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LOWER BOUNDS ON THE COMPLEXITY 
OF POLYTOPE RANGE SEARCHING 

BERNARD CHAZELLE 

1. INTRODUCTION 

Orthogonal range searching and simplex range searching have received much 
attention recently in the computational geometry literature. Whereas the for-
mer problem is nearing a definitive solution, however, the complexity of simplex 
range searching has long remained elusive. To state the problem simply, suppose 
that we are given n points in Euclidean d-space, fixed once and for all, and m 
units of computer memory. We wish to organize the memory to be in a position 
to answer the following type of queries efficiently: Given an arbitrary simplex 
q , how many of the n points lie inside q? A natural variant of the problem 
calls for reporting the points in question and not simply counting them. More 
generally, it is customary to weight the points ahead of time and then ask for 
the cumulative weight of the subset of points that fall within the query. There 
is abundant practical application to motivate research on this problem [5, 6, 7, 
10, 11, 15, 18, 20, 22]. For example, clipping and removing hidden surfaces 
in computer graphics are fundamental tasks whose computational bottlenecks 
are instances of simplex range searching. Also of great interest is the central 
theoretical question lying underneath: What is the most efficient way of orga-
nizing information to support a given class of queries? What takes this question 
apart from the classical problem of searching a linear list is the power of re-
dundancy. While oversupply of memory space is usually of marginal interest 
when searching a linear list, it is often the key to efficiency in multidimensional 
searching. For this reason, the principal research activity in that area has been 
the investigation of space-time trade-offs. 

Our main result is a family of lower bounds on the space-time complexity of 
simplex range searching. We prove that the worst case query time is Q(nj..ftii) 
in the Euclidean plane, and more generally, Q((njlogn)jm l / d ) in d-space, for 
d ;::: 3, where n is the number of points and m is the amount of storage 
available. I These bounds hold with high probability for a random point-set 
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638 BERNARD CHAZELLE 

(from a uniform distribution in the unit d-cube) and thus are valid in the 
worst case as well as on the average. Interestingly, they still hold if the queries 
are restricted to congruent copies of a fixed simplex or even a fixed slab. 

What is the practical significance of these lower bounds? The main lesson 
to be learned is that virtually no gain in query time can be expected unless 
we have close to unlimited storage. For example, in II-space, a query time as 
uninspiring as, say, O( v'n) still requires at least on the order of n5 storage. 
Our average case result makes matters even worse by saying that most input 
point-sets are hard, and not just some small pathological subset. In practice, 
therefore, the naive algorithm-which involves checking each of the n points 
for inclusion individually-stands as the method of choice. 

Our complexity results are established in the arithmetic model for range 
searching (Fredman [9, 10], Yao [19], Chazelle [4]). Briefly, a data structure 
in that model is a collection of precomputed values corresponding to the cu-
mulative weights of certain subsets of the points. To answer a query involves 
adding together some of these weights. The model is tailored for lower bounds 
because the query time is made to reflect only how many weights must be added 
together to answer the query (hence the name "arithmetic") and not how long it 
takes to locate the needed information in memory. For this reason, any lower 
bound proven in the arithmetic model can be trusted to hold on any reasonable 
sequential machine (which, in particular, allows bucketing, hashing, etc.). How 
close do our lower bounds come to meeting known upper bounds? It has been 
shown (Chazelle and Welzl [5]) that simplex range searching on n points in d-
space can be performed in O(n1-1/da.(n)) query time and O(n) storage, where 
a. is a very slow-growing functional inverse of Ackermann's function. This up-
per bound, which holds in the arithmetic model, matches our lower bound very 
closely. On a random access machine [2] supplied with linear storage, the best 
upper bound on the query time to date is O( v'n log n) in 2-space (Chazelle 
and Welzl [5]) and O(nd(d-l)/(d(d-l)+l)+e) in d-space, for any d 2: 3 and any 
fixed e > 0 (Haussler and Welzl [11]). A query time of O(n2/ 3 10g2 n) can be 
achieved in the three-dimensional case, if O(nlogn) storage is available [5]. 
We also refer the reader to Willard [18], Edelsbrunner and Welzl [7], and Cole 
and Yap [6] for earlier results on the problem and variants of it. 

Our results constitute the first (nontrivial) family oflower bounds for simplex 
range searching in the static case. These complement an earlier lower bound for 
the dynamic version of the problem: Fredman [10] established that a sequence 
of n insertions, deletions, and half-plane range queries may require Q(n4/3) 
time. His ingenious proof technique rests on the fact that a single deletion 
may invalidate a large segment of the data structure. Indeed, any precomputed 
cumulative weight which involves a point to be deleted becomes useless after 
the deletion, since a semigroup has no inverse and no quick update is therefore 
possible. Interestingly, our lower bound can be used to strengthen Fredman's 
result by removing the need for deletions. Indeed, we can exhibit a sequence of 
n insertions, followed by n queries which, together, require at least on the order 
of n4/ 3 time. To see this, set m = n4/ 3 and apply our two-dimensional lower 
bound. It states the existence of a set P of n points which no data structure of 
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size m can preserve from a query of cost Q(n/y'ni) = QCnl/3). So, insert each 
point of P one at a time and then ask the hardest query n times. Since many 
cumulative weights might be computed between successive queries, we will not 
necessarily be asking the same query all the time; however, we will always ask 
the hardest query in light of all precomputed information so far. If the total 
running time exceeds n4/ 3 , then our point is made. Otherwise, the algorithm 
does not have the time to compute a data structure of size in excess of n4/ 3 

(up to within constant factors). Therefore, each query will cost Q(nl/3) , which 
will bring the total running time to Q(n4/3). In dimension d > 2, we have 
the result that n insertions followed by n queries cost at least on the order of 
(n2jlogn)d/(d+l) time in the worst case. 

Returning to the main lower bounds of this paper, our approach is to reduce 
space-time trade-offs for range searching to certain inequalities in integral ge-
ometry. To achieve this goal we need some machinery which we build in three 
main stages. First, we define a model for static range searching (§2) which places 
the problem within the scope of bipartite Ramsey theory (§3). The complexity 
of a given problem is then fully described by certain properties of its so-called 
characteristic graph. This involves two distinct tasks: proving integral-geometric 
inequalities about the query space (§4.2) and studying various uniformity cri-
teria for random point-sets (§4.3). Incidentally, these investigations lead to 
results of independent interest regarding an intriguing generalization of Heil-
bronn's problem (Moser [16]). Briefly, the problem in two dimensions is this: 
Given two integers nand k ::; n , place n points in a unit square so that the 
convex hull of any k of them has an area at least ck / n , for some fixed constant 
c > O. We show that this can be done if k exceeds log n. This result completes 
the set of tools needed to prove the lower bounds for simplex range searching 
(§4.4). 

2. A COMBINATORIAL FRAMEWORK 

We describe a graph-theoretic model for range searching. The emphasis of 
this model is the arithmetic complexity of a problem, that is, the maximum 
number of operations needed to answer any query. The model purposely ig-
nores the cost of searching the memory for the information needed during the 
computation. In this way, lower bounds can be trusted to hold on any sequen-
tial computer. Of course, from a practical viewpoint, upper bounds set in that 
model may not necessarily have much meaning, except to indicate how good 
or how bad a certain lower bound might be. The arithmetic model-as it is 
customarily called-originates in Fredman [9, 10] for the dynamic case and Yao 
[19] for the static case. 

The main purpose of this section is to introduce a general technique for 
proving lower bounds (the Core Lemma). The basic idea is to relate the static 
complexity of a range searching problem to the existence of large complete bi-
partite subgraphs in its characteristic graph. This graph provides a combinatorial 
characterization of a range searching problem. 
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A. Some terminology. In the following, .At will denote the set of natural num-
bers {O, 1, 2, ... }, and for any integer n > 0, [1. .. n] will be the set {I, 2, 
... , n}. We use ~ to denote the unit d-cube [0, l]d. As a shorthand, we 
say that a finite set of points P in a compact set K is random in K if each 
of its points has been drawn randomly from a uniform distribution in K (we 
assume mutual independence). In general, K will be ~ . Finally, we introduce 
the notion of a faithful semigroup (Yao [19]). Let (S, +) be a commutative 
semigroup with an operation denoted +. We say that (S, +) is faithful if for 
each n > 0, 0 C TI , T2 ~ [1 ... n], TI =f. T2, and every sequence of integers 
(Xi' Pj > 0 (i E TI ' j E T2), there exists an assignment of semigroup values to 
the variables Sl ' ... , sn' such that 

L (XiSi =f. L PjSj . 
iETI jET2 

Note that this definition does not prohibit idempotence or more general identi-
ties, e.g., SI + 2s2 = 3s1 + 4s2 . For example, (.At, +), (.At, max), and ({O, I}, 
or) are faithful, but ({O}, or) and ({O, I}, exclusive-or) are not. 

