
Lower Bounds on Witnesses for Nonemptiness of

Universal Co-Büchi Automata

Orna Kupferman1 and Nir Piterman2,⋆

1 Hebrew University
2 Imperial College London

Abstract. The nonemptiness problem for nondeterministic automata on infinite

words can be reduced to a sequence of reachability queries. The length of a shortest

witness to the nonemptiness is then polynomial in the automaton. Nonemptiness

algorithms for alternating automata translate them to nondeterministic automata.

The exponential blow-up that the translation involves is justified by lower bounds

for the nonemptiness problem, which is exponentially harder for alternating au-

tomata. The translation to nondeterministic automata also entails a blow-up in the

length of the shortest witness. A matching lower bound here is known for cases

where the translation involves a 2O(n) blow up, as is the case for finite words or

Büchi automata.

Alternating co-Büchi automata and witnesses to their nonemptiness have appli-

cations in model checking (complementing a nondeterministic Büchi word automa-

ton results in a universal co-Büchi automaton) and synthesis (an LTL specification

can be translated to a universal co-Büchi tree automaton accepting exactly all the

transducers that realize it). Emptiness algorithms for alternating co-Büchi automata

proceed by a translation to nondeterministic Büchi automata. The blow up here is

2O(n log n), and it follows from the fact that, on top of the subset construction, the

nondeterministic automaton maintains ranks to the states of the alternating automa-

ton. It has been conjectured that this super-exponential blow-up need not apply to

the length of the shortest witness. Intuitively, since co-Büchi automata are memo-

ryless, it looks like a shortest witness need not visit a state associated with the same

set of states more than once. A similar conjecture has been made for the width of

a transducer generating a tree accepted by an alternating co-Büchi tree automaton.

We show that, unfortunately, this is not the case, and that the super-exponential

lower bound on the witness applies already for universal co-Büchi word and tree

automata.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s. Motivated by deci-

sion problems in mathematics and logic, Büchi, McNaughton, and Rabin developed a

framework for reasoning about infinite words and trees [2,11,16]. The framework has

proven to be very powerful. Automata, and their tight relation to second-order monadic

logics were the key to the solution of several fundamental decision problems in mathe-

matics and logic [17]. Indeed, for many highly expressive logics, it is possible to translate

⋆ Supported by the UK EPSRC project Complete and Efficient Checks for Branching-Time

Abstractions (EP/E028985/1).

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 182–196, 2009.

c© Springer-Verlag Berlin Heidelberg 2009

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 183

a formula in the logic to an automaton accepting exactly all the models satisfying the for-

mula. The formula is then satisfiable iff the language of the automaton is not empty. Thus,

decidability can be reduced to the emptiness problem.

Today, automata on infinite objects are used for specification and verification of non-

terminating systems [18,9,19]. The emptiness problem plays a key role also in these more

modern applications. Two important examples are model checking and synthesis. Model

checking a system with respect to a specification is reduced to checking the emptiness of

the product of the system with an automaton accepting exactly all models that violate the

specification [19]. Synthesis of a reactive system that satisfies a desired specification is

reduced to checking the emptiness of a tree automaton accepting all possible strategies

that realize the specification [15].

In the case of finite nondeterministic automata on finite words, the emptiness problem

is simple: The automaton accepts some word if there is a path from an initial state to an

accepting state (c.f., [4]). Thus, the automaton is viewed as a graph, its alphabet is ignored,

and emptiness is reduced to reachability in finite graphs. An important and useful outcome

of this simplicity is the fact that when the language of the automaton is not empty, it is

easy to return a witness to the nonemptiness — a word v that labels a path from an initial

state to a final states. Clearly, reachability may be checked only along simple paths, thus

the length of a witness is bounded by the number of states of the automaton.

The case of finite nondeterministic automata on infinite words is similar. Acceptance

in such automata depends on the set of states that a run visits infinitely often. For ex-

ample, in the Büchi acceptance condition, some states are designated as accepting, and

in order for a run to be accepting it has to visit at least one of these states infinitely of-

ten. Nonemptiness is slightly more complicated, but again, the automaton is viewed as

a graph, its alphabet is ignored, and emptiness is reduced to a sequence of reachability

queries in finite graphs. Now, the witness to the nonemptiness is a word of the form v ·uω,

where the word v labels a path from an initial state to some accepting state, and the word

u labels a path from this accepting state to itself. Since both v and u are extracted from

reachability queries on the graph, their lengths are bounded by the number of states of the

automaton.1 For acceptance conditions more complicated than Büchi, the emptiness test

is more involved, but still, as long as we consider nondeterministic automata, emptiness

can be reduced to a sequence of reachability queries on the graph of the automaton, and

a nonempty automaton has a witness of the form v · uω for v and u polynomial in the

number of states of the automaton.

