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Abstract

Non-trivial lower bounds on the linear complexity are derived for a sequence ob-

tained by performing a combination of up to k substitutions, insertions, and deletions.

The bounds derived are similar to those previously established for either k substitu-

tions, k insertions or k deletions within a single period. The bounds are useful when

T/2k < λ < T/k, where λ is the linear complexity of the original sequence and T is its

period. It is shown that similar bounds hold for the joint linear complexity of periodic

multisequences. Similar results are obtained for the N -adic complexity of periodic se-

quences over {0, · · · , N − 1}. New non-trivial lower bounds on the minimum number

of operations needed to decrease the complexity are also given. The derivations are

simpler compared to those in previous work on these problems.

1 Introduction

The linear complexity of a sequence is the length of the shortest linear feedback shift register
(LFSR) that can generate the sequence. Alternatively, the linear complexity of a sequence
is also the least order of a homogeneous linear recurrence relation satisfied by the sequence.
The N -adic complexity of an N -ary sequence is an estimate of the size of the shortest
feedback with carry shift register (FCSR) that can generate the sequence (we define this
precisely later). Both are important measures of randomness of a sequence. The LFSR that
generates a given sequence can be determined by using the Berlekamp-Massey algorithm
using only the first 2λ elements of the sequence, where λ is the linear complexity of the
sequence. Also, the FCSR that generates a given sequence can be determined by using the
rational approximation algorithm by using only the first 2λN + O(logN(λN)) elements of
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the sequence, where λN is the N -adic complexity of the sequence. Hence for cryptographic
purposes sequences with high linear and N -adic complexities are essential as an adversary
would then need large initial segments of the sequences to recover, respectively, the LFSRs
and the FCSRs that generate them using these attacks.

It is well known that the linear complexity and the N -adic complexity of a sequence
might decrease drastically by altering a few symbols in the sequence. This instability can be
measured using k-error complexity which, for a periodic sequence, is the smallest complexity
value that can be obtained by changing k or fewer elements in a single period of the sequence.
Counting functions and expected values for linear complexity and k-error linear complexity
were extensively explored by Meidl and Niederreiter [9, 10]. Linear complexities of periodic
sequences obtained by substituting, inserting, and deleting few symbols were also determined
[1, 14, 15, 16]. However, similar results for the N -adic complexity do not exist in the
literature. It is well accepted that a cryptographically strong sequence should have high linear
complexity and N -adic complexity and that these measures should not decrease considerably
with substitution, insertion and deletion of a few symbols.

For a T -periodic sequence A, by Â denote any periodic sequence obtained by performing
up to k modifications in one period of A and periodically repeating the modified period. Let
λ(A) denote the linear complexity of sequence A over Fq. For an integer N > 1, let λN(A)
denote the N -adic complexity of sequence A over {0, · · · , N − 1}.

Jiang, Dai, and Imamura [6] gave a proof that λ(Â) ≥ T/k−λ(A) in each of the following
three separate cases:

1. at most k substitutions are performed;

2. at most k insertions are performed; or

3. at most k deletions are performed.

Their analysis did not allow any combination of these operations.

Definition 1. The k-operation linear complexity of a periodic sequence A is the smallest lin-
ear complexity obtained by performing any combination of up to k substitutions, insertions,
and deletions in a single period of A and then repeating the period.

The k-operation N -adic complexity is similarly defined for N -ary sequences. In this paper

1. We show Jiang, Dai, and Imamura’s bound should be

λ(Â) ≥ min

(

λ(A),
T

k
− λ(A)

)

.

2. We prove that this bound holds for any combination of up to k substitutions, insertions,
and deletions. That is, we do not restrict all the operations to be of the same type. Thus
we derive a lower bound on the k-operation linear complexity of a periodic sequence.

3. We derive similar bounds for the joint linear complexity of periodic multisequences.

4. Using a similar approach we derive a lower bound on k-operation N -adic complexity
of N -ary sequences,

λN(Â) > min

(

λN(A),
T

k
− λN(A) − 2 − logN

(

2

N − 1

))

.
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2 Linear Complexity Preliminaries

Let Fq denote the finite field with q elements, where q = pr, r ≥ 1, and p is prime. Let
A = (a0, a1, · · · , aT−1)

∞ be a T -periodic sequence over Fq with period (a0, · · · , aT−1). Let
a(x) = a0 + a1x + ... + aT−1x

T−1 be the polynomial corresponding to sequence A. The
sequence A can be represented as the power series

∑

i≥0

aix
i =

a(x)

1 − xT
=

g(x)

f(x)
, gcd(g(x), f(x)) = 1, deg(g(x)) < deg(f(x)). (1)

Then the linear complexity of A is

λ(A) = deg

(

1 − xT

gcd(a(x), 1 − xT )

)

= deg(f(x)). (2)

We can see that
λ(A) ≤ T.

In later sections we use the following lemma to derive bounds for the linear complexity after
k operation modification of a single period. The proof is due to Jiang et al. [6].

Lemma 1. Let C(x), D(x) ∈ Fq[x] with deg(D(x)) < deg(C(x)) and C(x) 6= 0. Define a
periodic sequence S = (s0, s1, · · · ) over Fq by

∑

i≥0

six
i =

D(x)

C(x)
.

Define another sequence S̃ = (s̃0, s̃1, · · · ) by

∑

i≥0

s̃ix
i =

[H(x)D(x)] mod C(x)

C(x)
,

where H(x) ∈ Fq[x]. Then
λ(S̃) ≤ λ(S). (3)

If gcd(C(x), H(x)) = 1, then equality holds in equation (3).