B. Range searching. Let (S, +) be a faithful commutative semigroup. We 
define a query space ~ to be any collection (finite or infinite) of subsets q ~ 9td , 
called queries. For example, ~ might be the set of all hyperrectangles, simplices, 
balls in Euclidean d-space, etc. Let P = {PI' ... ,Pn} be a set of n points 
in ~, and let' (the weight function) be an assignment of each point Pi to a 
semigroup value in S. We define a function answ : ~ ----> S as follows: 

answ(q) = L '(p). 
PEPnq 

If P n q is empty, then we write answ(q) = null, which is a special symbol 
not in S . In practice, the semigroup can be chosen as (.At, +) for counting the 
number of points in the desired query, (2P , u) for reporting the points in ques-
tion, ({O, I}, or) for testing if there are any points in the query, etc. To sum-
marize, a range searching problem .9 is specified by a quadruple (S, ~, P, 0 
consisting of a semigroup, a query space, a finite set of points, and a weight 
function. We say that .9 is of size (n, p) if IPI = nand I{Pnqlq E ~}I = p. 

C. The model of computation. Let Sl' ... ,sn be n variables with values in 
S. A generator g(sl' ... ,sn) is a linear form EI<i<n (XiSi' where the (Xi'S 
are nonnegative integers (not all 0). For example, 2s~ + OS2 + S3 stands for 
SI + SI + S3. A storage scheme r for .9 of size m is a collection of m 
generators {gl' ... ' gm} satisfying the following property. For any q E ~ 
such that P n q =f. 0, there exist K ~ [1 ... m] and a set of labeled integers 
{Pk > Olk E K} such that the relation 

(2.1) answ(q) = L Pkgk('(PI ) , ... , '(Pn)) 
kEK 

holds for any weight function , over P . This means that a storage scheme can 
be dependent on the particular semigroup under consideration and also take 
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advantage of any property which P may enjoy; however, it must hold for any 
assignment of semigroup values to P. This last point is important. It implies 
that our lower bounds do not apply to, say, counting the number of points inside 
a query simplex. Indeed, a data structure for this problem need work only for 
the particular weight assignment '(p) = 1 . 

Ideally, we would like S to be rich enough to simulate (i.e., to map homo-
morphically onto) the semigroup (P*, u) of all nonempty subsets of P. But 
this would exclude too many important semigroups, so we move this require-
ment over to the storage scheme. By insisting that a scheme should work for 
all weight assignments, we are in effect no longer dealing with S itself but with 
the additive semigroup of n-variate linear forms over S . Faithfulness can then 
be called upon to ensure that the semigroup of linear forms is, indeed, rich 
enough. Given a linear form E 1<i<n nisi' call the set of points {Pilni =I- O} 
its cluster. 2 By means of this corr~spondence, the semigroup generated by the 
elementary forms (SI' ... , sn) 1---+ Si (1:::; i:::; n) maps homomorphically onto 
the semigroup (P*, U). Thus, the meaning of (2.1) is that any set of the form 
P n q can be expressed as a union of clusters; the union need not be disjoint. 
Note that the basic irrelevance of the weight function allows us to say that a 
storage scheme is defined not only with respect to g; , but more generally, with 
respect to the triple (S, & , P) . 

Next, we define the complexity of a storage scheme r with m generators. 
Given q E & , let K be the smallest subset of generator indices such that (2.1) 
is true. We define t(P, r, q) = IKI , and we say that r is a (t, m)-scheme for 
g; , if t ~ maxqE~ t(P, r, q). If g; is now considered as one element in an 
infinite family (as P and n vary), we define the time complexity of this family 
as the function t( n , m) , where 

t(n, m) = max min maxt(P, r, q). 
IPI=n Irj=m qE~ 

By abuse of notation, we will refer to t(n, m) as the time complexity of g; 
(when the notion of a family is understood). We also define the expected time 
complexity of g; as 

7(n, m) = E1P1=n min maxt(P, r, q), 
Irj=m qE~ 

where P is random in ~. We do not average over & because the query space 
cannot always be assumed to admit a natural probability measure. 

D. The graph model. We begin with some terminology. Let H ~ V x W be a 
bipartite graph. We denote the number of edges of H by IHI. For any W E W , 
let N H (w) denote the neighbor set {v E V I (v , w) E H}. By extension, if 
U ~ W then NH(U) = UWEU NH(w). Given an arbitrary set Z, a bipartite 
graph C ~ V x Z is called a cover of H if for every w E W there exists a 
subset Zw ~ Z such that N H (w) = N c (Zu,)' A subset Zw of minimum size is 
called a min-cover of w. If the cardinality of no min-cover exceeds t, we say 

2 To make this definition independent of the fact that S is faithful, we should regard a cluster 
as being associated with a formal linear form. Otherwise, a cluster is not uniquely defined if S is 
not faithful and a linear form can be expressed over two different set of variables. 
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that C is a (t, IZI)-cover of H. The graph C is called a disjoint (t, IZI)-cover 
if 

(i) for each W E W, there exists Zw ~ Z such that NH(w) = Nc(Zw) 
and all the sets in {N c (z) I Z E Zw} are pairwise disjoint, and 

(ii) the maximum value, over all W E W, of the size of the smallest Zw 
satisfying (i) does not exceed t. 

In light of our discussion of generators and clusters the meaning of all this should 
be obvious. We can use H to model a range searching problem, with the V-
nodes acting as points and the W -nodes as queries. A cover C corresponds 
to a storage scheme, with the Z-nodes acting as generators and the Nc(z)'s 
(z E Z) as clusters. To conclude this string of definitions, we call a rectangle 
of H any complete bipartite subgraph Vi x Wi ~ H; the width and height of 
the rectangle are, respectively, W/I and I W'I. 

Given a range searching problem .9 = (S, (ff, P, () of size (n, p), the set 
{pnqlq E (ff} partitions (ff into p equivalence classes. Let q" ... ,qp be rep-
resentatives of each class. We define the characteristic graph of .9 as a bipartite 
graph H ~ V x W, where V = {v, ' ... , V n} and W = {w, ' ... , W p} , and an 
edge connects Vi and Wj if and only if Pi E qj. The graph fully describes the 
combinatorial nature of the range searching problem in question. Conversely, 
any bipartite graph can be regarded as the characteristic graph of some rea-
sonably natural range searching problem: for example, P might consist of n 
distinct points in the plane, with (ff defined as the set of polygonal curves. We 
are now in a position to formalize the relationship between schemes and covers, 
and present a methodology for proving space-time trade-offs. Generators are to 
schemes what clusters are to covers. The following lemma uses faithfulness to 
establish that link. 

Lemma 2.1. Let .9 be a range searching problem, and let H be its characteris-
tic graph. If .9 admits a (t, m )-scheme, then H admits a (t, m )-cover. Con-
versely, if H admits a disjoint (t, m )-cover, then .9 admits a (t, m )-scheme. 

Proof. Suppose that .9 admits a (t, m)-scheme, and let r = {g, ' ... , gm} 
be the storage scheme in question. If gk(s" ... , sn) = L'<i<n Ctk iSi' we can 
rewrite this linear form as LiEN Ctk iSi' where Nk = {ilCtk -i -> O} '. We define 

k ' , 
a bipartite graph C ~ V x Z, where Z = {z, ' ... , zm}' by placing an edge 
between Vi and Zj if and only if i E N j • We now show that C is a (t, m)-
cover of H. Let Wj be an arbitrary vertex of W, and let Aj = {ilpi E qj}. It 
suffices to establish the existence of Zj ~ Z, where IZjl :::; t and 

(2.2) 

Since r is a (t, m )-scheme for P, we have 

answ(q) = L Pkgk(((P,) , ... , ((pn)) ' 
kEBj 
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where B j is a subset of [1··· m] of size :5 t. Since the equality above holds 
for any weight function and S is a commutative semigroup, we can write 

LSi = L Pkgk(S\ ' ... , sn) = L YkSk' 
iEA j kEBj kECj 

where Cj = UkEB . Nk . Because of faithfulness we have A j = Cj ; therefore, 
) 

NH(W) = {viii E A j } = U {viii E Nk} = U NdZk) , 
kEBj kEBj 

which establishes (2.2), since IBjl :5 t. The first part of the lemma is now 
proven. We omit the second part, which is straightforward. 0 

Now that range searching problems have been couched as combinatorial ques-
tions about bipartite graphs, we are ready to describe the lower bound proof 
technique which underlies much of what follows. Although the technique tends 
to weaken somewhat on problems of low complexity (e.g., orthogonal range 
queries), it is, we believe, a powerful tool for determining the complexity of 
"hard" problems, such as simplex range searching or problems defined by ran-
dom characteristic graphs. The starting point is the observation that, informally, 
clusters are "good" if they are big and can be used to answer many representative 
queries. Translated in the language of covers, this means that for problems of 
low complexity the characteristic graph must contain many rectangles of large 
"area"; their widths tell us how big the clusters can be and their heights indicate 
how many representative queries they can help to answer. Thus, lower bounds 
are obtained by proving that rectangles can never be too large. 

