Lower Boumds on String-Matching

Ming Lif

TR 84-636
September 1984

Department of Computer Science
Cornell University
Ithaca, New York 14853

fThis work was supported in part by an NSF grant MCS-8301766.

Lower bounds on string-matching

Ming Li*
Department of Computer Science
Cornell University
Ithaca, New York 14853

Abstract

New techniques for obtaining lower bounds on string-matching problems are

developed and we prove the following new results.

String-matching cannot be performed by a three-head one-way deterministic
finite automaton. This answers the k=3 case of the open question, due to Galil
and Seiferas [GS], whether a k-head one-way deterministic finite automaton can

perform string-matching.

String-matching by a k-head two-way DFA with k-1 heads blind (can only see

two end symbols) is studied, tight upper and lower bounds are provided.

Probabilistically moving a string on one tape (requiring n? time.) is harder than
probabilistically matching two strings on 1 tape. Notice that this is not true for
deterministic or even nondeterministic TMs. This is the first result showing that

checking is easier than generating.

* This work was supported in part by an NSF grant MCS-8301766.

1. Introduction

The string-matching problem is defined as follows: given a character string z,
called the pattern and a character string y, called the tezt, find all occurrences of z
as a subword of y, as defined in [GS] and [LY]. It is well known that the string-

matching problem is very important in practice.

Since the linear algorithms by [KMP] and [BM], there has been a constant
effort to search for better algorithms to run in real time and save space. Finally, in
[GS], Galil and Seiferas showed that string-matching can be performed by a six-head
two-way deterministic finite automaton in linear time. They notice that a multi-
head one-way deterministic finite automaton must operate in linear time.
Motivated by this observation they ask whether a multi-head one-way deterministic
finite automaton can perform string-matching. And in [LY], we negatively
answered this question for the case of two heads. Efforts have been made on the
k>2 cases, but even the k==3 case has not been solved. It is believed that a solution

to the case of k=3 would give some important insights for the general case.

In this paper we develop new techniques and negatively settle the case of k=3.
We hope the method used here combined with that of [LY] would help to provide

useful techniques for the general problem.

Besides above, we also study string-matching by 2-way k-head DFA with k-1
heads blind in section 4, and probabilistic matching and moving strings on one Tur-

ing machine tape in section 5.

2. Preliminaries and Notation

We shall denote a k-head one-way deterministic finite automaton by k-DFA.
A k-DFA M has a finite set Q of states, a subset A of @ of accepting states, &
heads h,hy, - - -, by (which may see each other), a transition function, and a one
way read only input tape. We assume that the standard input to M,
#pattern$text ¢ where pattern text€XL” for the alphabet £={0,1}, and # and ¢,
are the left and right endmarkers, respectively. Initially, all ¥ heads are on the left-
most tape position. At each step, depending on the current state and the ordered
k-tuple of symbols seen by the heads khy, hy, - - -, by, M changes state and moves

some of the heads one position to the right. If during |Q |+ 1 consecutive steps no

-3-

head is moved we know that no head will ever move again. We can modify M so
that whenever this situation occurs, all heads move to the right until they reach the
right end-marker. Hence we assume that on each input all heads will eventually

reach the right end-marker, and M halts when this happens.
In [GS], it was not explicitly defined how should a k-DFA report all occurrences

of the pattern; Here we will adopt the weakest assumption (which is the hardest for

the lower bound proof.): we say k-DFA M performs string-matching correctly if,

M is in some final states in A for exactly ¢ steps iff the pattern occurs in

the text for exactly ¢ times.
Notice that we do not even require M to report a matching right after finding it.
Concerning the Yes&No recognition version, we can also define L, to be the
language that pattern occurs in the text at least k times. We can show that L, say
for k>9, is not recognizable by a 3-DFA. (We can do better than this, but with

more effort.)

An ID of M on input m is the k+ 2 tuple: (m,q,i,,95, . .., 1) where ¢ is a
state and f; for 1< <k is the position of the j-f}\ head. Clearly 1<+, < |m | for
1<j<k. The initial ID of M on input m is (m,q,, 1,1, - - -, 1). The computation
of M on m is the sequence of ID’s reached by M on input m, starting from the ini-
tial ID. A partial ID of M on input m at step t is (m',q,¢y,...,4), where m’ is the

suffix of m which is not seen by some head(s) of M yet.

