lin, Tobiska, and Zhou [14], is
defined on n-dimensional block partitions by

Vh =
{
v ∈ L2(Ω) : v|K ∈ QERot(K),∫

F

v|K1
ds =

∫
F

v|K2
ds if K1 ∩K2 = F ∈ Eh

}
,

where QRot(K) = P1(K) + span
{
x2
i | 1 ≤ i ≤ n

}
. The lower-bound result

holds with r = 2 and γ with γi = 1, γj = 1, 1 ≤ i < j ≤ n.

All lower bounds of the above four examples are sharp, if the solution is smooth
enough. For other types of finite elements, we could also obtain the lower-bound
results with the corresponding r and γ as in this section.

4. Lower bounds for the 2m-th order elliptic problem

We consider similar lower bounds of the discretization error for the 2m-th order
elliptic problem and the corresponding eigenpair problem by the finite element
method. This is a natural generalization of the results in Section 3.

The 2m-th order Dirichlet elliptic problem for a given integer m ≥ 1 is defined
as

(4.1)

{
(−1)mΔmu = f in Ω,

∂ju
∂jν = 0 on ∂Ω and 0 ≤ j ≤ m− 1,

where ν denotes the unit outer normal. The corresponding weak form of problem
(4.1) is to seek u ∈ Hm

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ Hm
0 (Ω),(4.2)

where

a(u, v) =

∫
Ω

∑
|α|=m

DαuDαv dΩ.

Based on the partition Th of Ω̄, we build a suitable finite element space Vh

(conforming or nonconforming for the 2m-th order elliptic problem) with a piecewise
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polynomial of a degree less than r. The finite element approximation of (4.1) is to
seek uh ∈ Vh, thus satisfying

ah(uh, vh) = (f, vh) ∀vh ∈ Vh,(4.3)

where

ah(uh, vh) =
∑

K∈Th

∫
K

∑
|α|=m

DαuhD
αvhdK.

We also consider the corresponding 2m-th order elliptic eigenpair problem:
Find (λ, u) ∈ R×Hm

0 (Ω) such that ‖u‖0 = 1 and

a(u, v) = λ(u, v) ∀v ∈ Hm
0 (Ω).(4.4)

In this section, we assume that the following upper bound of the discretization
error holds:

‖u− uh‖m,h ≤ Chs−m‖u‖s, 0 < s ≤ r.(4.5)

Similar to Corollaries 3.1 and 3.2, the finite element approximation uh yields the
following lower-bound results.

Corollary 4.1. Assume a subdomain G ⊂⊂ Ω exists such that u ∈ W r+δ,p(G)
(δ > 0) and a multi-index γ with |γ| = r exists such that ‖Dγu‖0,p,G > 0 and for
all K ∈ T G

h and for all vh ∈ Vh, Dγvh = 0. If the family of partitions {Th} is
quasi-uniform, the finite element solution uh ∈ Vh in (4.3) has the lower bound of
the discretization error

(4.6) ‖u− uh‖j,p,h ≥ C16h
r−j , 0 ≤ j ≤ r,

where 1 ≤ p ≤ ∞, C16 is a positive constant dependent on u, and the error estimate
(4.5) is optimal for s = r.

Proof. First we have the following property:

‖u− uh‖j,p,h
hr−j

≥ ‖u− uh‖j,p,G,h

hr−j
≥ inf

vh∈Vh

‖u− vh‖j,p,G,h

hr−j
.

Therefore the desired result (4.6) can be directly deduced by (2.1). �

Remark 4.1. The interior regularity result u ∈ W r+δ,p(G) for a subdomain G ⊂⊂ Ω
and δ > 0 for problem (4.1) can be obtained if the right-hand side f is smooth
enough [12, Theorem 7.1.2].

Corollary 4.2. Assume a subdomain G ⊂⊂ Ω exists such that u ∈ W r+δ,p(G)
(δ > 0) and a multi-index γ with |γ| = r exists such that ‖Dγu‖0,p,G > 0 and for
all K ∈ T G

h and for all vh ∈ Vh, Dγvh = 0. If the family of partitions {Th} is
regular, the finite element solution uh ∈ Vh in (3.3) has the following lower bound
of the discretization error

(4.7)

⎛
⎝ ∑

K∈T G
h

h
p(j−r)
K

∥∥u− uh

∥∥p
j,p,K

⎞
⎠

1
p

≥ C17, 0 ≤ j ≤ r

and

(4.8)

⎛
⎝ ∑

K∈T G
h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u− uh

∥∥p
j,q,K

⎞
⎠

1
p

≥ C18, 0 ≤ j ≤ r,
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LOWER BOUNDS OF THE DISCRETIZATION ERROR 11

where 1 ≤ p < ∞, 1 ≤ q ≤ ∞ (W r+δ,p(G) can be embedded in W j,q(G)) and where
C17 and C18 are positive constants independent of mesh size hG, but dependent on
u.