The following result formalizes the relationship between the space complexity 
of a range searching problem .9 and the presence of large rectangles in its 
characteristic graph H. We define .sf (x) to be the largest "area" of a rectangle 
of H whose width is no less than x > 0 : 

.sf (x) = max{xhlH has a rectangle of width 2:: x and height h} . 
Lemma 2.2 (The Core Lemma). Let H be the characteristic graph of a range 
searching problem of size (n, p). If H has a (t, m)-cover, then m 2:: 
1IHI/.sf (IHI/2pt) . 
Proof. Using the previous notation, let C ~ V x Z be a (t, m)-cover of H 
and let {Cw ~ Zlw E W} be a complete collection of min-covers. Form the 
graph G by removing from H each edge in the set 

U {Nc(Z) x {w}lw E W, Z E Cw ' iNc (z)l:5 ~~!} . 
Since C is a (t, m)-scheme and IWI = p, at most ptIHI/(2pt) edges are 
removed, and so the resulting graph G contains at least half the edges of H. 
But to cover the sets NG(w) (w E W), only subsets Nc(z) of size> IHI/2pt 
are now used. Therefore Z must have at least IGI/.sf(/HI/(2pt)) vertices. 0 

3. How HARD CAN RANGE SEARCHING BE? 

Any range searching problem of size (n, p) admits two trivial solutions: 
an (n, n )-scheme and a (1, P )-scheme. Two natural questions arise: ( 1) Is 
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it always possible to improve over the two naive solutions? (2) What is the 
complexity of the hardest range searching problem? Answering these questions 
will help us assess the relative position of other range searching problems on the 
complexity ladder. Theorem 3.1 says that a small speed-up in query time can 
always be achieved with an amount of storage almost but not quite maximum, 
in other words, the worst of all possible worlds. Surprisingly, this result is in 
fact optimal, as we can show by a probabilistic argument (Theorem 3.2). 
Theorem 3.1. For any range searching problem of size (n, p), with p > n, there 
exists a (t, m)-scheme, where t = O(njflog(pjn)l) and m = O(pjflog(pjn)l). 
Proof. We follow a strategy used in Yao and Yao [21] and Burkhard et al. [3]. 
Let a = flog(p j n) 1 and, as usual, let H ~ V x W denote the characteristic 
graph of the range searching problem, with V = {v 1 ' ••• , V n}' For each i 
such that 0 ~ i ~ L(n - l)jaJ, define ~ as the set {Vi<>+l' ... ,vmin{n,(i+l)<>}}' 
We construct a cover C ~ V x Z as follows. Originally, Z is empty; for 
each i between 0 and L (n - 1) j a J , consider each nonempty subset A of ~ 
in tum, and perform the following operations: add a new vertex z to Z and 
augment C with the edges of A x {z}. It is easily verified that C is a disjoint 
(t, m)-cover of H, where t ~ 1 + L(n - l)jaJ , and 

m ~ (2<> - 1)(1 + L(n - l)jaJ). 

Since p ~ 2n , we easily derive that t = O(njpog(pjn)l) and that m = 
O(p j flog(p j n) 1). Lemma 2.1 completes the proof. 0 

Theorem 3.2. There is a constant c > 0 such that the following is true. Given any 
integer function p = p(n) (n < p ~ 2n) there exists a class of range searching 
problems of size (n, p) for which any (t, m )-scheme with t ~ cn j log(p j n) also 
satisfies m = Q(p) . 
Proof. Let n be a real (0 < n < 1), and let H ~ V x W be a random 
bipartite graph (IV I = n and I WI = p), where each edge (v, w) is chosen 
independently with probability n. A rectangle of H is called wide if its width 
a is at least In(p j n) and its height is equal to f n j a 1 . To rid the graph of wide 
rectangles, we use a standard technique for removing forbidden subsystems 
(Erdos and Spencer [8]). Let X(H) be the number of wide rectangles in H. 
We modify H by taking each wide rectangle in tum, and removing exactly one 
edge from it (which one does not matter). After at most X(H) such operations 
we obtain a new graph G free of wide rectangles, with IGI 2: IHI - X(H) . 
Taking expectations we derive 

E(IGI) 2: npn - 2: (:) (fn~al)n<>rn/<>l. 
In(p/n)::=;a::=;n 

Using the inequalities (~) < (ebjat, for 0 < a ~ b, and (njat ~ en/e, for 
1 ~ a ~ n , where e = 2.718 ... , we derive that for n large enough, 

( n) ( p ) arn/nl (pa)2n/n n n+rn/nl+n/e (4+(2/n)ln(p/n)+lnll)n 
fj1 n <- ne <e . a nan 

If n = e -6 , it then follows that for n large enough, 
E(IGI) > npn - ne(6+1nll)n > npje7 , 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE COMPLEXITY OF POLYTOPE RANGE SEARCHING 645 

so there exists a bipartite graph G ~ V x W, with at least np / e 7 edges 
and no wide rectangle. With respect to this graph, we have ..w' (x) < 2n, 
for x ;::: In(p / n), so from the Core Lemma, any (t, m )-cover such that t ~ 
c(n/log(p/n)) will satisfy m > p/e9 , for c small enough. From Lemma 2.1 
and our earlier observation that a range searching problem can always be defined 
to have a prespecified characteristic graph, the proof is now complete. 0 

The comparison between the last two theorems is a little startling. On the 
one hand, for p large enough, a time speed-up is always possible without using 
maximum storage. However, trying to improve this speed-up by even a con-
stant factor will immediately force upon us the use of maximum storage (up 
to within a constant factor). The conclusion to draw is that, in practice, hard 
range searching problems do not offer any viable alternative to the two naive 
algorithms. 

Remark. There is an intriguing parallel between this result and an equally pes-
simistic trade-off between update and query time given in Burkhard et al. [3]. 
Roughly speaking, the trade-off says that for some range searching problems any 
attempt to update weights faster than the naive way will cause a dramatic rise 
in the query time. Of course, the two situations cannot really be compared, 
however, because of the difference in settings: storage vs. query time here, as 
opposed to update time vs. query time in [3]. Without pursuing this digression 
too far, let us point out just one major difference between the static and the 
dynamic models. In the former, a cluster is charged unit cost, regardless of 
its size. In the dynamic model, however, a large cluster, although still charged 
unit cost, is in effect more costly than a small one because it is more exposed 
to enemy fire: if any of its points is updated the information provided by the 
cluster must be thrown away. 

4. THE COMPLEXITY OF SIMPLEX RANGE SEARCHING 

We begin by stating the main result of this section: simplex range searching on 
n points requires Q(n/vrn) query time in two dimensions and Q«n/log n)/m 1/d) 
query time in any dimension d ;::: 3. These bounds hold for a random point-set 
(uniform distribution in the unit d-cube) with high probability, and thus are valid 
in the worst case as well as on the average. 

For technical reasons, queries will be slabs of fixed width instead of simplices 
(since slabs can always be clipped and triangulated, this will actually strengthen 
our results). The heart of the argument comes from the Core Lemma: a gen-
erator can be very useful to a small subset of all possible queries or it can be 
moderately useful to a large set of queries, but it cannot be very useful to lots 
of queries. We assess the "effectiveness" of a generator by the Lebesgue mea-
sure of the convex hull of its associated cluster. Why? Suppose that we set our 
sights on a very low query time. Then, presumably, to answer a random query 
requires the use of big clusters. Since the points are uniformly distributed in 
~ , big clusters occupy a lot of space and therefore can be used by only a small 
set of queries. This suggests a trade-off between the effectiveness of a generator 
and its ability to be used by many queries. One will notice the similarity of this 
reasoning with the Core Lemma. 
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Our approach has two components. We begin with an integral-geometric anal-
ysis of the containment property between a convex body and a slab. The goal 
is to produce a continuous analog of the discrete complexity trade-off sought. 
To carry out the analogy we must be able to place n points in the unit d-cube 
so that the cardinality of any subset is at most proportional to n times the 
measure of its convex hull. This entails a study of pseudouniform point-sets. 
The questions raised are akin to a classical problem of Heilbronn (Moser [16]) 
to which we provide new answers. 

In §4.1 we define a measure for slab systems, and we prove its invariance 
under the group of motions. This will give us a convenient probability measure 
for queries to work with. In §4.2 we argue that a large convex set cannot be 
moved too much within a given slab (in other words, a big cluster cannot be 
used by too many queries). Two fundamental lemmas are derived to formalize 
this concept. In §4.3 we turn to the problem of approximating uniform point 
distributions. Several criteria of uniformity are investigated, one of which leads 
to new results on a generalization of Heilbronn's problem. Finally §4.4 puts all 
the above results together and derives the desired lower bounds. 

4.1. Preliminaries. We begin with some geometric terminology. Let d be a 
fixed positive integer, and let Ed denote Euclidean d-space. Unless specified 
otherwise, we will always assume that d> 1. We endow Ed with a Cartesian 
system of reference (0, e l , ... , ed ), where (e l , ... , ed ) forms an orthonormal 
basis (e;· ej = t5;). We define E: = {(XI' ... , xd) =I Olx; ~ 0; 1 :::; i :::; d}. 
If P = (XI' ... , xd) and q = (Y I , '" , Yd) are two points of Ed, then we let 
(p, q) denote the inner product LI::;;::;d x;Y;. Similarly, we put Ipi = ~. 