Let A−r = (aT−r, · · · , aT−1, a0, · · · , aT−r−1)
∞ denote the sequence obtained by shifting

one period of A to the right cyclically by r symbols and repeating this modified period. It
is straightforward to see that

λ(A) = λ(A−r), 1 ≤ r ≤ T − 1. (4)

3 Notation for k operation modification

In this section we describe k operation modification of a sequence and establish the notation
we use to prove the main results of the paper.
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Let A be the original sequence of period T and Â be the sequence obtained after k
operations are performed on a single period of A. Say there are kS substitutions, kD deletions,
and kI insertions.

We do not allow the combination when kD = T , kI = 0, and kS = 0 as this would
amount to deleting all symbols resulting in an empty sequence. Let S,D, I ⊂ {0, · · · , T −1}
be sets that denote the positions of substitutions, deletions, and insertions respectively.
Substitutions and deletions are performed on the elements with indices in sets S and D
respectively. Insertions occur before the elements with indices in the set I. More than one
element can be inserted before the elements with indices in the set I and there are |I| = kL

insertion positions. Thus we have |S| = kS, |D| = kD, |I| = kL,

k = kS + kD + kI , and kL ≤ kI . (5)

If there are a deletion and a substitution at the same place we can remove the substitution
and obtain the same modified sequence. Thus we can replace our list of k modifications by
a list of l ≤ k modifications with no deletions and substitutions at the same place. Similarly
we can replace an insertion and a deletion at the same position by a substitution of the
element at that position with the element to be inserted. That is, we may assume that

D ∩ S = D ∩ I = ∅. (6)

However, an insertion and a substitution can occur at the same position. Hence if k′ is the
cardinality of S ∪ D ∪ I, from equations (5) and (6) we have

k′ = |S ∪ D ∪ I| ≤ kS + kD + kL ≤ k.

Let t1, · · · , tk′ be the list of the distinct elements of S ∪ D ∪ I so that

t1 < t2 < · · · < tk′ , k′ = |S ∪ D ∪ I|.

From equation (4), by replacing A by a cyclic shift A−r, 0 ≤ r ≤ T − 1, we can make t1 = 0
and

T − tk′ = max(t2, t3 − t2, · · · , T − tk′) ≥
T

k′
. (7)

So from equation (7) we have

tk′ ≤
(k′ − 1)T

k′
≤

(k − 1)T

k
. (8)

4 Error Linear Complexity Bounds

With the notation established in the previous section, we obtain a lower bound on the linear
complexity of the modified sequence. We ultimately want a bound that applies when up to
k modifications are made. We first prove a lower bound assuming exactly k modifications.

Theorem 1. Let A be a sequence over Fq of period T . Let Â be a sequence obtained after
any combination of k substitutions, insertions, and deletions is performed on a single period
of A and repeated periodically. Then
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1. λ(Â) ≥ min(λ(A), T/k − λ(A)) if the number of deletions is greater than or equal to
the number of insertions.

2. λ(Â) ≥ min(λ(A), (T +1)/k−λ(A)) if the number of deletions is less than the number
of insertions.

Proof. Let â(x) = â0 + â1x + · · · + âT+kI−kD−1x
T+kI−kD−1 be the polynomial corresponding

to the new sequence Â = (â0, · · · , âT+kI−kD−1)
∞ as in equation (1). The generating function

of the new sequence is
∑

i≥0

âix
i =

â(x)

1 − xT+kI−kD

. (9)

We consider two cases based on whether the number of insertions is greater than the number
of deletions.

Case 1: kI ≤ kD

Let
B(x) = xkD−kI â(x) − a(x). (10)

Since tk′ is the position where the last operation is made, the last T − 1− tk′ coefficients are
the same in xkD−kI â(x) and a(x). Thus

deg B(x) ≤ (T − 1) − (T − 1 − tk′) = tk′ . (11)

From equations (1), (9), and (10) we have

∑

i≥0

âix
i =

â(x)

1 − xT+kI−kD

=
xkI−kD(a(x) + B(x))

1 − xT+kI−kD

=
(g(x)(1 − xT ))/f(x) + B(x)

xkD−kI − xT

=
g(x)(1 − xT ) + f(x)B(x)

f(x)(xkD−kI − xT )
.

Next we can apply Lemma 1 with S = Â and H(x) = f(x). Hence S̃ is the sequence
represented by

∑

i≥0

s̃ix
i =

[f(x)(g(x)(1 − xT ) + f(x)B(x))] mod (f(x)(xkD−kI − xT ))

f(x)(xkD−kI − xT )

=
[g(x)(1 − xkD−kI ) + f(x)B(x)] mod (xkD−kI − xT )

xkD−kI − xT
.

(12)

Since kD ≤ tk′ + 1 and from equations (1), (2), and (11), we have

deg(g(x)(1 − xkD−kI ) + f(x)B(x)) ≤ λ(A) + tk′ . (13)
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We have the following two subcases based on the numerator in equation (12).
Case 1a: [g(x)(1 − xkD−kI ) + f(x)B(x)] 6≡ 0 mod (xkD−kI − xT )
From Lemma 1 and equations (8), (12), and (13), we have

λ(Â) ≥ λ(Ŝ)

≥ T − deg(g(x)(1 − xkD−kI ) + f(x)B(x))

≥ T − (λ(A) + tk′)

≥ T − λ(A) −
(k − 1)T

k
.

Thus we have

λ(Â) ≥
T

k
− λ(A). (14)

Case 1b: [g(x)(1 − xkD−kI ) + f(x)B(x)] ≡ 0 mod (xkD−kI − xT )
If λ(A) ≥ T/k, then the right hand side of equation (14) is at most 0 and so the result is
trivial. Hence we may assume that

λ(A) < T/k. (15)

Let
g(x)(1 − xkD−kI ) + f(x)B(x) = l(x)(xkD−kI − xT ) (16)

for some l(x) ∈ Fq[x]. From equations (13) and (8) we have

deg(l(x)(xkD−kI − xT )) ≤ λ(A) +
(k − 1)T

k
.