Now we introduce the corresponding lower-bound analysis of the eigenpair prob-
lem (4.4). We define the corresponding discrete eigenpair problem in the finite
element space:

Find (λh, uh) ∈ R× Vh such that ‖uh‖0 = 1 and

ah(uh, vh) = λh(uh, vh) ∀vh ∈ Vh.(4.9)

The eigenfunction approximation uh in (4.9) also gives the lower-bound results as
follows.

Corollary 4.3. Assume a multi-index γ with |γ| = r exists such that Dγvh = 0 for
all K ∈ Th and for all vh ∈ Vh. If the family of partitions {Th} is quasi-uniform,
the eigenpair approximation (λh, uh) ∈ R × Vh in (4.9) yields the following lower
bound of the discretization error:

(4.10) ‖u− uh‖j,p,h ≥ C19h
r−j , 0 ≤ j ≤ r,

where 1 ≤ p ≤ ∞ and C19 is a positive constant independent of mesh size.
Furthermore, if the family of partitions {Th} is only regular, (λh, uh) has the

following lower bounds of the discretization error

(4.11)

⎛
⎝ ∑

K∈T G
h

h
p(j−r)
K

∥∥u− uh

∥∥p
j,p,K

⎞
⎠

1
p

≥ C20, 0 ≤ j ≤ r

and

(4.12)

⎛
⎝ ∑

K∈T G
h

h
p
(
(j−r)+n( 1

p−
1
q )
)

K

∥∥u− uh

∥∥p
j,q,K

⎞
⎠

1
p

≥ C21, 0 ≤ j ≤ r,

where 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and where C20 and C21 are positive constants
dependent on u.

Proof. Similar to Corollary 3.3, it is easy to obtain that the eigenfunction of problem
(4.4) cannot be a polynomial function of the bounded degree on any subdomain
G ⊂⊂ Ω. This means the eigenfunction has the following property:

|u|r,p,G > 0.

Then the proof can be obtained with the same argument used for the proof of
Corollary 4.1 and for Corollary 4.2. �

Now, we give some types of conforming and nonconforming elements that can
produce the lower bound of the discretization error with the help of Corollaries 4.1,
4.2, and 4.3.

First we would like to restate that for the two-dimensional case (n = 2) there
exist elements such as the Argyris and Hsieh–Clough–Tocher elements [8] that yield
lower-bound results from Corollaries 4.1, 4.2, and 4.3 for the biharmonic problem.
The lower-bound results in this section hold for the Argyris element with m = 2,
r = 6, γ ∈ Ind6 and for the Hsieh–Clough–Tocher element with m = 2, r = 4,
γ ∈ Ind4.
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12 QUN LIN, HEHU XIE, AND JINCHAO XU

Next, we consider a family of nonconforming elements referred to as MWX
(Morley-Wang-Xu) as proposed by Wang and Xu [18] and apply it to the 2m-th
order elliptic problem and the corresponding eigenpair problem under considera-
tion. The MWX element with n ≥ m ≥ 1 is the triple (K,PK , DK), where K is
an n-simplex and PK = Pm(K). For a description of the set DK of degrees of
freedom, see [18].

In order to understand this element, we list some special cases as in [18] for
1 ≤ m ≤ 3. If m = 1 and n = 1, we obtain the well-known conforming linear
elements. This is the only conforming element in this family of elements. For
m = 1 and n ≥ 2, we obtain the well-known nonconforming linear element (CR). If
m = 2, we recover the well-known nonconforming Morley element for n = 2 and its
generalization to n ≥ 2 (see Wang and Xu [19]). For m = 3 and n = 3, we obtain
a cubic element on a simplex that has 20 degrees of freedom.

Based on the above description of the MWX element, we know that

|vh|1+m,p,h ≡ 0 ∀vh ∈ Vh.

Then with the help of Corollaries 4.1, 4.2, and 4.3, we get the lower-bound results
in this section with r = m+ 1 and γ ∈ Indr.

We can also obtain the lower bound results in this section for other types of
elements with suitable r and γ for the 2m-th order elliptic problem (4.1) and the
corresponding eigenvalue problem (4.4).

5. Concluding remarks

In this paper, a type of lower-bound results of the error by piecewise polyno-
mial approximation is presented. As applications, we give the lower bounds of the
discretization error for the second-order elliptic and 2m-th order elliptic problem
by finite element methods. From the analysis, the idea and methods here can be
extended to other problems and numerical methods that are based on the piecewise
polynomial approximation.
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