The width (resp. diameter) of a compact convex set K is the smallest (resp. 
largest) distance between two distinct hyperplanes of support parallel to each 
other. The diameter of K is denoted D(K). It is also defined as the greatest 
distance between any pair of points in K. Finally, if P is a finite set of points 
in Ed, then K(P) denotes its convex hull. 

Let 0: be a real value (0 < 0: < 1/12) to be considered a parameter in the 
following. We define a slab as the closed region of Ed between any pair of 
parallel hyperplanes distant from each other by 20:. For any q E Ed \ { O} , let 
Sq denote the slab 

We use slabs as queries, instead of simplices, because they are easier to manipu-
late. Straightforward reductions will show that this does not artificially increase 
the complexity of the problem (if anything, it makes the problem easier). Using 
the notation of the exterior calculus, it is well known (Santal6 [17]) that the 
point-set density dXI /\ dx2 /\ ... /\ dXd is invariant under the group of motions 
(i.e., isometries). Given X c Ed , the integral 

Ad(X) = Ix dXI /\ ... /\ dXd 
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is the measure of X in Ed (provided that the integral exists in the Lebesgue 
sense). Next we define the measure J.l of a set of slabs X: 

J.l(X)={dS={ dYIA···AdYd 
lx q lSqEX Iqld-I 

where q = (y I ' .. , , Y d) (again, provided that the integral exists). Since S q is 
not defined for q = 0, we may assume that X does not contain slabs whose 
bisecting hyperplanes pass through the origin. This is not necessary, however, 
because the integral 

{ dYIA···AdYd 
lO~:Jql<t Iqld-I 

is well defined and tends to 0 as t -+ O. (The set of slabs whose bisecting planes 
pass through the origin has measure zero.) Our choice of measure is motivated 
by the following. 

Lemma 4.1. The measure J.l is invariant under the group ofisometries in Ed. 
Proof. We use the techniques ofSantal6 [17], and in particular, Cartan's method 
of moving frames. Let Pq = {p E Ed I (P , q) = Iq12} be the bisecting hyperplane 
of Sq' and let u l ' ••• ,Ud _ 1 be an orthonormal basis for Pq . We define ud as 
a unit vector normal to Pq such that det(u l , ... , ud ) = 1. Let L be the group 
of motions in Ed , and let ~ be the subgroup of motions that leave invariant the 
hyperplane Pq • We have a one-to-one correspondence between the hyperplanes 
of Ed and the elements of the homogeneous space L /~ = {g~lg E L}: to 
each coset of the form g~ (g E L) corresponds the hyperplane g Pq , and 
conversely, to each hyperplane Pr corresponds the coset g~, where g is a 
motion that carries Pq to Pr • Following [17], finding an invariant density for 
hyperplanes, and hence for slabs, is then reduced to finding an invariant density 
dLd _ 1 on L /~. The theory of moving frames gives us the Pfaffian system 
dq . ud = 0 and dUd' ui = 0 (1 ~ i ~ d - 1). Therefore, dLd_ 1 can be chosen 
as the differential exterior d-form 

1\ dUd' ui A dq· ud · 
i<d 

Let q = (Yp ... 'Yd)' Since ud = q/lql, we have dUd = dq/lql + d(I/lqJ)q· 
From U·' u· = & .. we derive 

I J IJ 

dLd_ 1 = 1\ (_Ill dq· Ui) A dq· ud = ~_I 1\ L dyj(ui ' e) 
i<d q Iql i5,.d l5,.j5,.d 

d 
= Iqld-I dY I A··· A dYd' 

where 
d = det(u l ' ••• , Ud ) = 1. 

This establishes that dLd_1 = (l/lqld-l)dYI A··· A dYd' which is precisely the 
differential form claimed for J.l. 0 
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Now that we have the appropriate tools to handle random queries, we need 
some machinery to study the convex hull of clusters. Arbitrary convex subsets 
of ~ are a little unwieldy. Fortunately, they can be approximated quite well 
by rectangular shapes. We need some additional terminology. A hyperrectangle 
is the Cartesian product of d closed intervals in 9l. If each interval is of 
the same length, then we have a hypercube. A parallelotope is the image of a 
hyperrectangle under an isometric mapping. Two parallelotopes are said to be 
parallel to each other if they are congruent modulo a homothetic transformation. 
It seems that the following equivalence result has been rediscovered many times 
over the years. (I thank J. Pach for pointing out this 1951 reference (Macbeath 
[14]) to me.) 

Lemma 4.2 (Macbeath, 1951). Given a compact convex set K in Ed, there 
exist two parallelotopes TIl and TI2, such that TIl ~ K ~ TI2 and Ad (TI2 )/d! ::; 

d Ad(K) ::; d Ad(TI I )· 

4.2. Two fundamental lemmas on the measure of slabs. Let K be an arbitrary 
compact convex subset of Ed . Our main concern in this section is to show that 
the set of slabs 

H(K) = {Sqlq E Ed\{O} and K ~ Sq} 

shrinks fast enough as K grows. We will distinguish between the general case 
(Lemma 4.5) and a rather special case (Lemma 4.6) to be used later for simplex 
range searching in 2-space. The reason for this distinction is that we can obtain 
sharper lower bounds in the two-dimensional case by using more refined tools. 

We begin our investigation by assuming that K is a hyperrectangle of the 
form fI l <i<d[l, y;1, where YI , ••• , Yd are d reals ~ 1. We will simplify our 
study of ll(K) by considering the smaller set 

This substitution is fairly innocuous, as the following result shows. 

Lemma 4.3. For any hyperrectangle K = fI l <i<d[l, Yi ], where Yi ~ 1, we have 
the inequality J..l(H(K)) ::; 2d J..l(H+(K)). - -
Proof. The idea is to consider the symmetry group of the polytope K and iden-
tify 2d automorphisms, at least one of which maps any given point of Ed to 
a point with nonnegative coordinates. The proof will immediately follow from 
the fact that these automorphisms carry K into itself and the measure J..l is in-
variant under the group of isometries. Let j = (j I ' ... , j d) E {-I, I} d , and let 
gj be the isometry mapping p = (XI' ... , xd) E Ed to gj(p) = (ZI ' ••• , zd)' 
where 
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Since K is centrally symmetric about (( Y I + 1) / 2, ... , (y d + 1) /2) , each trans-
formation gj carries K into itself. Given a point q = (y I ' ... , Y d) E Ed \ { O} , 
let a(q) be the sign vector UI , ... , Jd ), where J j = 1 (resp. Jj = -1) if 
Yj ~ 0 (resp. Yj < 0). To complete the proof, we will show that ga(q) maps 
Sq into Sij' where ii E E:. The inverse transformation g:r~) maps a point 
(XI' ... ,xd) into (zl' ... , zd)' where 

Zj = JjXj + (1 - J)(1 + y)/2. 

Consequently, the slab Sij is the set of points (XI' ... , xd ) E Ed such that 

I: JjXjYi + ~ I: (1 - Jj )(1 + Yj)Yi - I: Y; $ a I: y7· 
l:S;i:S;d l:S;i:S;d l:S;i:S;d l:S;j:S;d 

We obtain an equivalent expression by noticing that 

p= (I: (I- Ji )(I+ Y)Yi)1 I: Y;$O, 
l:S;i:S;d l:S;i:S;d 

and multiplying the previous inequality by 1 - P /2. This shows that ii = 
(PI' ... 'Yd)' where 

Yi = (1 - P/2)JiYi ~ O. 

Noticing that liil = (1- P/2)lql > 0, we can conclude that ii E E:. 0 

Throughout this section the term "constant" refers to a quantity which may 
depend only on d, and not on a or any other parameter later defined. We will 
use c as a generic symbol to denote a constant, avoiding subscripts whenever 
we can. Sometimes, however, we will have to resort to subscripts to be able 
to distinguish between different constants. The following result shows that if a 
slab is forced to contain a big hyperrectangle, then it cannot be moved around 
too much. 

Lemma 4.4. For any dimension d > 1. there exists a constant c > 0 such that 
any hyperrectangle K = I1 1<j<d[l, yJ. where Yi > 1. satisfies the inequality 
Ad(K)· Jl(H+(K)) < cad+ l • --

Proof. We will assume throughout this proof that q = (YI ' ... , Yd) E E! and 
K ~ Sq . To begin with, observe that Iql can be neither too large nor too small. 
Indeed, since (1, 1, ... , 1) E Sq' we have 

(4.1 ) I: Yi - Iql2 $ alql· 
I :S;i:S;d 

Since X < 1 + x2/2 for all x, this implies that 

Iql2 - alql $ I: Yi < d + IqI2/2, 
l:S;i:S;d 
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from which we derive 

Iql < a + J a2 + 2d . 
Since a < 1/12 and d> 1, it follows (conservatively) that Iql < 3d. Similarly, 
from (4.1) and the fact that q E E: ' it follows that 

Iql2 + alql ~ E Y; ~ Iql , 
'~;~d 

hence Iql ~ 1 - a> 1/2. To summarize, we have shown that 

(4.2) 

Let 

! < Iql < 3d. 