So from equation (15) deg(l(x)) ≤ λ(A) − T/k < 0. From equation (16) this implies that
g(x)(1 − xkD−kI ) + f(x)B(x) = 0. Hence we have

B(x) =
g(x)(xkD−kI − 1)

f(x)
. (17)

From equations (1), (9), (10), and (17) we have

∑

i≥0

âix
i =

â(x)

1 − xT+kI−kD

=
B(x) + a(x)

xkD−kI − xT

=
1

xkD−kI − xT

(

g(x)(xkD−kI − 1)

f(x)
+

g(x)(1 − xT )

f(x)

)

=
g(x)

f(x)

=
∑

i≥0

aix
i.

(18)
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From equations (14) and (18) Case 1 of the theorem is proved.

Case 2: kI > kD

We use the result of Case 1 by switching the roles of A and Â. Let the original sequence
be R = Â. Then the new sequence R̂ = A is formed by inserting k′

I = kD symbols, delet-
ing k′

D = kI , and substituting k′
S = kS symbols. So k′

D > k′
I . The periods of R and R̂ are

T +kI−kD and T respectively. Because R̂ is formed by modifying R by deleting more symbols
than those inserted, from equation (14) we have λ(R̂) ≥ min(λ(R), (T + kI − kD)/k−λ(R)).

If min(λ(R), (T + kI − kD)/k − λ(R)) = λ(R) and λ(R) 6= (T + kI − kD)/k − λ(R) we
must have been in Case 1b for R. We also have

T + kI − kD

k
− λ(R) > λ(R) ≥ 0. (19)

From equation (19) and the hypothesis of Case 1b we have R = R̂.
If min(λ(R), (T + kI − kD)/k − λ(R)) = (T + kI − kD)/k − λ(R) we have

λ(R̂) ≥
T + kI − kD

k
− λ(R)

≥
T + 1

k
− λ(R).

This implies λ(R) ≥ (T + 1)/k − λ(R̂). That is,

λ(Â) ≥
T + 1

k
− λ(A).

Thus Case 2 is proved.

Example 1. For a simple example of Case 1b, let T = 10, the sequence A = (0101010101)∞

and k = 2. Hence T/k − λ(A) = 3 which is not a lower bound for the linear complexity of
the modified sequence because we can delete any two consecutive symbols to have a sequence
with linear complexity 2. Similarly we can insert two symbols and use a combination of an
insertion and a deletion to obtain the same linear complexity as that of the original sequence.
This shows that we must include λ(A) in our lower bound. It is this term that was missing
from Jiang et al.’s lower bound [6]. Their analysis does not consider the possibility of Case
1b and hence the missing term.

Remark 1. We note that we can shift the sequence by one position with an insertion and a
deletion by deleting the last symbol and inserting it at the beginning of the period. Hence
we can leave any sequence as is up to a shift using k operation modification if k is even.
Even when k ≥ 3 is odd, we can shift the sequence by (k − 3)/2 positions using (k − 3)/2
pairs of insertion, deletion operations. For the remaining 3 operations we look for an ab in
a single period where a, b ∈ Fq such that a 6= b. We insert an a before a, substitute the
original a by b and delete the b to leave the sequence as is up to a shift. The inclusion of
λ(A) in the bound in Theorem 1 is also needed in view of this remark.

Corollary 1. Let A be a sequence over Fq of period T . Let Â be a sequence obtained after
any combination of up to k substitutions, insertions, and deletions is performed on a single
period of A and repeated periodically. Then
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(i) λ(Â) ≥ min(λ(A), T/k − λ(A)) if the number of deletions is greater than or equal to
the number of insertions.

(ii) λ(Â) ≥ min(λ(A), (T +1)/k−λ(A)) if the number of deletions is less than the number
of insertions.

Proof. We note that the lower bound established in Theorem 1 is monotonically nonincreas-
ing in k. Thus if we make l ≤ k modifications, the bound for exactly k modifications still
applies.

Corollary 2. Let A be a sequence over Fq of period T . Suppose there is an r ∈ Fq that
occurs t > T/2 times in a single period of A.

(i) If r = 0, then λ(A) ≤ T/(2(T − t)) or λ(A) ≥ T/(T − t).

(ii) If r 6= 0, then λ(A) ≤ T/(2(T − 1)) or λ(A) ≥ T/(T − t) − 1.

Proof. Assume λ(A) > T/(2(T − t)). This implies that

λ(A) >
T

T − t
− λ(A). (20)

Let Â be a sequence obtained by performing T − t operations on A and assume that the
number of deletions is greater than or equal to the number of insertions. From equation (20)
and Corollary 1(i) we have

λ(Â) ≥
T

T − t
− λ(A). (21)

If r = 0, by deleting or substituting a 0 for each nonzero symbol we obtain the all 0 sequence
which has linear complexity 0. So by equation (21) we have λ(A) ≥ T/(T − t). So we have
λ(A) ≤ T/(2(T − t)) or λ(A) ≥ T/(T − t). If r 6= 0, by deleting or substituting an r for
each symbol that is not an r we obtain the all r sequence which has linear complexity 1.
So by equation (21) we have λ(A) ≥ T/(T − t) − 1. So we have λ(A) ≤ T/(2(T − t)) or
λ(A) ≥ T/(T − t) − 1.

Remark 2. The results of Corollary 2 hold for any r ∈ Fq and the corresponding t as defined
in Corollary 2 even if t ≤ T/2. But the results are useful only when t > T/2 and there can
only be one element, if any, that satisfies this condition.

Kurosawa et al. [8] derived the exact formula for the minimum number of substitutions
required to obtain a modified sequence with linear complexity less than the original sequence
when the period is a power of the characteristic of the finite field.