Let I, and I, be ID's. We write I,}—I, if M, started in ID I;, in one step
reaches ID I,. We write I;}—, Iy if I,=1, or if M, started in ID I, reaches ID I, in

a finite number of steps. By k-NFA we shall denote the nondeterministic version of
a k-DFA.

Let z and y be binary strings. We write z=y if they are the same binary
string. |z | denotes the length of z. Superscripts will be used to denote the same
string of different occurrences on the input tape. Subscripts will be used to denote

different binary strings.
After first used by W. Paul [P], the Kolmogorov-Complexity has played an

important role in the lower bound proofs. We define the Kolmogorov-complexity

(K-complexity) of a string z, denoted K(z), to be the length of the shortest

-4-

program that prints z (only). A string z is random if K(z)> |z |. The conditional
K-complexity of £ w.r.t. y, denoted by K(z |y), is the length of the shortest pro-
gram which, with extra information y, prints z. We state two simple well-known

facts without proof.

Factl: There exist random strings. As a matter of fact, most strings are ran-

dom.
Fact?2: If string wvw is random, then K{v |uw)> |v |-O(log |uvw |).

In the following the word ‘information’ only means some binary strings. The

‘amount of information’ means the total length of the strings.

3. Three 1-way heads cannot do string-matching

Some more technical definitions and conventions are needed for string-

matching.

For a 3-DFA M we will name the three heads &,, h;, h,. We will also use h;,
hs, and hy to mean the leading head, the second head, and the last head in a
specific time, respectively. So h,, h;, and h, are fixed names, whereas hy, h,, and

h s are only transient names.

Let z be a string (a segment of the input of M) of length greater than 0. At a
particular step in the simulation of M, we make following definitions. p(h;)=z=
denotes that the position of h; is at the last bit of the z; p(h;)>z means that h;
passed the last bit of z; p(kh;)<z means that h; did not reach the first bit of z.
The uniqueness of string z will be clear from the context, and if there are more

than one possible z's, we always mean the last.

ay always stands for the pattern which is going to be of form 1* X1¥ for some
X ,k,K¥ . And X will be always equally partitiohed into six parts X=zz,...74. In
general, given a string z;; ,, without explicit definition, we will always implicitly
assume that it is equally partitioned into six parts, and written as
;5 k1%ij.k2---Tij. ke With an extra same sized index. And when the ranges of the

indices are not explicitly given, they are assumed to be from 1 to 6.

Let z and y be string segments on the input tape. We say z matches y if

there is a time that one head, say h;, of M is at £ and another head, say 'h]-, isat y

-5-

simultaneously (excluding the first bit and last bit of z and y). If y is just another
occurrence of z then we say this (occurrence of) z is matched, or matched by
(h;,h;). We also say (h;,h;) did the matching. Let z!=2? (which are just different
occurrences of same string z at different places) be two segments on the input tape.
We say z! is matched_to z? if there is a sequence of occurrences of z’s starting from
z!, ending with 22, each matches the next. An occurrence of z is well-matched if

this occurrence of z is matched to the z of a,.

The tezt in the input # 1F X1¥ $textd is easy if: it can be constructed by X
plus O(log | X |) more information, and there is a constant Cy (<<k,F) not
depending on k, or ¥ such that each head position in the ezt can be described by
|k |+ Cy information, and further if a head % is in an‘occurrence of X in the text
then p(h) can be specified by Cylog |X | information. As a matter of fact, the
reader may simply assume that texf will be consisted (almost) of blocks of 1™ X'1™’s
(or 1™ X' , where X' is some prefix of X) and 1™ I@ b separated by single 0’s. An

easy text and a hard pattern is vital in our proof.

Although the proof of next theorem is tediously long and complicated, the idea
behind it is simple. It came from one observation: Let kX¥ be a K-random string.
Suppose that there is a time that all three heads left the pattern 1¥*X1¥ and no
head is readingk ¢ sign, the text is easy, and two heads are reading some occurrences
of X, then we would lose the information of either k or ¥ . At this time we attach
1'X1’ by the end of the tezt, if the machine does string-matching correctly, we
would be able to recover k and ¥ by finding the minimum [and ¥ s.t. the
machine finds one more matching. Therefore we show that kXK is not random. So
our goals are to (1) make tezt easy and (2) drive the heads out of pattern (or 1% of
pattern). To make tezt easy we construct text to be (almost) a sequence of ¢;’s
and block of 1's, where a;=1™ X 1™ for some non-random m greater than &,k ; To
drive the heads out of the pattern, we have to do an exhaustive adversary proof.
We will try to construct ‘bad’ (but easy) inputs to fool the head out of pattern.
Many cases have to be considered. But this is natural since the lower bound is basi-
cally a universal problem: all 3-DFA’s do not do string-matching correctly. With
the goal of ‘constructing an easier tezt than the pattern’ in mind, we start our

proof. Drawing some pictures will be very very helpful in understanding the proofs.