.1.JK) = {q = (Y" ... 'Yd) E E:I K ~ Sq and Y; > 2~} . 
From (4.2) it follows that q belongs to at least one of the sets .1.;(K) (1:::; i :::; 
d) ; therefore, 

(4.3) 

where 

/l(H+(K)):::; E M;(K) , 
'~;~d 

M.(K) = r dy, /\ ... /\ dYd 
I JIl/K) Iqld-' 

To estimate the value of M;(K) , we set i = 1 without loss of generality, 
in order to avoid overburdening the notation. Let us consider the following 
change of variables: given q = (Y" ... 'Yd)' let u, = 0 = Iql, and for i> 1, 
let ui = yjo . Note that the transformation acts bijectively between 

d {(Y" ... 'Yd) E E \{O} 1 Y, ~ O} 

and 

To compute its Jacobian, Ju ' we notice that 

It follows that 

Y,/o 
3 

J = -Y2Y,/o 
u 

• 3 
-YdY' 10 

if i = 1 ; 

if i > 1 and i = j ; 

if i > 1 and i =f. j . 
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-1 -1 (~/Yd')2 - 1 

651 

The determinant above is made triangular by subtracting the first column from 
the others, which gives Ju = YI/~d . If T = JqEt.I(K) dU 1 /\ ... /\ dUd' we imme-
diately derive 

T=! 2 YI2d/2dYI/\···/\dYd' 
(YI '···'Yd)Et.I(K) (Y 1 + ... + Yd) 

From (4.2) and the definition of L11 (K) , we have 
1 

(4.4) T ~ 6d.j(jM1(K). 

If q E L11 (K), then we have 1(P, q) - lq1 21 :::; alql, for both p = (1, ... , 1) and 
p = (Y1 ' ••• , Yd)' Since q E E:, this implies that 

and from (4.2) 

-alql:::; L Yj - lqI 2:::; L YjYj - lql 2 :::; alql, 

L (Yj - I)Yi :::; 2alql < 6da. 
l:5,j:5,d 

Because Yj > 1, for each (1:::; i :::; d), we have 

(4.5) 

and for i> 1, 

6da 
O:::;Yj < --1' y. -

I 

2a 
0:::; u i :::; Yi - 1 . 

When u2 ' .•. , ud are fixed, u 1 always varies in an interval oflength no greater 
than 2a. It easily follows that 

d 
(4.6) T < (2a) . 

- TIl<i:5,d(Yi - 1) 

Note that the integration domain of T assumes that Y 1 > 1/(2.j(j). From 
(4.5) we also have Y1 < 6da/(Y1 - 1); therefore, 

YI - 1 < 12dVJ.a. 
From (4.4) and (4.6) it then follows that 

d+1 M1(K) < ba /Ad(K) , 
for some constant b. The same inequality holds for any Mj(K) , so in view of 
(4.3) the proof is now complete. 0 

Lemmas 4.3 and 4.4 give us a trade-off between the volume of a hyperrect-
angle and the measure of the slabs that contain it. We can use Lemma 4.2 to 
generalize this trade-off to any compact convex set. 
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Lemma 4.5. For any dimension d > 1 , there exists a constant c > 0 such that 
given any compact convex set K, we have Ad(K) . J.l(H(K)) < col +1 . 
Proof. We can assume that Ad(K) > 0; otherwise, the lemma is obvious. 
Lemma 4.2 shows the existence of a parallelotope II ~ K such that 

(4.7) 

Since II is not of measure zero, it is congruent to a hyperrectangle of the form 
K' = TI 1<i<d[1 , Yi], where Yi > 1. Obviously, the two sets H(ll) and H(K') 
have the-same J.l-measure. (Note that the two sets might not be congruent, 
because Sq is defined for q =/: 0, and E d \ {O} is obviously not closed under 
the group of isometries. The difference, however, is simply a set of slabs whose 
bisecting hyperplanes pass through the origin, and thus has measure zero.) From 
Lemmas 4.3 and 4.4, it follows that for some constant c > 0, 

From (4.7) we derive 

d d+1 Ad(ll) . J.l(H(ll)) < c2 a . 

d d+1 Ad(K) . J.l(H(ll)) < c(2d) a . 

Since II ~ K the proof is now complete. 0 

We now turn to the special case where K is of measure O. While Lemma 4.3 
is still meaningful, Lemma 4.5 becomes trivial and must be modified a little. 
Recall that D(K) denotes the diameter of the point-set K. 

Lemma 4.6. For any dimension d > 1, there exists a constant c > 0 such that 
given any compact convex set K, we have D(K)· J.l(H(K)) < ca2 . 

Proof. We follow the proof of Lemma 4.4, assuming that K is a hyperrectangle 
of the form TI 1<i<d[1, yJ, where Y1 > 1 and Yi = 1, for i> I. It suffices to 
show that (Y 1 -l)~(H(K)) < ca2 • From (4.5) we have O:s: YI < 6da/(Y1 - 1), 
and from (4.2) we derive that 0 :s: Yj < 3d, for 1 < j :s: d. Consider the case 
of Mi(K) , for i> 1. We have O:S: u1 :s: 2a/(Y1 - 1), ui = iqi, and for j> 1 
and j =/: i , we have O:S: u j < 6d . This shows that 

and from (4.4) 

(4.8) 

If we assume that 6da/(Y 1 - 1) < 1/(2.j(J) , then ~I (K) is empty, and hence 
MI (K) = O. From (4.3) and (4.8) we find 

(4.9) + d+2 2 J.l(H (K)) < (6d) a /(Y1 - 1). 
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Is this inequality still true if we relax the assumption on y, ? If 6dal(y, - 1) ~ 
I/(2Jd), then using the previous reasoning, we find u, = Iql, and 0::; uj < 6d 
(1 < j ::; d) , from which it follows that 

M, (K) ::; Jd(2a)(6d/ < (6d)d+2a2/(Y, - 1). 
From (4.9) we derive that 

J.l(H+(K)) < 2(6d)d+2a2/ (y, - 1), 
for all values of y, >·1. Lemma 4.3 and the invariance of J.l complete the 
proof. 0 

4.3. Approximating uniform point-set distributions. 
4.3.1. Introduction. We study the following discrepancy problem: Can we 
place n points in ~ = [0, I]d so that every subset of k > d points has a 
convex hull of measure at least proportional to kin? This is the kind of result 
we need in order to argue that big clusters occupy a lot of space. Let us consider 
the case d = 2 and k = 3 for a moment. This is known as Heilbronn 's problem: 
What is the largest area, over all point-sets P c ~ of size n, of the smallest 
triangle with vertices in P? 

This problem has a rich history. If we look at the one-dimensional case for 
inspiration, we might expect that in two dimensions the max-min area should be 
proportional to 1 In. However, it has been shown by Komlos, Szemerecti, and 
Pintz [12] that any set of n points in ~ always contains a triangle of area less 
than Iln 8/ 7- e , for any e > O. On the other hand, the same authors have shown 
[13] the existence of point-sets with all (~) triangles of area Q( (log n) I n2). See 
Moser [16] for a chronology of results on Heilbronn's problem. 

At the other extreme-the case k = Q(n)-we have what we would ex-
pect: the max-min area of the convex hull of any subset of k distinct points 
is 8( kin). Take the vertices of the largest regular n-gon inscribed in ~. A 
natural question is thus to determine the smallest function ken) for which the 
max-min area is Q(k(n)ln). More generally, let 

I1d(n, k) = max min Ad(K(S)) , 
pr;~ sr;p 
IPI=n ISI~k 

where d < k ::; n; recall that K(S) denotes the convex hull of S. We know 
that I1d (n, n) = 9(nln), but also that 112(n, 3) = 0(3In). We will use a 
probabilistic argument to prove that I1d (n, k) = 8(kln), for any k such that 
log n ::; k ::; n . 
4.3.2. On a generalization of Heilbronn 's problem. We begin with some ter-
minology. Let v be a positive integer. We say that a finite set P of points 
in Ed is v-scattered if, for every subset S ~ P of size k ~ v, we have 

d 
Ad(K(S)) > (1/77 )kIIPI. As it turns out, a weaker version of this definition 
will allow us to sharpen our lower bounds for range searching in the case d = 2 . 
Given any positive real e, the set P is weakly e-scattered if there exists a subset 
rff of P such that 

(i) Irffl ~ elPI ; 
(ii) for every subset S ~ rff of size k > d, we have Ad(K(S)) > ekl(IOIPI). 
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Let R be a parallelotope in Ed of nonzero measure; the k-faces of R are called 
vertices if k = 0, and edges if k = 1 . By edge-length, we refer to the Euclidean 
distance between the two vertices at the endpoints of an edge. There are at most 
d distinct edge-lengths, ai' ... , ad: the minimum value of ai is the width of 

R, while J ai + ... + a; is its diameter. Let 0 be a positive real. We define 
the O-pads of R as a collection of 2d parallelotopes parallel to R, of edge-
length 0, attached to each vertex of R. More precisely, let g be an isometry 
carrying R to the hyperrectangle TI1<i<d[0, aJ (a i > 0). Each vertex v of 
the hyperrectangle is of the form v = (j~ ai' ... , jdad) , where U1 , ••• ,jd) is 
a bit-vector in {O, l}d. We define the O-pad of the vertex g-I(V) of R aHhe 
image under g -I of the hypercube of edge-length 0 centered at the point 

U1a l - (-1/ 10/2, ... ,jdad - (-I/dO/2). 
The notion of O-pads is useful for approximating the set of all convex subsets 
of ~ by a finite number of canonical polytopes. We begin by listing a few 
interesting properties of O-pads. 