Definition 2. For a periodic sequence A, define minsub(A) as the minimum number of
substitutions required to modify a period of A so that the modified sequence has linear
complexity less than the linear complexity of A.

Let p be the characteristic of Fq from now on.
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Definition 3. For a nonnegative integer i =
∑d−1

j=0 ijp
j with ij ∈ {0, · · · , p − 1}, define

Prod(i) =
d−1
∏

j=0

(ij + 1).

Lemma 2 ([8]). Let T = pn for some n ∈ Z
+. Let t0 denote the number of occurrences of 0

in a single period of a sequence A over Fq. Then

(i) minsub(A) = Prod(T − λ(A)).

(ii) minsub(A) = T − t0 if and only if the minimum linear complexity achievable by per-
forming up to minsub(A) substitutions on A is 0.

(iii) If q = 2, minsub(A) < T − minsub(A) = T − t0 if and only if the minimum linear
complexity achievable by performing up to minsub(A) substitutions on A is 1.

Here we obtain a lower bound on the minimum number of operations required to obtain
a sequence with linear complexity less than the original sequence without any restrictions
on the period. From here on let A and Â be sequences of period T as in Corollary 1.

Definition 4. For a periodic sequence A, define minerror(A) as the minimum number
of operations required to modify a period of A so that the modified sequence has linear
complexity less than the linear complexity of A.

We note that in Definition 4 the minimum number operations includes any combination
of substitutions, insertions, and deletions. That is, we do not restrict the operations to be
of the same type.

Corollary 3. Let A be a not all zero sequence. Then,

(i) minerror(A) > T/(2λ(A)).

(ii) If minerror(A) = T − t0, where t0 is the number of occurrences of 0 in a single period
of A, then

minerror(A) ≥
T

λ(A)
.

(iii) If T = pn for some n ∈ Z
+, then

T

2λ(A)
< minerror(A) ≤ Prod(T − λ(A)).

Proof. After performing the necessary k = minerror(A) operations we have λ(A) > λ(Â).
So from Corollary 1(i, ii) we have

λ(A) > λ(Â)

≥ min(λ(A), T/k − λ(A)).
(22)

From equation (22) we have min(λ(A), T/k − λ(A)) = T/k − λ(A). Hence we have λ(A) >
T/k − λ(A). That is, λ(A) > T/2k which implies the bound in (i). Using Remark 2 and
Corollary 2(i), (ii) follows from (i). Since minerror(A) ≤ minsub(A), (iii) follows from (i)
and Lemma 2(i).
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5 Examples

In this section we discuss the tightness of the bounds established in Theorem 1. Because the
derivation in Theorem 1 does not use information about the positions and relative orders of
operations, it is reasonable to investigate the tightness of those bounds.

We give non-trivial examples where the lower bounds are achieved when the least period
is used in calculating them. Let V2 denote the set of odd primes v such that 2 is a primitive
root modulo v2. We need the following results due to Meidl [12] and Han et al. [4].

Lemma 3 ([12]). Let v ∈ V2 and λ be a nonnegative integer of the form

λ = ǫ + (v − 1)
∑

r∈R

vr−1, R ⊆ {1, · · · , n}, ǫ ∈ {0, 1}.

If λ ≥ (v − 1)vn−1, then there exists a binary sequence with least period vn such that the
linear complexity is λ and the 1-error linear complexity is vn − λ.

Lemma 4 ([4]). For any v ∈ V2 and 0 ≤ k ≤ T , the linear complexity and hence the k-error
linear complexity of a vn-periodic binary sequence belongs to

{vn − 1, vn} ∪
n−1
⋃

r=0

Ir,

where Ir = {l ∈ Z : vn − vr+1 ≤ l ≤ vn − (v − 1)vr}.

We count the number of values greater than or equal to (v− 1)vn−1 that fall in the range
specified in Lemma 4. From Lemma 3 this count gives the following result on the number
of values of linear complexities for which the lower bound is achieved for vn-periodic binary
sequences.

Lemma 5. For any v ∈ V2, the number of nonnegative integers λ such that there is a
binary sequence with least period vn and linear complexity λ that achieves the lower bound
in Theorem 1 for k = 1 is

vn−1 − 1

v − 1
+ n + 1.

Next we give an infinite family of binary sequences where the lower bound is met for a
single deletion and a single insertion.

Example 2. For a prime n, consider a 2n-periodic binary sequence A with linear complexity

λ = 2 + tn, where
2n − 2

2n
≤ t <

2n − 2

n
. (23)

Also, pick A so that a period (or a shift of a period) corresponds to the polynomial a(x) =
x(1 − x)2n−λr1(x)r2(x) · · · rt(x), where ri(x), 1 ≤ i ≤ t, are distinct irreducible polynomials
of degree n. We note that λ > 2n−1 and hence A has least period 2n. Since x2n

− x is
the product of all monic irreducible polynomials whose degrees divide n, the number of
irreducible polynomials of prime degree n in F2[x] is (2n − 2)/n. Now deleting the 0 at the
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beginning of each period results in Â with period 2n − 1 corresponding to the polynomial
â(x) = (1 − x)2n−λr1(x) · · · rt(x). From equation (23) we have λ < 2n. Hence

λ(Â) = deg

(

1 − x2n−1

gcd(1 − x2n−1, â(x))

)

= 2n − 1 − (nt + 1) = 2n − λ,

which achieves the lower bound in Theorem 1. We can also find examples for one symbol
insertion by choosing λ < 2n−1 in equation (23) and switching the roles of A and Â.

Remark 3. For a 2n-periodic binary sequence A, minsub(A) = 1 if and only if λ(A) = 2n.
From Example 2 we note that there exist sequences with minerror(A) = 1 even when 2n−1 <
λ(A) < 2n. Hence these sequences serve as examples where minerror(A) < minsub(A) and
also achieve the lower bound in Corollary 3(i).