Alternating automata enrich the branching structure of the automaton by combining

universal and existential branching. In the presence of alternation, we can no longer ig-

nore the alphabet when reasoning about emptiness. Indeed, the different copies of the

automaton have to agree on the letters they read on the same position of the word. The

standard solution is to remove alternation by translating the automaton to an equiva-

lent nondeterministic automaton, and checking the emptiness of the latter. This simple

solution is optimal, as the exponential blow-up that the translation involves is justified

by lower bounds for the nonemptiness problem, which is exponentially harder in the

alternating setting (c.f., NLOGSPACE vs. PSPACE for nondeterministic vs. alternating

automata on finite words).

1 In fact, it can be shown that even the sum of their lengths is bounded by the number of states of

the automaton [6].

184 O. Kupferman and N. Piterman

The translation to nondeterministic automata also entails an exponential blow-up in

the length of the shortest witness. Can this blow up be avoided? A negative answer for

this question is known for alternating automata on finite words and alternating Büchi

automata. There, removing alternation from an alternating automaton with n states results

in a nondeterministic automaton with 2O(n) states [3,12], and it is not hard to prove a

matching lower bound [1]. Note also that a polynomial witness would have led to the

nonemptiness problem being in NP, whereas it is known to be PSPACE-complete.

Things become challenging when the removal of alternation involves a super-

exponential blow up. In particular, emptiness algorithms for alternating co-Büchi au-

tomata proceed by a translation to nondeterministic Büchi automata, and the involved

blow up is 2O(n log n). Alternating co-Büchi automata have been proven useful in model

checking (complementing a nondeterministic Büchi word automaton results in a uni-

versal co-Büchi automaton) and synthesis (an LTL specification can be translated to a

universal co-Büchi tree automaton accepting exactly all the transducers that realize it

[8,5]). In the case of model checking, the witness to the nonemptiness is a computation

that violates the property. In the case of synthesis, the witness is a system that realizes

the specification). Thus, we clearly seek shortest witnesses.

The 2O(n log n) blow up follows from the fact that, on top of the subset construction, the

nondeterministic automaton maintains ranks to the states of the alternating automaton. It

has been conjectured that this super-exponential blow-up need not apply to the length

of the shortest witness. Intuitively, since co-Büchi automata are memoryless, it seems

as if a shortest witness need not visit a state associated with the same set of states more

than once. This intuition suggests that a shortest witness need not be longer than 2O(n). A

similar conjecture has been made for the width of a transducer2 generating a tree accepted

by an alternating co-Büchi tree automaton [8].

In this paper we show that, unfortunately, this is not the case, and the super-exponential

blow-up in the translation of alternating co-Büchi automata to nondeterministic Büchi au-

tomata is carried over to a super-exponential lower bound on the witness to the nonempti-

ness. In fact, the lower bound applies already for universal co-Büchi automata. We start

with the linear framework. There, we show that for every odd integer n ≥ 1, there exists

a universal co-Büchi word automaton An with n states such that the shortest witness to

the nonemptiness of An has a cycle of length n+1
2 !.

In the branching framework, the witness to the nonemptiness is a transducer that gen-

erates a tree accepted by the automaton. The linear case trivially induces a lower bound on

the size of such a transducer. In the branching framework, however, it is interesting to con-

sider also the width of the witness transducer. In particular, the LTL synthesis algorithm in

[8], which is based on checking the nonemptiness of a universal co-Büchi tree automaton,

is incremental, and it terminates after k iterations, with k being an upper bound on the

width of a transducer generating a tree accepted by the automaton. The bound used in [8]

is super-exponential, and has been recently tightened to 2n(n!)2 [14,10]. It is conjectured

in [8] that the bound can be improved to 2O(n). As in the word case, the intuition is con-

vincing: The alternating automaton may send a set of states to a subtree of the input tree,

in which case the subtree should be accepted by all the states in the set. The memoryless

nature of the co-Büchi condition suggests that if in an accepting run of the automaton the

2 Essentially, the width of a transducer is the number of different states that the transducer may

be at after reading different input sequences of the same length.