-6 -

Theorem 1 No 3-DFA can do string-matching correctly.

Proof : Suppose a 3-DFA M performs string-matching correctly, we will derive
a contradiction. Fix a long enough Kolmogorov-random string Y. We will show
that Y is not random for a contradiction. Divide Y=kXk’, where |k |=|K | and
IXV4>> k|, 1X|>>|X |3 and |k|>>log |X|. Let m=min{2/ |2/ >k ¥ }.
X is divided into z,2,237,252¢ of equal length as assumed above (and so is each
sub-string). We will only consider inputs of form # 1*X1¥ $tezt¢ to M. We will
always denote the pattern 1*X1¥ to be a,, which contains exactly information of
Y. We will always assume that we are in the process of simulating M.

We need the following strategy P to play our adversary proof. The purpose of
P is to either drive hy or hj out from certain area or to obtain an invariant value
such that after h, passed a block of 1's, many more 1's can be added without
changing the status of M. And this block of 1's can be used to recover k if it is fol-
lowed by X1™. For the easiness to understand, one may want to read P later when

P is called. v '
P(z): Given #ag$tezt¢ on tape, p(h;)=test with corresponding state of M

—_—

and ho,h 4 positions.

i:=1; append b;=1"1210 to the input (before ¢);

while S,V SV S3 ~true do;
=i+ 1;
append b;=1™ @ |0;
continue to simulate M until p(A;)="5;0;

od;

Where the three predicates are defined as below,

S,: a matching of one occurrence of x (input of P) to some other occurrence of
x by (ho,h3) happens in thé last period of simulation {last while loop);

So: in the last period of simulation, (1) hy,h3 read only 1’s, non of them moved
> |Q | steps; or (2) ho(hg) read X or 0 and did not move, and hz(h,) read only
1's and moved < |Q |+ 1 steps; or (3) both ky and A3 read X or 0 at beginning,

and they did not move.

-7-

S,: hy and h, are separated by only blocks of 1’s (separated by a single 0).

If S, is true, then there exist constants Cy,Co<|@ |+ 1 such that for all I,

Ot 102 i the input, M is in a fixed state with same

replacing the last b; by a=1
ho,hg positions when p(h;)=a. We replace the last appended 1™1Q1o by

as =19*1*C2x 1m where =1 at this moment. If S, or S; is true, we do nothing.

end_P.

Remark 1: (1) Only one of S;’s can be true; (2) The number of times that the
while loop to be executed is only O(|X |+ # of 1 blocks in the input), assuming we
have only less than C (a fixed constant not depending on the pattern) occurrences
of X's in the text. Therefore after executing P for constant number of times, the

tezt is still easy; (3) If S, is true then varying / does not affect the behavior of M.

Four lemmas are needed. Note: the g;’s used in each of the following lemmas
are all ‘local’, that is, they have no relation with any a;’s used in the proof of other
lemmas or of the main theorem.

Lemma 1: If the tezt is easy and z is any segment of X such that
|z |> |X |2, and no more than C occurrences of z exist in tezt for some constant
C <<log|k |, then for z in each occurrence of the pattern (i.e. 1*X1¥) in tezt, z
must be well-matched.

Note: There can be only one z occurring in X, or else X can not be random.

Proof of Lemmal: Let z' for 1=1,2,...1,, be all the occurrences of z which
are not well-matched in the tezt. Now for each z', we record 3 pairs of information

for 3 heads,

h, pair: (positions of h, and h, and state of M when A, first time at first
bit of this occurrence of z', positions of k, and h, and state of M when h, first

time leave this z'.);
hy pair: exchange h, and h; in above;
h. pair: exchange h, and h, in h,’s pair.

Now we show Y is not random. For input Y’,

-8 -

(1) Compare Y’ with Y except the z part which we do not need.
(2) Construct the pattern and the text with z’ of Y’ (the corresponding part of z)

replacing all z! in above. Then for each of the above three pairs, starting from the
first component, we simulate M until some ID of M coincides (matches) the second

component of the pair. If there is no such coincidence we reject this Y'.