Lemma 4.7. Let R be a parallelotope in Ed, and let 0 be a positive real. If 
S is a point-set which intersects each O-pad of R, then the convex hull of S 
contains R. 
Proof. Without loss of generality, we may assume that R is a hyperrectangle of 
the form TI1<i<d[0, ai]. Let Sl' ... ,S2d be representative points of S in each 
O-pad of R, wIth Sl the point in the O-pad of O. Any (closed) halfspace that 
contains 0 also contains at least one Si' To see this, consider the hyperplanes 

d 2 Pq = {p EE 1(P, q) = Iql }, 
and notice that for each sign assignment of the coordinates of q there is at 
least one desirable Si' This shows that 0 E K( {Sl ' ... , S2d}). By symmetry, 
the same is true of all the other vertices; therefore, their convex hull, R, lies 
inside K({SI' ... ,S2d}). 0 

The next lemma provides a polynomial-size approximation of the set of all 
convex subsets of ~ of measure p. This enables us to use discrete probabilistic 
techniques to study certain uniformity criteria for point-sets (Lemma 4.9). 
Lemma 4.8. For any d > 1 and any real p (0 < p :S 1), there exists a 
collection ~ of convex sets such that (i) I~I < S5d / /2d , (ii) for each C E ~, we 
have C ~ ~ and Ad(C) < S5d p, (iii) given any convex set K in ~ of measure 
p, there exists some C E ~ which contains K. 
Proof. Let P = p/d(3d+I)/2 , and let :§ be the grid of points 

:§ = {±iP I i 2: Old n [-2d, 2dt. 

We define ~ as follows: 
d d 

~ = {K(S) n ~I S ~:§ and lSI = 2 and p:S Ad(K(S» < 3 d!p}. 
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We have I~I = (2l2dl PJ + l)d , which implies that WI < Sd d 3d(d+l)/2 I / , 
since p :5 1 < d, and hence (i). Note that (ii) follows directly from the 
definition of ~, so let us turn our attention to (iii). 

Let K be a convex set in ~ of measure p, and let R (resp. r) be the 
circumscribed (resp. inscribed) parallelotope of least (resp. greatest) measure. 
From Lemma 4.2, it follows that 

(4.10) 

Let \}I be the set of (pJd)-pads of R. It is not difficult to show that each pad 
IjI of \}I contains a grid point. Let e be the center of 1jI, and let ~* be the 
infinite grid {±iP I i ~ O}d. There is a point y E ~* within a distance JdPI2 
of e; therefore, y lies within the pad 1jI. We must now show that y is actually 
a point of ~. By construction, no edge-length of R can exceed the diameter 
of K. Since K lies in ~, its diameter is at most Jd. This implies that the 
diameter of R is at most d. Because the diameter of IjI is equal to d P , it 
follows that the distance from y to 0 is at most d + Jd + d P , which is less 
than 2d, since p :5 1 and d ~ 2. This proves that y belongs to [-2d , 2d]d , 
and therefore, is a point of ~ . 

We thus have established the existence of a set S of 2d points in ~ , each of 
which lies in a distinct (pJd)-pad of R. Since r lies inside ~, its maximum 
edge-length is at most Jd; therefore, the width of r, and hence the width of 
R, is at least Ad(r)ld(d-I)/2. From (4.10) it then follows that the width of R 
is at least pJdld3d/2 . Let II' ... ,Id be the edge-lengths of R. We have 

Ii ~ pJdld3d/2 > p.JJ; 
therefore, 

From Lemma 4.7 and (4.10) we derive 
d p :5 Ad(K(S)) < 3 d!p. 

This proves that K(S) n ~ E ~ and therefore K ~ K(S) n ~. D 

Lemma 4.9. For any d > 1 and n sufficiently large, a random set of n points 
in ~ is (log n )-scattered with probability greater than 1 - 1 In. 

4d 5d Proof. Let c = 1/(2 b), where b = S is the constant used in Lemma 4.8. 
Note that c > 1 j7 7d 

• Throughout the proof, we will use the notation of Lemma 
4.8, with the value of p set to 3c(logn)ln. (Note that this assignment is valid, 
since for n > 1 we have 0 < p < 1.) We shall also assume that n is larger 
than some appropriate constant. Let P be a random set of n points in ~, 
and let n be the probability that there exists a convex set K ~ ~ such that 
k = IKnpl ~ logn and Ad(K):5 ckln. We can assume that the n points 
of P are distinct since this happens with probability 1. It is then possible to 
partition K into convex sets, each containing between log nand 2 log n + 1 
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points. To do so, choose a line L which is not normal to any of the hyperplanes 
passing through a pair of points in K n P , and sort the projection of the points 
of K n Ponto L. Since there are no identical elements in the resulting list, 
we can partition it into sublists of size pog n 1 (except for the last one, whose 
size falls between rlog n 1 and 2 rlog n 1 - 1) . For each pair of adjacent sublists, 
find a point on L separating them and cut K by the hyperplane normal to L 
passing through the point. Of the pieces of K thus created, let K* be the one 
of smallest measure. We have 

Ad(K*) ~ 3clogn = P; n 
therefore, we can always enclose K* inside a convex set ~ ~ of measure p. 
From Lemma 4.8, it follows that the collection ~ contains at least one set C 
which encloses K* , where 

(4.11 ) 

Clearly, the set 

Ad(C) < 3bc logn . n 
C contains at least log n points of P; therefore, 

7C < 2: 2: (~)A~(C)(1 - Ad(C))n-i . 
CE;J i::::log n ) 

From (4.11) we have nAd (C) < log n ; therefore, we can use the Chernoff bound 
[8] to approximate the tail of the binomial distribution. This yields 

(4.12) ( n )d2d (n(1 _A (c)))n-IOgn (nA (C))IOgn 
7C < b x d X ----:-'d=_____ 

3clogn n -logn logn 
Using Taylor's expansion, we have 

In(l - (logn)ln) > -(logn)ln - (logn)2 In 2, 

for n large enough; therefore, 

( 4.13) 2( I )n-logn n-logn n n - ogn > n . 

On the other hand, it follows from (4.11) that 
logn 4d_ 2 

(4.14) (nAd(C)!logn) < lin . 

Putting (4.12)-(4.14) together, we find the desired (conservative) upper bound 
7C < lin. 0 

As an immediate corollary, we obtain this new result on the generalization 
of Heilbronn's problem. Whether log n can be replaced by anything smaller 
(asymptotically) is an intriguing open problem. 

Theorem 4.10. The function Ild (n, k) is in 8( kin) ,for any k such that log n ~ 
k ~ n. 
Proof. Because of Lemma 4.9 it suffices to show that Ild(n, k) = O(kln). 
Given any set P of n points in ~, partition ~ into convex sets, each con-
taining between k and 2k + I points (using, for example, the method given 
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in Lemma 4.9). Now, consider the convex hull of the set of smallest measure. 
This set contains at least r k 1 points and its measure is O( kin). D 

Simplex range searching in 2-space requires a special treatment. The idea is 
to adopt the weak version of scattering, which then allows us to "strengthen" 
Lemma 4.9 in two dimensions. 

Lemma 4.11. There exists a positive real eo < 1 such thatJor any e (0 < e < eo) 
and any n > 2, a random set oj n points in 'i§'; is weakly e-scattered with 
probability greater than 1 - e . 
Proof. Consider the inequalities 

( 4.15) 2 -IJ 1 - el2 < (1 - 8)e < 1 - 812 < 1 - 2e19. 

We claim that there exists some real eo (0 < eo < 1/2) such that for any e, 
where 0 < e < eo' there exists 8 which satisfies (4.15). To see this it suffices 
to notice that if 1 - el2 = (1 - 82 )e-IJ then 18 - el21 = 0(e2 ) , and 

1 - 812 - (1 - 82 )e- IJ = 812 + 0(82 ) = el4 ± 0(e2 ). 

Let P be a random set of n > 2 reals in [0, 1]. We say that x E P is isolated 
if there is no other element of P in [x - 81(2n), x + 81(2n)]. Let v be the 
expected number of isolated points, and let n be the probability that at least 
en points of P are isolated. We have 

( 4.16) v :S (1 - n)en + nn. 

On the other hand, we have v ~ n(l - 8In)n-1 . Since 0 < 8 < e < 1 < n, we 
have (Abramowitz and Stegun [1, p. 68]) 

v> n(1 - 8ln)n = nen1n(I-IJ/n) > ne-IJ/(l-IJ/n). 