Next we use a different approach to give examples where the least period of the sequence
over Fq is used and where a set of k substitutions yields the lower bound. With this approach
we can find examples where the lower bound is achieved for nonbinary periodic sequences
where the period is not necessarily a power of the characteristic. The following result is
needed for the next example. If S and R are two periodic sequences with the same period,
let d(S,R) denote the Hamming distance between a period of S and a period of R.

Lemma 6. Let S be a sequence with least period T and minimal polynomial f(x) ∈ Fq[x]
of degree m. Let s(x) be the polynomial corresponding to a single period as in equation (1).
Then the sequence S ′ represented by s(xl), l ∈ Z

+, has linear complexity ml and least period
T l. Also, if R is a different sequence of period T and R′ is the sequence represented by r(xl),
then d(S,R) = d(S ′, R′).

Proof. Let gcd(1 − xT , s(x)) = g(x) and s(x) = g(x)m(x). From equation (2), 1 − xT =
g(x)f(x) and gcd(f(x),m(x)) = 1. So gcd(f(xl),m(xl)) = 1 which implies that gcd(1 −
xT l, s(xl)) = g(xl). So

λ(S ′) = deg

(

1 − xT l

gcd(1 − xT l, s(xl))

)

= deg

(

f(xl).g(xl)

g(xl)

)

= ml.

We note that a single period of sequence S ′ corresponding to s(xl) can be obtained by
placing l − 1 zeroes after each element in one period of S. Hence the least period of S ′ is
T l if T is the least period of S. For the same reason, the single period Hamming distance
d(S,R) = d(S ′, R′) where R is a sequence with period T (which may not be its least period)
and R′ is the sequence corresponding to r(xl).

Example 3. Let k = 2, q = 5, and T = 6. We have 1− x6 = 4(4 +x)(1 + x)(1 + x + x2)(1 +
4x + x2), the factorization of 1− x6 into irreducible factors in F5[x]. Consider the sequences
S and R of least periods 6 and 2 respectively, corresponding to

s(x) =
(1 − x6)(2 + x)

1 + 4x + x2
= 2 + 3x + x2 + 3x3 + 2x4 + 4x5,

r(x) =
2(1 − x6)

1 + x
= 2 + 3x + 2x2 + 3x3 + 2x4 + 3x5.
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We have S = (231324)∞ and R = (232323)∞. Here the Hamming distance of one period is
d(S,R) = 2. It is straightforward to check that λ(S) = 2 and λ(R) = 1. From Lemma 6,
considering S ′, R′ corresponding to s(xl), r(xl), l = 1, 2, ..., we have λ(S ′) = 2l and λ(R′) = l.
Also, the least period of S ′ is 6l and the single period Hamming distance is d(S ′, R′) = 2.
The lower bound from Theorem 1 is (6l)/2 − λ(S ′) = 3l − 2l = l. This can be achieved by
considering R′ which can be obtained by two modifications in a single period of S ′. Also,
note that S ′ achieves the lower bound in Corollary 3(i) since T/(2λ(S ′)) = 6l/(4l) = 3/2
and d(S ′, R′) = 2.

6 Error Joint Linear Complexity Bounds

In this section we show that the bounds established in Corollary 1 also apply for periodic
multisequences over Fq. Let A = (A1, · · · , Am) denote the periodic multisequence of period
T consisting of m parallel streams of sequences Aj = (aj

0, · · · , aj
T−1), 1 ≤ j ≤ m, each of

period T . The joint linear complexity λ(A) of a periodic multisequence A is defined as
the length of the shortest LFSR that can generate each of the component sequences Aj,
1 ≤ j ≤ m, of the multisequence possibly with different initial states. The expected value
and variance of joint linear complexity of random periodic multisequences are determined
in [3, 11]. The counting functions of error complexity measures for finite multisequences are
studied in [13].

A given multisequence A consisting of m parallel streams over Fq can also be identified
with a single sequence A over Fqm (see page 84, [2]). The Fq-linear complexity of a sequence
A over Fqm is defined as the length of the shortest LFSR over Fqm with feedback coefficients
in Fq that can generate the sequence. Hence the joint linear complexity of a multisequence
over Fq is equal to the Fq-linear complexity of its corresponding single sequence over Fqm .
We can also see that the Fq-linear complexity of a sequence is greater than or equal to the
Fqm-linear complexity of the sequence. Hence we have

λ(A) ≥ λ(A), (24)

where λ(A) is the joint linear complexity of the multisequence A and λ(A) is the linear
complexity of the corresponding single sequence A over Fqm .

Meidl et al. [13] introduced error complexity measures for finite and periodic multise-
quences. If each component sequence of A is arranged in a row of a matrix, each column
can be identified with an element in Fqm . For any m-fold multisequence A over Fq, by A
denote the corresponding single sequence over Fqm .

Definition 5. The joint k-operation Fq-linear complexity, λ(q,k)(A), of a periodic multise-
quence A is defined as the minimum value of the joint linear complexities achievable by
performing at most k column-operations on the multisequence. A column-operation is a
substitution, an insertion, or a deletion of an entire column and hence can affect up to m
symbols in the multisequence.

Definition 6. The joint k-error linear complexity, λ(k)(A), of a periodic multisequence A

is defined as the minimum value of the joint linear complexities achievable by substituting
at most k symbols among all the mT elements in a single period of A.

12



Since allowing insertions and deletions in each component sequence may result in compo-
nent sequences of different periods we restrict the operations to substitutions in Definition 6.
We can also see that λ(k)(A) ≥ λ(q,k)(A).

Corollary 4. Let A be an m-fold multisequence over Fq of period T . Then we have

(i) λ(k)(A) ≥ λ(q,k)(A) ≥ min(λ(A), T/k − λ(A)) if the number of column deletions is
greater than or equal to the number of column insertions.