If Y’ passed tests (1) and (2), then Y’=Y. And notice that the amount of infor-
mation (X-z, O(log |X |) information, k,,h;,h, pairs for each z!) we used in above
program is less than |Y | because of the assumption |X |'/4>> |k | and the fact
Iz |>|X |2 O (of Lemma 1)

Remark?2: Lemma 1 is true for a k-NFA, for any k. Combined with the ideas
from [YR] the proof of a theorem of Yao and Rivest [YR] which says that k-DFA is
better than k-1-DFA can ba be simplified.

The next lemma to be proved suggests the basic idea of the proof of our main

result.

Lemma 2: If the text of an input is easy, and at some step two heads of M
are in some (matching) X's in tezt, the other head’s position can be described in |k |
long information and it is neither in 1¥ of g nor at the ¢ sign, then Y is not ran-

dom.

Proof of Lemma2: The partial current ID (current ID without the part that
no head can see any more) at this time can be specified by the following short infor-
mation of less than |X |+ 2(|k |+ |¥ |)/3 long: X, O(log |Y |) for constructing text
and for specifying 2 matching head positions, |k | for the third head position if it is
not in aq or |k' | if the third head is in aq (If it is in X of a, then specify |k’ | and
need log | X | for the position, if it is in k' of ay then only specify the distance from
this head to the $ sign.). We then find the smallest + and j such that after append-
ing 01°' X'17 at the end of the input (before ¢ sign) M would find one more instance
of a,. (We start simulating M from above partial ID.) So we know k=1 and k’'=j.
And Y is not random because we can reconstruct Y with less than |Y | information.

O (of Lemma 2)

Remark3: The conditions of Lemma 2 can be changed; for example, one head
is in X of ag, one head in X in tezt, and the third head is not in 1* of ay and has a

short |k |/2 description for its position. Since the idea of the proofs is the same, in

-9-

the following if we meet similar situations we will simply refer to Lemma 2.

Lemma 3: For input #a 3text¢ where text is easy, if there is a time of M

such that p(k3)>(1% of ag), and p(h;)<¢, then Y is not random.
Proof of Lemma3: Append a,0a50a3a,0 after text and before ¢, where
g;=1mX1™ for i=1,..,4. Consider first time p(h,)=a,0,
(1) hy,h, did some matching, we are done by using the proof of Lemma 2; (Notice
that A5 is behind h,.)
(2) z, of some g; .5 is matched by (hg,h;) or (hshs), then p(hg)>(z5 of ay).
Append as0...a40 after tezt and before ¢, and consider time p(h;)=a30,

(2.1) If there is an #>4 such that z, of ¢; is matched to z, of some other a;,
then either p(h3)>$ or h;,ky did the matching. In both cases, we are done by

Lemma 2.
(2.2) If no z, of any ;4 is matched, we apply P(z):
(2.2.1) If S, is true, then p(h3)>$, we are done by Lemma 2.

(2.2.2) If S4 is true, then trivially, z; in a;5 4 cannot be matched.

C‘H’C’XI"', where /=1 at

(2.2.3) If Sy is true, P appends input with a; =1
this moment and it is subjected to change. Continue to simulate M starting

from p(hl)—_--lc1+ *C2 and consider the time when first z, is matched (for some

a;>5),

(2.2.3.1) The matching happened before h, reaches a,: If the matching is
done by hg,hy, then p(h3)>$, we can vary / and m in a; to find k¥ and ¥ asin
Lemma 2, showing Y is not random; If it is done by h kg, then we can decide k
and ¥ from |k | information (for p(hj)) plus log |X | information by varying ! and

m in a; as above; If the matching is done by hg,ho, then p(h3)>$, if when the

matching happens p(h,)=¢, then we decide k¥ from varying [, otherwise plh))<¢
and we apply lemma 2. ' a

(2.2.3.2) hy reaches a; before any matching of z, happens, but then 4 z,’s in
@s,a4,a7,ag are not matched to anything, trivial argument shows that some z,; in

some g; -, 4 cannot be well-matched for this input.

