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Abstract. We show that the maximal number of turns of an x-monotone path in an 
arrangement of n lines is f~(n 5/3) and the maximal number of turns of an x-monotone 
path in arrangement of n pseudolines is f~(n2/log n). 

Let us consider a set L of n lines in the plane. The lines of L induce a cell complex, 
called the arrangement of L. The plane is divided into two-dimensional convex 
regions; the sides of these regions are called edges and the intersections of the lines 
are called vertices. In the following we assume that none of the lines Lis parallel to 
the y-axis. 

Combinatorial  properties of line arrangements in the plane have been inten- 
sively studied in the last few years, mainly in connection with the construction of 
efficient geometric algorithms (see, e.g., [E-I). In this paper we consider one such 
property, the maximal possible length of an x-monotone polygonal line (path) 
composed of edges of the arrangement; the length is measured as the number of 
turns of the polygonal line plus one. 

This problem is posed in [EG] ;  here an obvious upper bound O(n 2) and a lower 
bound ~ ( n  3/2) (by M. Sharir) are mentioned. An interesting application of this 
problem can be found in [YKII] .  

We give a stronger lower bound: 

Theorem 1. The maximal possible length of an x-monotone path in an arrangement 
of n lines is [~(n5/3). 

A pseudoline is a connected x-monotone curve. A collection of pseudolines is a 
finite set of pseudolines, such that any two pseudolines meet at at most one point 
and cross there. An arrangement of pseudolines and a monotone path in a 
pseudoline arrangement are defined analogously as in the case of lines. 
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It is known that there are many more combinatorially distinct arrangements of 
pseudolines than arrangements of lines [GP-I. This contrasts with the fact that most 
of the results known for arrangements of lines also hold for arrangements of 
pseudolines. We believe that the maximum monotone path length might be one of 
the properties which distinguishes arrangements of lines from arrangements of 
pseudolines. We suspect that the bound in Theorem 1 for line arrangements is tight, 
while for arrangements of pseudolines we have the following result: 

Theorem 2. The maximum length of a monotone path in an arrangement of n 
pseudolines is l](n2/log n). 

Our results immediately give rise to corresponding upper-bound problems. An 
upper bound for the case of lines of the form O(n 2-~) for some e > 0 probably 
requires new and nontrivial techniques, as Theorem 2 indicates. The case of 
pseudolines might be more tractable; at present no o(n 2) upper bound is known. 

Proof of Theorem 1. We choose an integer m and use the scheme depicted in 
Fig. 1 (for m = 3). The thin lines in this figure are just lines while the thick ones are 
actually bundles of near parallel lines. These bundles have three directions: 

�9 the horizontal one (direction 1), 
�9 with negative slope (descending; direction 2), 
�9 and with positive slope (ascending; direction 3). 

There are m 2 bundles, each consisting of m lines, in direction 1; m bundles, each 
with m 2 lines, in direction2; and (m2+ m) bundles with m-1 lines each, in 
direction 3. The bundles in direction 2 are further structured, consisting of m 

Fig. 1 
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groups of m very near lines. Together with m-(m 2 - 1) short nearly vertical thin 
lines with negative slope and the m-1 nearly vertical long thin lines with positive 
slope there are O(m 3) lines in the arrangement. 

One crossing of a triple of bundles, greatly magnified, is depicted in Fig. 2 (all the 
crossings look the same). The x-monotone path is depicted by the thick line. It 
comes to the crossing along direction 2 from above, following the leftmost line in 
the bundle. It makes at least m 2 turns in the crossing and leaves it again along 
direction 2 down, following the rightmost line in the bundle. Then it crosses the 
bundle in direction 2 using the short thin line, and again reaches the leftmost line of 
this bundle; thus it may continue in the same manner at the next crossing. When it 
reaches the lowest horizontal bundle, it uses the long thin line to get to the next 
bundle of direction 2. In this way it passes all m 3 crossings, making m 2 turns in 
each, which makes m 5 turns in total. 

[]  

Proof of  Theorem 2. 
put 

An integer r will be the parameter  of the construction. We 

n 2 = 2,+ 1, q = [-2 "+ 1/(r + 1)]. 

We choose e > 0, e < 1/2n and define auxiliary points A~j, i =  1, 2 . . . . .  n, 
j = l  . . . . .  q: 

Aij = (j + e(i - 1), i). 