(ii) λ(k)(A) ≥ λ(q,k)(A) ≥ min(λ(A), (T + 1)/k − λ(A)) if the number of column deletions
is less than the number of column insertions.

Proof. Let A be the sequence over Fqm corresponding to the multisequence A over Fq.

Let Â be any m-fold multisequence obtained by performing any combination of up to k
substitutions, insertions, and deletions in each period of A and repeating the modified period.
From Corollary 1(i) we have

λ(Â) ≥ min

(

λ(A),
T

k
− λ(A)

)

,

if the number of deletions is greater than or equal to the number of insertions. In case
min(λ(A), T/k − λ(A)) = T/k − λ(A), from equation (24) we have

λ(q,k)(A) ≥ λ(Â)

≥
T

k
− λ(A)

≥
T

k
− λ(A).

If min(λ(A), T/k − λ(A)) = λ(A), from Case 2 of Theorem 1 we know that the modified
sequence must be the same as the original sequence. Thus the first statement of this corollary
is proved. The second statement follows using a similar argument as above.

Corollary 5. Let A be an m-fold multisequence over Fq of period T and Â be an m-fold
multisequence obtained by performing exactly k substitutions among all mT elements in a
single period of A. If l is the number of component sequences with at least one substitution,
then we have

λ(Â) ≥ min

(

λ(A),
T

k − l + 1
− λ(A)

)

.

Proof. Consider the arrangement of A in a matrix of order m × T , where each row is a
period of a component sequence and each column can be identified with an element in
Fqm . We can see that the joint linear complexity will not change if each of the component
sequences is cyclically shifted. Thus each of the l component sequences can be shifted so
that there is at least one column with l substitutions. As a result the single sequence A over
Fqm and the corresponding single sequence obtained by performing up to k substitutions
in the multisequence A differ in at most k − l + 1 positions. So the result follows from
Corollary 4.

13



From equation (24) and Corollary 4 using a similar argument as in Corollary 2 we obtain
the following result.

Corollary 6. Let A be an m-fold multisequence over Fq of period T and let A be its corre-
sponding single sequence over Fqm. Suppose there is an r ∈ Fqm that occurs t > T/2 times
in a single period of A.

(i) If r = 0, then λ(A) ≤ T/2(T − t) or λ(A) ≥ T/(T − t).

(ii) If r 6= 0, then λ(A) ≤ T/2(T − t) or λ(A) ≥ T/(T − t) − 1.

Next we extend the bounds obtained for minerror(A) for single sequences to multise-
quences. Let minerror(q)(A) denote the minimum value of k so that λ(q,k)(A) < λ(A) and
let minsub(A) denote the minimum value of k so that λ(k)(A) < λ(A).

Lemma 7. Let A be an m-fold multisequence over Fq of period T = pn. Set the integer
c = max{λ({aj

i}) : 1 ≤ j ≤ m} and l = |{j : λ({aj
i}) = c, 1 ≤ j ≤ m}|. Then

(i) minsub(A) = l · Prod(T − λ(A)).

(ii) minerror(q)(A) ≤ l · Prod(T − λ(A)) with equality holding when l = 1.

Proof. If T = pn, the minimal connection polynomial of a sequence with linear complexity
λ is (1 − x)λ. Since the joint minimal connection polynomial is the LCM of the minimal
connection polynomials of all the component sequences, the joint linear complexity is c. If
there are l sequences with linear complexity c, to lower the joint linear complexity, the linear
complexity of all of the l sequences must be lowered due to the special form of connection
polynomials and hence (i) follows. By shifting the l component sequences, k symbol substi-
tutions among mT elements can be affected using k − l + 1 column substitutions when A is
arranged in the form of a matrix of order m × T . Using this observation and the inequality
minerror(q)(A) ≤ minsub(A), (ii) follows from (i).

From Corollary 4 and Lemma 7, using a similar argument as in Corollary 3 we have the
following result.

Corollary 7. Let A be an m-fold multisequence over Fq of period T . We have

(i) minsub(A) ≥ minerror(q)(A) > T/(2λ(A)).

(ii) If T = pn for some n ∈ Z
+, then

T

2λ(A)
< minerror(q)(A) ≤ l · Prod(T − λ(A)),

where l is as in Lemma 7.
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7 N-adic Complexity Preliminaries

Klapper and Goresky [7] introduced FCSRs as a class of sequence generators with analogs
of several properties of LFSRs. FCSRs are similar to LFSRs but with an additional memory
register and generate sequences over {0, · · · , N − 1}, N ≥ 2. An FCSR is characterized by
a connection number q, gcd(q,N) = 1, which determines the number of cells in the main
register and the coefficients of taps on the main register for the feedback function. Any
sequence generated by such an FCSR is the coefficient sequence of an N -adic integer p/q for
some p ∈ Z

+. The following lemma is due to Xu [17].

Lemma 8. Let A = (a0, a1, · · · ) be a sequence over {0, · · · , N − 1} and let −p/q be the
rational representation of the N -adic integer

∑∞

i=0 aiN
i associated with A. Then

(i) gcd(N, q) = 1.

(ii) A is eventually periodic.

(iii) p/q = 1 if and only if A = (N − 1, N − 1, · · · ).

(iv) A is strictly periodic if and only if 0 ≤ p ≤ q.

Next we define the N -adic complexity of a periodic sequence.

Definition 7. Let A be a periodic N -ary sequence, N ≥ 2, with reduced rational represen-
tation −p/q. Then the N -adic complexity of A is the real number

λN(A) = max(logN(|p|), logN(|q|)).