-10 -

(3) No z4 of a; .5 is matched, we apply P(z,),

(3.1) If S, is true, apply cases (1) and (2);

(3.2) If S5 is true, no more matching is possible;

(3.3) If S, is true, then, replacing z, by z, same argument of (2.2.3) can be
applied except: in (2.2.3.1) if the matching is done by (hj3,h,) then p(h3)>(z3 of
a,), we apply the process of case (2); and if the matching is done by (h3,ho) then
p(h3)>(z3 of ay), if p(h,)=¢ when the matching happens, we decide k¥ from vary-
ing !, and if p(h,)<¢ at the time of matching, we again apply the process of (2).
O (of Lemma 3)

Lemma 4: In an input #ay$textyd, Let tezt be easy. If for some ;>0, and
{—ab...c with each of a,b, - - - ,c ranging from 1 to 6, z; <p(h,),p(hy) < ¢, where

z; is in ¢;, and this z; is not well-matched (to ay) and not matched to z; of any g
s.t. ho can still see z; of ¢;, and |z; |> |X |/1000, then Y is not random.
Proof of Lemma4: Consider first time p(h)=tezt (just before ¢).
(1) If any matching of X happened by (h3,hs) or (h3,h,), then p(hs)>(1% of ay)

and we are done by Lemma 3.

(2) If k4 did not join any matching of X, then z; is not matched yet. If h, and A,

are only separated by blocks of 1's, then z; cannot be well-matched for this input.
(*) Now we apply P(z;):
If S, is true, then p(h3)>(1* of ag), we are done by Lemma 3;

If S, is true, then z; cannot be well-matched for this input, contradicting to

Lemma 1;

If S, is true, then P appended a; =19%1C%xm to the input. We continue
to run M until p(h;)=(X of a;):

(2.1) If p(h3) involved in the matching of X of g¢;, then we are done by

Lemma 3. Otherwise,

(2.2) If some z;; of a; is not well-matched, then z;; of a; has to be at
least matched once more by (hyhs) before h, reaches a;. (Otherwise,
T, %ing, T of a; and a; cannot be all well-matched by only 2 heads left since

z; of a; and a; are not matched to each other.) But when the matching

- 11 -

happens, if h, is at ¢, we can vary ! to find k, by the method of Lemma 2,
concluding Y is not random; If &, is not at ¢, we apply Lemma 3. (Or simply

append 1° X'1* with smallest s and ¢ to get k¥ .)
(2.3) If all z;;’s of a; are matched to some @a,’s, then

2.3.1) If h, joined matching, then p(h)>(1k of ay), we apply Lemma
3 3 0

(2.3.2) If (hy,h,) matched all z;’s of a;, then we take away the part

Tigi5i6%i+1.-2gl™ from a;, then repeat (*)’s process in above recursively.

Notice that (2.3.2) above can not happen more than 10 times (no more than
twice if one is careful) obviously since at least one ¢; (with a full occurrence of X)
has to be jumped over each time (2.3) is true. Also notice that in this process when-

ever hjy joins the matching, we stop and apply Lemma 3. O (of lemma 4)

Now we continue our proof of Theorem 1. Let the fezt be a,0a50...a50 (not
relevant to any ¢; in above lemmas) temporarily, where ¢;=1" X1™ for i=1,...,6.
We will only consider the cases where p(h3)<(1* of a,) because of Lemma 3. Con-

sider the time p(h;)==4a,0.
(1) All z;’s of a, are matched (by hj,h;), then there is a time of M such that

p(h)=(z5 of a;), and p(hgy)>(z, of ap). Change a, to 1™ z;z9 and consider time

p(h,)=a50 for the new input. There must exist an z, in @, not matched to any-

thing else yet (if p(h3)<(1¥ of ag)). Now consider p(h,)=ag0:

(1.1) If, for j=1,..,6, all z,; of a, are matched to some g;,’s, we find the
smallest 7 such that z,, of a, is matched to z,4 of ¢;. Change text to

...ag0a30...q; ,01™ z,,...7, ,0¢

and simulate M until p(h,)=text.

Claim1.1: Let a, be the first such that z,, of a; matches z,; of a,, then for
j=2,..,8, z,; In any ¢,>, is not well-matched yet.

We then apply P(z,): If S, is true, then p(hs)>(1* of a,), we apply lemma 3;
If S; is true, 7,5 of a, cannot be well-matched, contradicting to Lemma 1; If S, 1s
true, P adds- g =199y 1™ to the input. Consider time p(h;)=(X of as).
(p(h3) should be still <(1¥of a;), otherwise we are done by lemma 3.)