Using the inequalities eX ~ 1 + x and n > 28 , we derive 

-IJ(I+2IJ/n) > -IJ(1 282/) v > ne __ ne - n. 

Using (4.15) and (4.16) and the inequalities n > 2 and e < 1/2, we have 

vln-e (1-8 2 )e- IJ _e 1-3e12 
n~ 1 > 1 > 1 >1-e. -e -e -e 

On the other hand, the convex hull of any k > 1 isolated points is an interval 
of length at least !(k - 1)8 In, which from (4.15) exceeds ekl( IOn). D 

4.4. The lower bounds on simplex range searching. We are now in a position 
to attack our original problem. Let us recall our assumptions. The dimension 
d is at least 2, and the parameter a is a positive real less than /2' Let m 
and n be two positive integers, and let r be a function mapping any set P 
of n points in ~ to a storage scheme for P of size m > O. When P and 
r(P) are understood, we write t to denote the worst case time complexity 
maxqEt1, t(P, r(P), q). It will be important to keep in mind later on that t is 
actually a parameter depending on P and r. Ironically, the higher-dimensional 
case (d ~ 3) is easier to handle, so this is where we begin our investigation. 
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4.4.1. Range searching in d-space. Let Bd(P) be the closed d-dimensional 
ball of radius P centered at (t, ... , t). We define the query space (ff to be 
the set of slabs {Sql q E Bd (-!)}. We begin our investigation with a technical 
lemma saying that every query grabs a reasonable chunk of the unit d-cube: 
neither too big nor too small. 

Lemma 4.12. For any d > 1 there exists a constant 0 < ci < 1 such that for 
any Sq E (ff, we have cia < Ad(Sq n~) < a/ci . 

Proof. Because Sq n Bd(t) ~ Sq n ~ we have Ad(Sq n~) > 2aAd_1 (B') , 
where B' is the intersection of Bd (!) with a hyperplane at distance -! + a 
from the center of Bd(t). This implies that B' is a ball in Ed_1 of radius 

r = J -! - (-! + a)2 . Its (d - 1 )-dimensional measure is therefore (Santal6 [17]) 

, 2n(d-I)/2l-1 
Ad_1 (B) = (d _ 1)r((d - 1)/2) , 

where r is the gamma function. Using simple approximations we easily verify 
that, since a < 112 , we have Ad(Sq n~) > CO! , where 

n(d-I)/2 
c - -----;------

- (d - 1)3dr((d - 1)/2) . 

Conversely, the diameter of ~ is equal to v'd; therefore, Ad(Sq n~) < 
2aAd_1 (B*), where B* is a (d - I)-dimensional ball of radius v'd/2. We 
derive 

an(d-I)/2 d(d-I)/2 
A (S n %') < . 0 

d q d (d _ 1)2d- 3r((d _ 1)/2) 

Given a set P of n points in ~, we say that a slab Sq is heavy if Sq E (ff 
and ISp n PI > cl an/2. We focus on heavy query slabs because they are both 
well positioned and reasonably filled with points of P. Our next result says 
that this focusing is not too restrictive when dealing with a random point-set 
P. A random query of (ff is heavy with high probability. 

Lemma 4.13. For any d > 1 there exists a constant c > 0 such that for any 
fixed real e (0 < e < 1) and a random set of n points in ~, the measure of 
the set of heavy slabs exceeds (1 - c/(aen))Il((ff) with probability greater than 
1 - e. 
Proof. Let P be a random set of n points in ~, and let Sq be a slab of (ff . 
Put X = ISq n PI and lJ = Sq n ~. The mean and variance of X are, respec-
tively, nAd(lJ) and nAd(lJ)( 1 - Ad(lJ)). Let n(q) be the probability that Sq is 
heavy with respect to a random P. Combining Lemma 4.12 and Chebyshev's 
inequality, we find 

4nA (lJ)(1 - A (lJ)) 
1 - n(q) ~ Prob(lx - nAd(lJ)1 ~ c l an/2) ~ d 2 2 2 d . 

cia n 
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Again from Lemma 4.12 it follows that 
4 

(4.17) n(q) > 1- -3-. 
clan 

By Fubini's theorem, the expected value E of the measure of the set of heavy 
slabs is equal to Is E~ n(q)dSq , which from (4.17) gives 

q 

(4.18) E> (1 - -i-) 1l(c2'). 
clan 

On the other hand, we have 

E $ (1 - p) (1 - ~) 1l(c2') + PIl(c2') , 
claen 

where P is the probability that the measure of the set of heavy slabs is at 
least (1 - 5/(c~aen))Il(c2'). This inequality, combined with (4.18), shows that 
P > 1 - e , which completes the proof. 0 

Let PI' ... 'Pn be the points of P. Recall that each generator g of r(P) 
is a linear form LI<i<n aisi and that its cluster is the set {Pil a i t- O}. By 
abuse of notation we-will refer to the clusters of r(P). From the equivalence 
result of Lemma 2.1 we know that, for each Sq E c2', the set Sq n P can be 
expressed as the union of at most t clusters. A heavy query contains Q(an) 
points of P. To be answered in time t therefore requires the use of clusters 
of size Q(an/t). Just as we chose to focus on heavy queries, we will restrict 
our analysis to those "fat" clusters. Specifically, we say that a cluster is fat if 
it contains at least iClan/t points. For any Sq E c2', let v(q) be equal to the 
number of points in Sq nP which belong to at least one fat cluster lying entirely 
within Sq. (Note that these clusters may not necessarily be used in answering 
the query Sq.) Our next result says that with a random point-set P the average 
value of v(q) (over all Sq E c2') is Q(an). 

Lemma 4.14. For any d > 1 there exists a constant C > 0 such that for any 
fixed real e (0 < e < 1) and a random set of n points in ~, the inequality 

L v(q)dSq > (an/c - c/e)Il(c2') 

holds true with probability greater than 1 - e . 
Proof. Given a random set P and Sq E c2' ,let CI , ... , Cu be a set of clusters 
such that u $ t and Sq n P = UI:::;i:::;u Ci • By the pigeonhole principle, the 
number of points of Sq n P that belong to at least one cluster Ci such that 
ICil ~ ISq n PI/(2u) exceeds ISq n PI/2. Suppose that Sq is heavy. Then 
because uS t, we have v(q) > clan/4. From Lemma 4.13 it follows that with 
probability greater than 1 - e we have 

L v(q) dSq > ~CI an ( 1 - a~n) 1l(c2') 

> (an/(4/cI + clc/4) - (4/c I + cl c/4)/e)Il(c2') , 
where c is the constant of Lemma 4.13. 0 
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Suppose now that P is (log n )-scattered, with n > 2d , and let S be a subset 
of P of size at least logn. By definition, we have Ad(K(S)) > (I/7 7d )ISI/n. 
From Lemma 4.5 we derive that for some constant a, > 0, 

( 4.19) 

Put 
a = ( /1-((2) ) 'Id 

3a,cm ' 
where c is the constant of Lemma 4.14, and suppose that we have the following 
relationship between the storage m and the query time t: 

d (c,n)d/1-((2) 
(4.20) mt < d. 

a,c(810gn) 
Observe that since m ~ n the condition a < 1/12 is satisfied for any n large 
enough. Let C, ' ... , Cp be the fat clusters of r(P). From (4.20) we find that 
any fat cluster contains more than log n points. Pursuing the basic approach 
behind the Core Lemma, we turn our attention to the key inequality 

l V (q)dSq S L ICi l/1-(H(K(Ci )))· 

Iff '~i9 

From (4.19) it follows that 

Assume that 

(4.21 ) 
(en)d /1-((2) 

m < a, (4C)2d+' . 

Then Lemmas 4.9 and 4.14 imply that for any n large enough and any e 
(0 < e < 1) a random set P satisfies 

an d+' 2c /1-((2) < a, a mn 

with probability greater than 1 - e - 1/ n. But this leads to a contradiction, so 
(4.20) or (4.21) must be false. Since /1-((2) is larger than some positive constant 
(independent of e), we immediately derive the following result. 

Lemma 4.15. For any d > 1 and any e (0 < e < 1) there exists a constant 
c > 0 such that for any n > 1/ c, a random set of n points in ~ satisfies 
ml > c(n/logn)d with probability greater than 1 - e. 

4.4.2. Sharper bounds for 2-space. The two-dimensional version of Lemma 
4.15 can be improved by using weak scattering and Lemma 4.11. The proof 
is slightly more technical, although the basic approach remains the same. We 
use the notation of the previous section. A parallelotope is now simply called 
a rectangle. Given a slab Sq' we define Rq as the largest rectangle Sq n ~ 
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with two sides collinear with the bounding lines of Sq. Since a < /2' Rq 
is well defined and unique. As before, the query space & is the set of slabs 
{Sq I q E B2 (*)}. The proof of the following result is almost identical to that of 
Lemma 4.12, so we omit it. 

Lemma 4.16. There exists a constant 0 < Cz < 1 such that for any Sq E & we 
have c2a < A2(Rq) < a/c2 . 