The N -adic complexity is not exactly the size of an FCSR because N -adic complexity
does not include the size of the memory register. The N -adic span is defined as the number
of N -ary cells used over an infinite execution of an FCSR. However, it has been shown that
the N -adic span and N -adic complexity differ at most by O(logN(λN(A))) (Theorem 3.4.3,
[17]). Hence for practical purposes the N -adic complexity is a reasonable estimate for the
size of an FCSR.

Let A = (a0, · · · , aT−1)
∞ be a T -periodic sequence over {0, · · · , N − 1}, N ≥ 2. Let

a(N) = a0 + a1N + ... + aT−1N
T−1 be the integer corresponding to sequence A. Thus a(N)

is an ordinary integer and a0, · · · , aT−1 are the coefficients in its N -ary expansion. The
sequence A can be represented as the N -adic number

∑

i≥0

aiN
i = −

a(N)

NT − 1
= −

p

q
, gcd(p, q) = 1, 0 ≤ p ≤ q. (25)

The N -adic complexity of A is

λN(A) = logN

(

NT − 1

gcd(a(N), NT − 1)

)

= logN(q).

We have that
λN(A) ≤ logN(NT − 1).

We need the following lemma to derive bounds for N -adic complexity. The proof is due
to Hu and Feng [5].

15



Lemma 9. Let u and v be integers with 0 ≤ u ≤ v and v 6= 0. Let h be a nonzero integer
and ((uh) mod v)/v = u′/v′ where (uh) mod v means the reduced residue of uh modulo v,
and 0 ≤ u′ ≤ v′, v′ 6= 0. Then

v′

gcd(u′, v′)
≤

v

gcd(u, v)
. (26)

The equality in equation (26) holds if and only if

gcd (h, v/ gcd(u, v)) = 1.

From Lemma 1 it is straightforward to show that

λN(A) = λN(A−s), 1 ≤ s ≤ T − 1.

8 Error N-adic Complexity Bounds

We use the notation established for Theorem 1 in Section 3. We also retain the notation in
Section 7.

Theorem 2. Let A be a sequence over {0, · · · , N} of period T and let Â be a sequence
obtained after any combination of k substitutions, insertions, and deletions is performed on
a single period of A and repeated periodically. Then

(1) λN(Â) > min(λN(A), T/k − λN(A) − 2 − logN(2/(N − 1))) if the number of deletions
is greater than or equal to the number of insertions.

(2) λN(Â) > min(λN(A), (T + 1)/k − λN(A) − 2 − logN(2/(N − 1))) if the number of
deletions is less than the number of insertions.

Proof. Let
â(N) = â0 + â1N + · · · + âT+kI−kD−1N

T+kI−kD

be the integer corresponding to the new sequence as in equation (25). Now the modified
sequence Â corresponds to the N -adic number

∑

i≥0

âiN
i = −

â(N)

NT+kI−kD − 1
. (27)

We consider two cases based on whether the number of insertions is greater than the number
of deletions.

Case 1: kI ≤ kD

Let
B(N) = NkD−kI â(N) − a(N), (28)

and
S(N) = at

k′
+1N

t
k′

+1 + · · · + aT−1N
T−1
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be the sum of the leading T − tk′ − 1 terms in the N -adic expansion of a(N). Set

f(N) = NkD−kI â(N) − S(N)

and e(N) = a(N) − S(N). The T coefficients in the N -ary expansion of NkD−kI â(N) are

0, · · · , 0, â0, â1, · · · , âT+kI−kD−1,

where there are kD − kI zeroes before â0. The last T − 1 − tk′ coefficients are unchanged
from A, so equal the last T − 1 − tk′ coefficients in the N -ary expansion of a(N), so also of
S(N). Since these are all the coefficients of S(N), we have

0 ≤ f(N) ≤ N t
k′

+1 − NkD−kI .

Also, each nonzero coefficient in the N -ary expansion of S(N) is the coefficient of the same
degree term of a(N), so that

0 ≤ e(N) ≤ N t
k′

+1 − 1.

Thus we have

|B(N)| = |f(N) − e(N)| ≤ max(f(N), e(N)) ≤ N t
k′

+1 − 1. (29)

From equations (25), (27) and (28) we have

∑

i≥0

âiN
i = −

â(N)

NT+kI−kD − 1

= −
NkI−kD(a(N) + B(N))

NT+kI−kD − 1

= −
(p(NT − 1))/q + B(N)

NT − NkD−kI

.

Let

−
u

v
= −

p(NT − 1)/q + B(N)

NT − NkD−kI

,

where 0 ≤ u ≤ v, v 6= 0, and gcd(u, v) = 1. We consider the following two cases.

Case 1a: (p(NkD−kI − 1) + qB(N)) 6≡ 0 mod (NT − NkD−kI )
By Lemma 9, with h = q we have

v ≥
NT − NkD−kI

gcd(NT − NkD−kI , |p(NkD−kI − 1) + qB(N)|)

≥
NT − NkD−kI

|p(NkD−kI − 1) + qB(N)|
.

(30)

Since kD ≤ tk′ + 1, from equation (29) we have

|p(NkD−kI − 1) + qB(N)| < 2qN t
k′

+1. (31)
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From equations (8), (30), and (31) we have

logN(v) > logN(NT − NkD−kI ) − logN 2 − λN(A) − tk′ − 1

≥ logN(NT − NT−1) − logN 2 − λN(A) −
(k − 1)T

k
− 1

≥
T

k
+ logN

(

N − 1

N

)

− logN 2 − λN(A) − 1.