-12 -

(1.1.1) (hy,hs) did not match z,5z,5 of a; to that of ay, and p(hg)>(z,5 of
ay), then z,5 and z,5 of a; have not been matched to anything yet, we apply
Lemma 4;

(1.1.2) (h,hy) matched one of z,5,2,6 of as to a;, or p(hy)<(z,5 of ay), then
T,1Zp2%,3 Of @g,a; are not matched to each other (z,7,92,3 of a; is not matched to
anything at all.) because when p(h,)=(z4 of g;) we have p(hy)>(z; of a;). Notice
that at this moment, for some j <4 z,; of a, is not well-matched yet, and neither
are I,,I,9,Z,3 of a;. They should be well-matched by (ho,k;). But some of
Zp;1 Tpj2r OT Tpig D ag has to be matched (to something) by (hq,h3) before hy goes
to a, since if h, reaches a, before doing any matching and then to make z,:,,2,.0,

/ 2 / pil7ps2
and z,;5 of a; well-matched one of z,;,2,;5, or z,;3 of e, cannot be well-matched
at the same time by Claim 1.1 and a straightforward exclusion argument. So we
assume (hy,h3) do some matching before hy goes to a;. But by the time of this
matching, if h, is not at ¢, we are done by Lemma 3; and if p(h;)=¢ we can vary [

to find k by the method of Lemma 2, showing Y is not random.
(1.2) If there exists j such that z,; is not matched to any ;4 then, _

(1.2.1) if there are h,¢>2 such that z,;, and z,;, in @¢; and ¢, are matched,

then p(ho)>a,, we apply Lemma 4,

(1.2.2) assuming p(hs)<a,, that is, above (1.2.1)’s condition is not true, we
apply P(z,):
(1.2.2.1) If S, is true, apply Lemma 3;
(1.2.2.2) If S5 is true, no more matching possible, contradicting to Lemma 1;

(1.2.2.3) If S, is true, we consider time p(h;)=(X of a;) (appended by P), if
hg is involved in the matching before h, reaches a; we are done by Lemma 3; Oth-
erwise, by the condition of (1.2.2) we can derive that there exists k=1 or 2, s.t. for
at least 2 a;55's, two 7, 's are not well-matched and they are not matched to each
other. We go on simulating M. If h, does not do any matching with k3 before going
to a;, then z,, or z,;, in one of the a;’s can not be well-matched (by a trivial
argument). If (hy,h3) do some matching before h, reaches a;, then as before, at the
moment of the matching, if p(h,)=¢, we vary ! to find k, concluding that Y is not

random (by the method of lemma 2); if p(h;)<¢, we apply Lemma 3.

- 13-

(2) Some z, in a, is not matched. we consider time p(h;)=a0, exactly same

P
argument as in (1.1)&(1.2) applies. (Change a5 to a;.) O (of Theorem 1)
Remark: The result here does not imply the result of [LY] directly since in
above proof we had to consider many occurrences of pattern in the text. We hope
the idea of easier text and harder pattern can suggest some possible approach to the

general k£ >3 case.

4. String-matching by a 2-way k-DFA with k-1 heads blind

A 2-way k-DFA is just like a k-DFA but each head can go both directions. We
assume that a 2-way k-DFA stops by entering a final state. A head is blind if it can

see only end-markers.

In [DG] it is proved that 2-way 2-DFA with one head blind cannot do string-
matching. Obviously 2-way 3-DFA with 2 heads blind can do string-matching.
Here in contrast to the impossibility result of Theorem 1, we prove a lower bound
~on tHe time to do string-matching required by a 2-way k-DFA with k-1 blind heads.
And we will also give an upper bound for some simple matching problem. We hope

this can shed some light on the other important open problem concerning the lower

bound of doing string-matching by a 2-wa§r 2-DF A.
Theorem 2: String-matching requires }(n2/logn) time for a k-head two way
DFA with k-1 heads blind, where n is the length of the input.