We must strengthen the concept of heaviness by bringing into play the notion 
of weak scattering. Given a set P of n points in ~, we now say that a slab 
Sq is e-favorable if 

(i) Sq E & , 
(ii) czan/2 < IRq n PI < 2an/c2 , and 

(iii) the orthogonal projection of the points of Rq n P on either bounding 
line of Sq is weakly (cze z /2)-scattered in EI . 

We now have the analog of Lemma 4.13, saying that if we have a random 
point-set P, then a random query is e-favorable with high probability. 

Lemma 4.17. There exist two positive constants c and e l such that for any real 
e (0 < e < e I) and a random set of n points in ~, where an > c, the measure 
of the set of e-favorable slabs exceeds (1 - e - c/(aen))f1.(&) with probability 
greater than 1 - e . 
Proof. Let 1C(q) be the probability that Sq is e-favorable, assuming that Sq E 
&. We have 1C(q) = 1C 1 (q)1C2(q), where 1C 1 (q) is the probability that czan/2 < 
IRq n PI < 2an/cz and 1C2(q) is the conditional probability that the points of 
Rq n P projected onto a bounding line of Sq are weakly (czi /2)-scattered, 
given that czan/2 < IRq n PI < 2an/c2 • Using Chebyshev's inequality we 
derive 

4 
1C 1 (q) ~ I - -3-' 

c2an 
( 4.22) 

On the other hand, since the point distribution is uniform in ~, given a fixed 
subset S of pnRq , the projection of S onto a bounding line of Sq is uniformly 
distributed along the corresponding side s of Rq • From Lemma 4.16, the 
length of s is at least cz/2 < 1 , so it follows from Lemma 4.11 that if IRq npi > 
czan/2, then for e < e l (e l > 0) and an ~ 4/cz ' the projection of Rq n P is 
weakly (c2ez /2)-scattered with probability greater than 1 - eZ • From (4.22) we 
then derive that the expected value <I> of the measure of the set of e-favorable 
slabs satisfies 

( 4.23) 

But we also have 

<I> ::; (1 - p) (1 - e - ~) f1.(Q) + pf1.(Q) , 
czaen 
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where p is the probability that the measure of the set of e-favorable slabs is 
at least (1 - e - 5/(c~aen))jJ.(&). Combining this inequality with (4.23), the 
lemma follows readily. 0 

Let P be a set of n points in ~, and let Sq be e-favorable with respect 
to P. Then Sq contains a subset Q ~ P of size ;::: c2ilRq n PI/2, with 
the following properties. Let Q' be the orthogonal projection of Q onto a 
bounding line of Sq. Then for every subset S ~ Q' of at least two points, we 
have 

c2e21S1 
Al (1C(S)) > 20lRq n PI . 

Since IRq n PI < 20m / c2 ' this implies that given any subset C of Q of at least 
two points, the diameter of C satisfies 

(4.24) 
2 2 

D(C) > C~~~~I . 
The subset Q is called the prime subset of Sq. Since Sq is e-favorable, we 
have 

(4.25) 2 2 IQI ;::: c2 e an/4. 
Although Q is not necessarily unique we can always use a canonical ordering 
to make the prime subset unambiguously defined. 

Next, we replace v(q) by the function e(e, q), defined as follows. If Sq 
is e-favorable, then e(e, q) is the number of points in the prime subset of Sq 
which share a cluster with at least another point. More precisely, let .9T be the 
set of clusters which lie entirely within Sq and contain at least two points in 
the prime subset of Sq. Then 

e(e, q) = I U (C n prime subset of Sq)l· 
CEfT 

If Sq is not e-favorable then e(e, q) = O. 

Lemma 4.18. There exist two positive constants c and el such that for any real 
e (0 < e < e l ) and a random set of n points in ~ with an/t > 1/(ce2) the 
inequality 

[ e(e, q)dSq > ce2an (1 - e - _2_1_) jJ.(&) 
J~ c aen 

holds true with probability greater than 1 - e . 
Proof. Let Sq be an e-favorable slab, let Q be its prime subset, and let CI ' ... , 

Cu be a set of clusters such that u ~ t and Sq n P = UI~j~U Cj • All but at 
most u points of Q belong to clusters Cj each of which contains at least two 
points of Q. From (4.25) we derive that for an/t> 8/(c;i) , 

2 2 2 2 e(e, q) ;::: c2e an/4 - t > c2e an/8. 
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Consequently, Lemma 4.17 shows that with probability greater than 1 - e a 
random set P satisfies 

L c;(e, q)dSq > ~c~l an (1 - e - a~n) p,(t2') , 

provided that an > c and anjt > 8j(c;e2). Since t ? 1, the lemma follows 
directly. 0 

Let C1 ' ••• , Cm be the clusters of r(P), and for each i (1:::; i:::; m), let Y1; 
be the maximum number of points in C; to be in the prime subset of the same 
e-favorable slab Sq. If this number is strictly less than 2, then we set Y1; = o. 
Clearly, 1 c;(e, q)dSq :::; L Y1;p,(H(K(C;))). 

Iff 19:::;m 

Using (4.24) for each i such that Y1; > 0, as well as Lemma 4.6, we derive 

(4.26) 1 c;(e, q)dSq < (4~a~) L D(K(C;))p,(H(K(C;))) < c3a3mnjl, 
Iff c2e I:::;;:::;m 

for some constant c3 > o. 
Finally, put 

a = e2 J cp,(t2') , 
2 c3m 

where c is the constant of Lemma 4.18. Note that a < /2 for any n large 
enough (since n:::; m). Assume now that 

2 c3 e8 p,(t2')n2 
(4.27) mt < --'-4-'-"'---c3 

and 

(4.28) 

From (4.27) we have anjt> 1(ce2); therefore, Lemma 4.18 and (4.26) show 
that with probability greater than 1 - e , 

clan (1 -e - -2_1_) p,(t2') < c3a3mn/l, 
C aen 

for n large enough. From (4.28) we derive 
2 3 2 ce an(1 - 2e)p,(t2') < c3a mnje , 

which gives a contradiction if, say, e < min{ e l ' n. This implies that (4.27) 
or (4.28) has to be false. Since p,(t2') is bounded below by a positive constant, 
with probability greater than 1 - e, we have mt2 > c4e8n2 , for c4 > 0 and 
n large enough. Note that the condition e < min{e l , n can be relaxed by 
choosing c4 small enough. 
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Lemma 4.19. There exists a constant c > 0 such that for any e (0 < e < 1) and 
n > l/c a random set of n points in ~ satisfies mt2 > ce8n2 with probability 
greater than 1 - e . 

4.4.3. Summary of results and closing remarks. Let us recap the main results 
of this section (Lemmas 4.15 and 4.19) and state some immediate corollaries. 

Lemma 4.20. Let S be a faithful commutative semigroup and let d > 1 be a 
positive integer and e any real (0 < e < 1). There exists a constant c > 0 such 
that the following is true. Let P be a random set of n points in ~ and let r 
be any storage scheme of size m for the range searching problem (S, r2', P), 
where r2' is the set of all slabs of fixed (appropriately chosen) width in Ed. Then 
if n is large enough, with probability greater than 1 - e, the time complexity 
t = maxqE~ t(P , r, q) satisfies the inequality mt2 > cn2 , for d = 2, and 
mtd > c(njIog n)d ,for d > 2. As a corollary, the worst case and average case 
time complexities satisfy 

t(n, m) 2:: [(n, m) = Q(nlym) 

for d = 2, and 

- (nl log n) t(n, m) 2:: t(n, m) = Q mild 

for d 2:: 3. 

Of course, these lower bounds also apply to simplex range searching, since a 
slab can always be clipped into a parallelotope without changing the nature of 
the problem, and a d-dimensional parallelotope can always be triangulated into 
at most d! simplices. We can therefore state our result in a more illustrative 
manner. 

Theorem 4.21. Simplex range searching on n points requires Q(nly'ni) query 
time in two dimensions and Q((njIogn)lm lld ) query time in any dimension 
d 2:: 3, where m denotes the amount of storage available. These bounds hold 
for a random point-set, and therefore are valid in the worst case as well as on the 
average. 

As we mentioned in the introduction, simplex range searching on n points 
in 'd-space can be performed in O(nl-Ilda(n)) query time and O(n) storage, 
where a is a functional inverse of Ackermann's function (Chazelle and Welzl 
[5]). This upper bound, which holds in the arithmetic model, matches our 
lower bound very closely. On a random access machine supplied with linear 
storage, the best upper bound on the query time to date is O( v'n log n) in 2-
space (Chazelle and Welzl [5]) and O(nd(d-I)/(d(d-I)+I)H) in d-space, for any 
d 2:: 3 and any fixed e > 0 (Haussler and Welzl [11]). An interesting open prob-
lem is to bridge the gap in higher dimensions and generalize the upper bounds 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE COMPLEXITY OF POLYTOPE RANGE SEARCHING 665 

to general space-time trade-offs. Another intriguing question is to determine 
whether half-space queries are as hard as simplex queries. 
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