(32)

Since λN(Â) = max(logN(|u|), logN(|v|)), we have

λN(Â) >
T

k
− λN(A) − 2 − logN

(

2

N − 1

)

. (33)

Case 1b: (p(NkD−kI − 1) + qB(N)) ≡ 0 mod (NT − NkD−kI )
If λN(A) + 2 + logN(2/(N − 1)) ≥ T/k, then the right hand side of equation (33) is at most
0 and so the result is trivial. Hence we may assume that

λN(A) + 2 +
2

N − 1
<

T

k
. (34)

We have
p(NkD−kI − 1) + qB(N) = l(NT − NkD−kI ), (35)

for some l ∈ N. From equations (8), (31), (34), and (35) we have

logN l ≤ logN(2qN t
k′

+1) − logN(NT − NkD−kI )

≤ λN(A) + logN(2) +
(k − 1)T

k
+ 1 − logN(NT − NT−1)

= λN(A) + 2 + logN

(

2

N − 1

)

−
T

k

< 0.

Thus l = 0. From equation (35) this implies that

p(NkD−kI − 1) + qB(N) = 0. (36)

From equation (36) using a similar derivation as in case 1b of Theorem 1 we can show that
Â = A. Thus Case 1 of the theorem is proved.

Case 2: kI > kD

By switching the roles of Â and A, using a similar derivation as in Case 2 of Theorem 1 we
have

λN(Â) >
T + 1

k
− λN(A) − 2 − logN

(

2

N − 1

)

.

Corollary 8. Let A be a sequence over {0, · · · , N} of period T and let Â be a sequence
obtained after any combination of up to k substitutions, insertions, and deletions is performed
on a single period of A and repeated periodically. Then
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(i) λN(Â) > min(λN(A), T/k − λN(A) − 2 − logN(2/(N − 1))) if the number of deletions
is greater than the number of insertions.

(ii) λN(Â) > min(λN(A), logN(NT −1)−(k−1)T/k−λN (A)−1) if the number of deletions
is equal to the number of insertions. (With N = 2, compare with Theorem 3 in [5])

(iii) λN(Â) > min(λN(A), (T + 1)/k − λN(A) − 2 − logN(2/(N − 1))) if the number of
deletions is less than the number of insertions.

Proof. Parts (i) and (iii) of the corollary follow from the same observation as in Corollary 1.
For part (ii), considering equation (31) with kD = kI , we have |p(NkD−kI − 1) + qB(N)| ≤
qN t

k′
+1. So from equation (32) with kD = kI we have

λN(Â) > min

(

λN(A), logN(NT − 1) −
(k − 1)T

k
− λN(A) − 1

)

.

In Corollary 8 we note that for N = 2, the term logN(2/(N − 1)) = 1 and for N > 2,
−1 < logN(2/(N − 1)) ≤ 0 and can be ignored in stating the bound.

Corollary 9. Let A be a sequence over {0, · · · , N − 1} of period T . Suppose there is an
r ∈ {0, · · · , N − 1} that occurs t > T/2 times in a single period of A.

(i) If r = 0 or r = N − 1 then

λN(A) ≤
1

2
·

(

logN(NT − 1) −
(T − t − 1)T

T − t
− 1

)

or

λN(A) >

(

logN(NT − 1) −
(T − t − 1)T

T − t
− 1

)

.

(ii) If r 6= 0 and r 6= N − 1 then

λN(A) ≤
1

2
·

(

logN(NT − 1) −
(T − t − 1)T

T − t
− 1

)

or

λN(A) >

(

logN(NT − 1) −
(T − t − 1)T

T − t
− 1

)

− 1.

Proof. From Corollary 8(ii) using an argument similar to the one in Corollary 2 we obtain
the result when r = 0. Unlike the linear complexity case, the bound does not change when
r = N − 1 since the all N − 1 sequence has N -adic complexity 0. But when r 6∈ {0, N − 1}
the maximum value for the N -adic complexity of an all r sequence, r ∈ {1, · · · , N − 2},
is logN(N − 1) < 1. From this the bound follows using an argument similar to the one in
Corollary 2(ii).

Considering logN(NT − 1) − (T − t − 1)T/(T − t) ≈ T/(T − t) we note that the bounds
in Corollary 9 are similar to the linear complexity bounds in Corollary 2.
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Corollary 10. By minerrorN(A) denote the minimum number of operations required to
decrease the N -adic complexity of A. Then,

(i) minerrorN(A) satisfies

minerrorN(A) >
T

2λN(A) + 3
.

(ii) If minerrorN(A) = T − t0 or minerrorN(A) = T − tN−1 where ti is the number of
occurrences of i in A, we have

minerrorN(A) >
T

λN(A) + 2
.

Proof. We note that for each of the three cases in Corollary 8 the second term in the minimum
is greater than or equal to T/k−λN(A)−3. Using this we obtain the bound in part (i) by an
argument similar to the one in Corollary 3. Using part (i), Corollary 9(i) and an argument
similar to the one in Corollary 3 we obtain the bound in part (ii).

9 Conclusion

A derivation of non-trivial lower bounds for the linear complexity of a sequence over Fq

obtained by performing k or fewer operations on a single period of a periodic sequence is
presented, where an operation is a substitution, insertion or a deletion of a symbol. The
bounds are useful when the linear complexity of the original sequence is less then T/k and
greater than T/2k where T is the period. Several infinite families where the bounds are tight
are given for small k. Since the information about the positions and the corresponding values
of the new elements to be inserted, deleted or substituted is not used, the bounds are not
always tight. However, it is interesting to see that the bounds using any combination of the
three operations are similar to those proved by Jiang et al. when only one type of operation
at a time is allowed [6]. In fact the three bounds they derived for k symbol substitution,
insertion and deletion are corollaries of Theorem 1 of this paper.

Non-trivial lower bounds for the N -adic complexity of sequences over {0, · · · , N − 1}
are also derived. It is interesting to note that the bounds derived in the N -adic case and
the bounds derived in the linear complexity case differ by a small constant even though the
derivation in the former case involves additions with carry. Finding bounds for the joint
N -adic complexity is an interesting future problem.
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