Proof : Suppose M does string-matching in o(n?%/logn) time, where M is a 2-

way k-DFA with k-1 blind heads. Let &, be the non-blind head and h,, . . ., h; be
the k-1 blind heads. Fix a long enough K-random string X and consider input
#X301X1x¢

on the input tape. Define the crossing sequence (c.s.) of A under a fixed position of
the input tape of M to be a sequence of items of form (state of M, positions of
Ry, . .., hy) which specifies the status of M when h; passes this position. Now con-
sider |X | c.s.’s under 0!X | If each one is of length greater than |X |/ k2log | X |,
then M takes O(n2/logn) time, a contradiction; Otherwise there exists a c.s. of
length less than |X |/k%log |X |. But than from this c.s., which can be described by
less than |X |/2 information, we can reconstruct X by a short program as follows:
For each X', form input #blank$0!XX'¢. Start to simulate M from the first item of

- 14 -

our short ¢.s., going only to the right. Each time A, runs back to the position of this
c.s. we match the current status of M against the next item of the c.s. and if they
match we take the following item in the c.s. and continue to simulate M from it
(Right turn only!). Thus if the simulation finishes with everything matches we can

conclude X’=X. O (of Theorem 2)

One may wonder whether this logn factor can be canceled. For this input the

answer is NO, as the next theorem demonstrates.

Theorem 3: 2-way 3-DFA with 2 heads blind can accept L={#x8$yx¢} in
time O(n?/logn).

Remark: It is proved in [LY] that L defined above cannot be accepted by a 1-
way 2-DFA. By a similar proof the language L'=={#a,8a,*a,*..#q;¢ | ag=gq; for
some 1}, defined and shown to be not acceptable by a 2-way 2-DFA with one head
blind in [DG], is acceptable in time n%/logn by a 2-way 4-DFA with three blind
heads.

Proof : We sketch an M accepting L with one regular head h, and two blind
heads h, and hs. To match fast, M will match block by block with each block
roughly logn long, where n is the length of input. Algorithm for M follows,

Step_0: hy,ho hg at # sign. hy (the counter) moves one step right.
Step_i:
Step_i.1: h, moves right one step, and (h>2,h3) double (times 2) the size of
the counter held by ko (still held by h, after modification). h, moves right one
more step (plus 1) if A, reads a one; If h, reads a zero h, does not move. If A,

did not pass the ¢ sign, then repeat stép_z'. 1, else go to step_i. 2. {Remember a
logn long block in a counter held by h,.}

Step_i.2: ho holds the counter and hjz goes to the $ sign. h, and k3 move
simultaneously to the left until h; reads # sign. h, and hj3 switch positions.

Then h, goes to ¢ sign. h; and hy go backward at the same time until h; reads

sign. {This places h, in the corresponding matching position in the text.}

- 15 -

Step_i.3: hy and hy decrease the counter, held by h,, by half (divide by 2).
If there is a remainder 1 then 4, mush read a L; If the division is even, then A,
must read a 0. h; moves one step left. Repeat Step_i.3 until the hy counter

becomes zero. {matching a block}

Step_i.4: h, goes back to the corresponding position for the next block in
the pattern with the help of hy and k3. To do this, remember current (after
step_i.3) distance between h, and the ¢ sign. Send h, back to pattern with
the same distance to the $ sign. This is actually the position of h; before
Step_i is started. Then repeat the process of Step_t.1 once more.) Go to

Step_i+ 1. {Re-set h, for next step (¢4 1).}

end.

By standard calculation, Step_i is repeated no more than |[pattern |/logn
times. For each repetition, Step_i requires O(n) time. Therefore total is O(n?). The

correctness of this algorithm is trivial to see. O

5. Probabilistic checking is easier than probabilistic generating

It has been an interesting philosophical question [W]: Is (probabilistic) checking
easier than (probabilistic) generating? For example, given matrix A, B, and C,
Freivalds showed (see [W]) that we can probabilistically check AB=C in n? time,
but no one knows how to calculate AB better than the Strassen’s or Pan’s algorithm
probabilistically (open problem 2.6 in [W]). Also similarly it is known [W] that
given polynomials p,(z),ps(z),ps(z), the probabilistic checking of
p(z)po(z)=ps(z) can also be done faster than the known generating (p3(z)) algo-
rithms. Here we shall provide an example which does show that checking is easier

than generating.

We will prove a lower bound which says a block cannot be moved faster than
n? time even with the help of a random number generator. We follow [G], a PTM is
a TM equipped with a random number generator. A PTM decides the next move
by a random choice from two possible branches. Language L is accepted by a PTM
P in time t(n) if there exist an €<1/2 such that if €L then P accepts z in with
probabillity greater than l1-¢ in time f(n), otherwise P accepts z with probability

- 16 -

less than € in time ¢#(n). In this section, we will solely consider the 1-tape proba-
bilistic machines (1-tape PTM’s) without an extra input tape, i.e., the input is

presented on this single work tape at the beginning of the computation.