Further, we choose 6 = e/2(r + 1) and define points 

Xi.j,k = Aij + (k6, 0) 

f o r / =  1 . . . . .  n , j =  1 . . . . .  q , k = - r  . . . . .  r. 
The arrangement will be constructed so that it allows a monotone path of the 

following form (illustrated in Fig. 3 for r = 2): It starts near the point A 11. It goes 
upward along the first column of points, always coming to the left of All (to some 
X , . k ,  k < 0) and going a small distance horizontally (to some X, .k ,  k > 0). When 
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it reaches the top row, it goes downward along a single straight line with negative 
slope and the same scheme is repeated along a second column upward, etc. The 
problem is with the pseudolines which lead the path upward along the columns. In 
every column, the upward-directed segments of the monotone path will belong to 
distinct pseudolines, but the same pseudoline will be reused in more columns�9 We 
shall have a hierarchy of such pseudolines (grouped in levels); the pseudolines of 
level k + 1 will help to reuse the pseudolines of level k for the monotone path. 

Let us give a more formal description. We define the following function on 
natural numbers: 

tz(m) = max{i; 2 i divides m} 

(the number of trailing zeros of m in binary notation). 
The arrangement will contain the following pseudolines (actually polygonal 

lines composed of straight segments): 

�9 Straight horizontal lines with equation y = i for i = 1 . . . . .  n (joining the rows 
of points A~j). 

�9 Straight lines joining X,,~,, to Xlu+ 1),-, f o r j  = 1 . . . . .  q - 1. 

The choice of e guarantees that these lines have negative slope, and they serve for 
the return of the path to the lowest row. 

�9 Polygonal lines, which are grouped into levels 0, 1 . . . . .  r. 

Level k consists of polygonal lines of the following form: they start at points 
X l j ,  k (] = 1, 2 . . . . .  q) and at points Xu .  k, where tz(i))k and 1 < j  < tz(i) - k. They 
consist of segments with positive slope, each such segment starting at some point 
X ~ , ,  and ending one row higher--at  some point X(~+ 1)i',~- The value ofs is eq lal to 
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- k  if L(i - 1)/2k_J is odd, otherwise it is equal  to k. The value o f j  (the co lumn for a 
given row on the pseudoline) is determined inductively by the following rule: the 
upper  endpoint  of a segment with lower endpoint  Xu. ~ is X(i+nu+d(0) ' t, where 
d(i) = max(0, tz(i) - k) (and the value of t is determined f rom (i + 1) as s was from 
i). Each pseudoline ends as soon as it reaches the topmos t  row or the r ightmost  
column. Figure 4 shows these pseudolines for r = 2 (the pseudolines of level 0 being 
indicated by shor t -dashed lines, of  level ! by long-dashed lines of level 2 by dot-  
dashed lines and the points A u by dots). 

It is easily seen that  exactly one pseudoline of a given level passes near  every A u. 
The slope of all segments used is always positive, by the choice of 6; thus the 
pseudolines are x -monotone .  

The pseudolines of level k start  at posit ions (i,j) with i = 1 or  with 1 < j  < 
tz(i) - k. It is easy to check that  

• max(tz(i)  - k, 0) < n/2 k, 
i=1  

and therefore there are at most  q + n/2 k pseudolines of level k. The  total  number  of 
pseudolines in the a r rangement  is thus at most  (r + l)q + 2n = O(n). 

It  remains to check that  no two pseudolines have more  than  one point  in 
common.  If  at least one of the pseudolines is hor izontal  or  has negative slope, or  if 
both the pseudolines have the same level, this is immediate.  For  a pair  of  
pseudolines of distinct levels, consider the segments  joining row i and row i + 1 on 
the first and on the second pseudoline. We verify that  whenever these segments 
intersect, the slope of the segment  belonging to the pseudoline of  the lower level is 
smaller than the slope of the second segment;  thus the two pseudolines can 
intersect only once. 
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Finally we define the monotone path. As is described above, it traverses the 
arrangement "column by column," i.e., it goes near A11, near A21 . . . . .  A,I, 
A~2 . . . . .  A,~. In the j th  column the rule is the following: 

�9 Start at X~j ._ . .  
�9 Being at some X~j.~, go horizontally to X~j.tzr o and follow the segment of a 

pseudoline of level tz(i), going to X ,  + t)j.-,~,~. 
�9 Being at some X.~.,, go horizontally to X.j., and then go downward along a 

straight line to X~o+ 1). _. (to the next column). 

For each i d the monotone path has at least one turn near A~j, therefore there are 
at least nq = t~(n2/log n) turns. [] 

An example very similar to that in our proof of Theorem 1 has been indepen- 
dently obtained by Cole et al. [CMS]. They even show that a weight assignment for 
the lines, such that the ~(nS/3)-turn monotone path is the weighted median path, 
can be found. This has also been observed for the example presented above by 
Yamamoto [Y]. 
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