It is a very interesting result by Freivalds [F] that a one tape PTM can match

two strings on 1 tape in time O(nlogn). In contrast we show the following.

Theorem 4: Consider a 1 tape PTM M, with input r# lz1g12 | presented on
its only working tape. We want M to move x to the 0’s positions, i.e., output
T# 217 where z# 12| stays at original position. Then for any fixed e<1/2,to do
this with error probability €, M requires (n?) time.

Proof of Theorem4: Assume M does the job in o(n?) time. We fix a K-
random string x of enough length. Consider the crossing sequences (c.s.) at the #
signs. If the number of computations is T (for all random sequences), then each
computation uses o(n?) time, in total it causes o(n?)#T elements of the c.s. at #
signs. Let e=1/2-6. Then there must exists a position ¢ at some # sign, s.t. the
c¢.s.’s at 1 are short, o(n) long (say, n/(10|M |)), for T'=(1-6)T computations, since
otherwise the total # of c.s.’s for all computations is going to be O(n%T), a con-

tradiction.

Suppose, we have above i. Then for those T’ computations, the c.s.’s at posi-
tion ¢ are shorter than n /10 |M |. Notice that each c.s. corresponds to one or more
computations that causing this c.s.. Among these T’ c.s.’s (there might be a lot
same c.s.’s), at least one c.s. corresponds to those computations where more than
half of them produce correct output, since otherwise the error probability exceeds
(1-6)/2>e.

But if above c.s. exists, we can give a short program to produce z as follows,
we generate all possible random strings to run M, pick out those computations
which match the c.s. at position i. The majority of these computations should out-
put z at the 0!2 | position, and our short program will output this z. The informa-
tion we need for this program is the c.s. of length n/10, logn for the #’s and 0’s,

total less than n, contradicting to the K-randomness of z. [(of Theorem 4)

Remark: Comparing to the nlogn probabilistic algorithm for accepting z# |z |z

(with any fixed small error €) on 1 tape by Freivalds [F], this lower bound gives us

- 17 -

an interesting conclusion: checking is indeed easier than generating. Notice that this
is not true for 1-tape deterministic or nondeterministic machines since a n? lower

bound for accepting the palindromes were proved long time ago by Hennie.

8. Open questions

| Clearly the important open problems are:

(1) Prove, for all k, k-DFA cannot do string-matching; and

(2) Give nontrivial lower or upper bounds for string-matching by a 2-way 2(3,4,5,)-
DFA.

7. Acknowledgements

The author would like to thank Professors ‘Zvi Galil, Juris Hartmanis, Joel

Seiferas, and Yaacov Yesha for encouragement and helpful discussions.

8. References

(BM] R.S. Boyer and J.S. Moore, A fast string searching algorithm, CACM 20, 10
(Oct. 1977) pp. 762-772.

[DG] P. Duris and Z. Galil, Fooling a two-way automaton or one pushdown store is
better than one counter for two way machines, Proceedings 13th ACM STOC (1981)
pp. 177-188.

[F] R. Freivalds, Probabilistic machines can use less running time, Information Pro-
cessing, 77.

[G] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J.
Comp. 6 (1977) pp.675-695. |

[GS] Z. Galil and J. Seiferas, Time-space optimal string-matching, Proceedings 13th
ACM STOC (1981) pp.106-113.

[HU] J. Hoperoft and J. Ullman, Introduction to automata theory, languages, and
computation, Addison-Wesley (1979).

[KMP] D.E. Knuth, J.H. Morris, Jr., and V.R. Pratt, Fast pattern matching in
strings, SIAM J. Comp. 6, 2 (Jun. 1977) pp. 323-350.

- 18 -

[LY] M. Li and Y. Yesha, String-matching cannot be done by a two-head one-way
deterministic finite automaton, TR 83-579, Department of Computer Science, Cor- o
nell University. (1983)

[P] W. Paul, Kolmogorov complexity and lower bounds, 2nd International confer-

ence on fundamentals of computation theory. (1979)
(W] D.J.A. Welsh, Randomized Algorithms, Discrete Applied Math. 5 (1983) pp
133-145.

[YR] A. Yao and R. Rivest, k+ 1 heads are better than k, J. ACM, 25 (1978), pp.
337-340.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif