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 185

same set of states is sent to different subtrees, then there is also an accepting run on a

tree in which these subtrees are identical. Thus, we do not need more than 2n different

subtrees in a single level of the input tree. We show that, unfortunately, this intuition fails,

and there is a lower bound of n+1
2 ! on the width of the transducer. Formally, we show

that for every odd integer n ≥ 1, there exists a universal co-Büchi tree automaton Bn

with n states such that every tree accepted by Bn is such that, all levels beyond a finite

prefix have at least n+1
2 ! different subtrees. Thus, the minimal width of a transducer that

generate a tree accepted by Bn has width at least n+1
2 !.

Our constructions use a very large alphabet. Indeed, the alphabet of the automata An

and Bn has n+1
2 ! letters. In the case of words, the word accepted by the automaton is a

cycle consisting of all these letters ordered in some fixed order (say, lexicographically).

The case of trees is similar. We were not able to reduce the size of the alphabet. While

the question of a smaller alphabet is very interesting, it is of less practical importance:

Constructions for removal of alternation introduce an exponential alphabet in an interme-

diate step (where the exponent is quadratic in the number of states). The larger alphabet

is discarded at a later stage but the degree of nondeterminism induced by it remains in

the resulting nondeterministic automaton. Furthermore, the size of the alphabet does not

play a role in these constructions, and obviously does not play a role when checking the

emptiness of a nondeterministic automaton.

2 Universal Co-Büchi Word Automata

A word automaton is A = 〈Σ, Q, δ, Qin, α〉, where Σ is the input alphabet, Q is a finite

set of states, δ : Q × Σ → 2Q is a transition function, Qin ⊆ Q is a set of initial states,

and α is an acceptance condition that defines a subset of Qω.

Given an input word w = σ0 · σ1 · · · in Σω, a run of A on w is a word r = q0, q1, . . .
in Qω such that q0 ∈ Qin and for every i ≥ 0, we have qi+1 ∈ δ(qi, σi); i.e., the run

starts in the initial state and obeys the transition function. Since the transition function

may specify many possible transitions for each state and letter, A may have several runs

on w. A run is accepting iff it satisfies the acceptance condition α. We consider here

the Büchi acceptance condition, where α ⊆ Q is a subset of Q. For a run r, let inf(r)
denote the set of states that r visits infinitely often. That is, inf(r) = {q ∈ Q : qi =
q for infinitely many i ≥ 0}. A run r is accepting iff inf(r) ∩ α 	= ∅. That is, r is

accepting if some state in α is visited infinitely often. The co-Büchi acceptance condition

dualizes the Büchi condition. Thus, again α is a subset of Q, but a run r is accepting if

inf(r) ∩ α = ∅. Thus, r visits all the states in α only finitely often.

If the automaton A is nondeterministic, then it accepts an input word w iff it has an

accepting run on w. If A is universal, then it accepts w iff all its runs on w are accept-

ing. The language of A, denoted L(A) is the set of words that A accepts. Dualizing a

nondeterministic Büchi automaton (NBW, for short) amounts to viewing it as a universal

co-Büchi automaton (UCW, for short). It is easy to see that by dualizing A, we get an

automaton that accepts its complementary language.

In [7], Kupferman and Vardi analyze runs of UCW in terms of a ranking function one

can associate with their run DAG. In the rest of this section, we describe their analysis.

Let A = 〈Σ, Q, Qin, δ, α〉 be a universal co-Büchi automaton with α. Let |Q| = n.

The runs of A on a word w = σ0 · σ1 · · · can be arranged in an infinite DAG (directed

acyclic graph) G = 〈V, E〉, where

186 O. Kupferman and N. Piterman

– V ⊆ Q× IN is such that 〈q, l〉 ∈ V iff some run of A on w has ql = q. For example,

the first level of G contains the vertices Qin × {0}.

– E ⊆
⋃

l≥0(Q×{l})× (Q×{l + 1}) is such that E(〈q, l〉, 〈q′, l + 1〉) iff 〈q, l〉 ∈ V
and q′ ∈ δ(q, σl).

Thus, G embodies exactly all the runs of A on w. We call G the run DAG of A on w. We

say that a vertex 〈q, l〉 in G is an α-vertex iff q ∈ α. We say that G is accepting if each

path p in G contains only finitely many α-vertices. It is easy to see that A accepts w iff

G is accepting.

Let [2n] denote the set {0, 1, . . . , 2n}. A ranking for G is a function f : V → [2n]
that satisfies the following conditions:

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then q 	∈ α.

2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, we have f(〈q′, l + 1〉) ≤ f(〈q, l〉).

Thus, a ranking associates with each vertex in G a rank in [2n] so that ranks along paths

decrease monotonically, and α-vertices cannot get an odd rank. Note that each path in

G eventually gets trapped in some rank. We say that the ranking f is an odd ranking if

all the paths of G eventually get trapped in an odd rank. Formally, f is odd iff for all

paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in G, there is l ≥ 0 such that f(〈ql, l〉) is odd, and for

all l′ ≥ l, we have f(〈ql′ , l
′〉) = f(〈ql, l〉). Note that, equivalently, f is odd if every path

of G has infinitely many vertices with odd ranks.

We now analyze the form of accetping run DAGs. The following three lemmata relate

to DAGs induced by words accepted by A. Consider a (possibly finite) DAG G′ ⊆ G. We

say that a vertex 〈q, l〉 is finite in G′ iff only finitely many vertices in G′ are reachable

from 〈q, l〉. We say that a vertex 〈q, l〉 is α-free in G′ iff all the vertices in G′ that are

reachable from 〈q, l〉 are not α-vertices. Note that, in particular, 〈q, l〉 is not an α-vertex.

We define an infinite sequence of DAGs G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ . . . as follows.

– G0 = G.

– G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite in G2i}.

– G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is α-free in G2i+1}.

Lemma 1. For every i ≥ 0, there exists li such that for all l ≥ li, there are at most n− i
vertices of the form 〈q, l〉 in G2i.

Lemma 1 implies that G2n is finite, and G2n+1 is empty.

Each vertex 〈q, l〉 in G has a unique i ≥ 1 such that 〈q, l〉 is either finite in G2i or

α-free in G2i+1. This induces a function f : V → [2n] defined as follows.

f(〈q, l〉) =

[

2i If 〈q, l〉 is finite in G2i.

2i + 1 If 〈q, l〉 is α-free in G2i+1.

Lemma 2. For every two vertices 〈q, l〉 and 〈q′, l′〉 in G, if 〈q′, l′〉 is reachable from

〈q, l〉, then f(〈q′, l′〉) ≤ f(〈q, l〉).

Lemma 3. For every infinite path in G, there exists and a vertex 〈q, l〉 such that all the

vertices 〈q′, l′〉 on the path that are reachable from 〈q, l〉 have f(〈q′, l′〉) = f(〈q, l〉).

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 187

We can now conclude with Theorem 1 below.

Theorem 1. [7] The DAG G is accepting iff it has an odd ranking.

Proof. Assume first that there is an odd ranking for G. Then, every path in G eventually

gets trapped in some odd rank. Hence, as α-vertices cannot get this rank, the path visits

α only finitely often, and we are done.

For the other direction, note that Lemma 2, together with the fact that a vertex gets

an odd rank only if it is α-free, imply that the function f described above is a ranking.

Lemma 3 then implies that the ranking is odd. ⊓⊔

3 Lower Bound on Length of Accepted Words

In this section we construct, for every odd n ≥ 1, a UCW An with n states such that

the shortest words accepted by A have a cycle of length n+1
2 !. The alphabet Σn of An

has n+1
2 ! letters, and there is an ordering ≤ of all the letters in Σn such that An accepts

exactly all words vuω, where v ∈ Σ∗
n and u ∈ (Σn)

n+1

2
! has all the letters in Σn ordered

according to ≤.

Formally, given an odd n ≥ 1, let An = 〈Σn, Qn, δn, Qn, αn〉, where

– Let Πn be the set of permutations on {1, 3, 5, . . . , n} (the odd members of

{1, . . . , n}), and let ≤ be the lexicographic ordering3 on the members of Πn. Then,

Σn ⊆ Πn × Πn is such that 〈π, π′〉 ∈ Σn iff π′ is the (cyclic) successor of

π in the order ≤. Thus, each letter of Σn is a pair 〈π, π′〉 of permutations, such

that π′ is the successor of π in the lexicographic order of Πn. Note we refer to

the order in a cyclic way, thus 〈n . . . 31, 13 . . . n〉 is a letter in Σn. For example,

Π5 = {135, 153, 315, 351, 513, 531} and Σ5 = {〈135, 153〉, 〈153, 315〉, 〈315, 351〉,
〈351, 513〉, 〈513, 531〉, 〈531, 135〉}. Note that each permutation in Πn contributes to

Σn one letter, thus |Σn| = |Πn| = n+1
2 !.

– Qn = {1, . . . , n}.

– Consider a permutation π ∈ Πn. An even-extension of π is a permutation σ of

{1, 2, 3, . . . , n} obtained from π by using π for the odd positions and inserting in

each even position e the even number e. For example, if π = 153, then σ = 12543.

Let π and π′ be such that 〈π, π′〉 ∈ Σn, and let σ = i1 · · · in and σ′ = j1 · · · jn

be the even extensions of π and π′. Then, for every 1 ≤ k ≤ n, we define

δn(ik, 〈π, π′〉) =

{

{j1, . . . , jk} if k is odd

{j1, . . . , jk−1} if k is even.

That is, when a state h ∈ Qn reads 〈π, π′〉, it checks its location in σ (this is the

k for which h = ik) and sends copies to all states in smaller (or equal, if k is odd)

locations in σ′ (these are the states h′ for which h′ = jk′ for k′ smaller than (or equal

to) k. Note that for all even k’s, we have δn(ik, 〈π, π′〉) = δn(ik−1, 〈π, π′〉).
For example, δ5(3, 〈135, 153〉) = {1, 2, 5}. Indeed, the location of 3 in 12345 is

3 and the states located in the first three positions in 12543 are 1, 2, and 5. The other

transitions on the letter 〈135, 153〉 are defined similarly:

3 The proof stays valid with every ordering.

188 O. Kupferman and N. Piterman

• δ5(1, 〈135, 153〉) = δ5(2, 〈135, 153〉) = {1},

• δ5(3, 〈135, 153〉) = δ5(4, 〈135, 153〉) = {1, 2, 5}, and

• δ5(5, 〈135, 153〉) = {1, 2, 3, 4, 5}.
– αn = {i | i is even}. Thus, every infinite run of An has to visit only finitely many

even states.

Note that for every word v ∈ Σω, the run DAG of An on v has all the states in Qn

appearing in every level of the DAG. This follows from the set of initial states of An being

Qn and the fact that for every letter a = 〈π, π′〉 ∈ Σn, there exists one state q in Qn (q
is last number in π) for which the transition from q on a contains all the states in Qn.

Let u be the word in (Σn)
n+1

2
! that contains all the letters in Σn ordered lexi-

cographically. For example, when n = 5, we have that u = 〈135, 153〉 〈153, 315〉
〈315, 351〉〈351, 513〉 〈513, 531〉〈531, 135〉. We prove that An accepts the word uω. It

follows that An accepts vuω for every word v ∈ Σ∗.

Lemma 4. uω ∈ L(An).

Proof. Consider the run DAG G of An on uω. In Figure 1, we describe the accepting

run DAG of A5 on uω. As argued above, each level l of G consists of all the vertices in

Fig. 1. The accepting run of A5 on u
ω

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 189

Qn × {l}. We arrange the vertices of G in columns numbered 1 to n. In the level that

reads 〈π, π′〉, we arrange the vertices according to the position of the state component of

each vertex in the even extension σ of π. For example, when we read 〈135, 153〉 in level

0, we consult the even extension 12345 of 135 and put the vertex 〈1, 0〉 in Column 1 (the

leftmost), put 〈2, 0〉 in Column 2, and so on. Since u contains all the letters in Σn ordered

lexicographically, the letter to be read in the next level is 〈π′, π′′〉, and the vertices are

arranged in columns in this level according to π′. By the definition of δn, the above

implies that the edges in G go from columns to smaller or equal columns. Accordingly,

all α-vertices appear in even columns and all other vertices appear in odd columns.

We prove that G has an odd ranking. For that, we prove, by induction on i, that the

vertices in Column i, for 1 ≤ i ≤ n, get rank i (independent of their level).

By definition, the set of successors of a vertex in Column 1 is a singleton containing

the next vertex in Column 1. As all vertices in this column are not α-vertices, they are

all α-free and they get rank 1. The set of successors of vertices in Column 2 is again

a singleton containing only the next vertex in Column 1. Since vertices in Column 2

are α-vertices, they do not get rank 1. In the DAG G2, however, these vertices have no

successors. Thus, they are finite, and get rank 2.

The induction step is similar: the DAG Gi contains only vertices in Columns i to n.

When i is odd, the vertices in Column i are α-free, and get rank i. When i is even, the

vertices in Column i are finite, and get rank i too. ⊓⊔

Consider two letters 〈π1, π
′
1〉 and 〈π2, π

′
2〉 in Σn. We say that 〈π1, π

′
1〉 and 〈π2, π

′
2〉 are

gluable if π′
1 = π2. Otherwise, 〈π1, π

′
1〉 and 〈π2, π

′
2〉 are non-gluable. We say that loca-

tion i ∈ IN is an error in w if letters i and i + 1 in w are non-gluable. A word w is bad

if w has infinitely many errors. The definition of non-gluable is extended to finite words

in the obvious way. Consider a word v ∈ Σ∗
n. We denote by first(v) the permutation

π ∈ Πn such that the first letter of v is 〈π, π′〉, for the (lexicographic) successor π′ of π.

Similarly, we denote by last(v) the permutation π′ such that the last letter of v is 〈π, π′〉
for the predecessor π of π′. Given an even-extension σ = i1 · · · in of a permutation, we

say that the state ik is the k-th state appearing in σ.

Consider a fragment of a run that starts in permutation π and ends in permutation π′.

That is, the fragment reads the word v, the permutation π is first(v), and the permutation

π′ is last(v). We arrange the states in Qn according to their order in the even extensions

σ and σ′ of π and π′. In the following lemma, we show that if q is the k-th state in σ,

q′ is the k′-th state in σ′, and k′ ≤ k, then q′ is reachable from q in this run fragment.

Furthermore, if k′ < k then q′ is reachable from q along a run that visits α.

Lemma 5. Consider an infinite word σ0σ1 · · · and a run DAG G of An on it. Let l be a

level of G, let l′ > 0 be an integer, and let v = σl · · ·σl+l′ be the subword of length l′

read at the level l. Let k and k′ be such that k is odd and 1 ≤ k′ ≤ k ≤ n. Let q be

the k-th state in the even extension of first(v), and let q′ be the k′-th state in the even

extension of last(v). Then, the vertex 〈q′, l + l′〉 is reachable from the vertex 〈q, l〉 of G.

Moreover, if l′ > 1 and k′ < k, then 〈q′, l + l′〉 is reachable from 〈q, l〉 along a path that

visits α.

Proof. We start with the first part of the lemma and prove it by induction on l′ (that is, the

length of v). For l′ = 1, the lemma follows from the definition of the transition function.

For the induction step, consider a word v = wa. Let first(w) = π1, last(w) = π2 and

190 O. Kupferman and N. Piterman

a = 〈π3, π4〉. Let i1 · · · in, j1 · · · jn, c1 · · · cn, and d1 · · · dn be the even extensions of π1,

π2, π3, and π4, respectively.

Consider the run DAG G of An on the input word. By the induction hypotheses, which

holds for w, we know that for every odd k and for all k′ ≤ k, the vertex 〈jk′ , l + |w|〉 is

reachable from the vertex 〈ik, l〉. We consider now the edges of G reading the last letter

a. We distinguish between two cases. If π2 = π3, the lemma follows from the definition

of the transition function. If π2 	= π3, consider the state ck appearing in the k-th position

in even extension of π3. Let m be such that jm = ck. We again distinguish between

two cases. If m ≤ k, the lemma follows from the definition of the transition function. If

m > k, then there exist m′ ≤ k and m′′ > k such that cm′′ = jm′ . By the induction

hypothesis, 〈jm′ , l + |w|〉 is reachable from 〈ik, l〉. As jm′ = cm′′ , the transition of cm′′

reading 〈π3, π4〉 implies that for every k′ < m′′ (and in particular for every k′ < k) the

vertex 〈dk′ , l + |w| + 1〉 is reachable from 〈ik, l〉.
We now prove the second part of the lemma. By the first part, the vertex

〈jk−1, l + l′ − 1〉 is reachable from 〈ik, l〉. As k is odd, k − 1 is even, thus, by the def-

inition of an even-extension, ck−1 = k − 1, thus 〈ck−1, l + l′ − 1〉 is an α-vertex. By

the definition of the transition function, for every k′ < k − 1, there is an edge from

〈ck−1, l + l′ − 1〉 to 〈dk′ , l + l′〉. It follows that there is a path that visits α from 〈ik, l〉
to 〈dk′ , l + l′〉. ⊓⊔

We use this result to show that bad words cannot be accepted by An. Indeed, whenever

there is a mismatch between the permutations, we find a state that reduces its position

in the permutations. This state, gives rise to a fragment that visits α. If this happens

infinitely often, we get a run that visits α infinitely often.

Lemma 6. Every bad word u is rejected by An.

Proof. We start with the case that u = vwω . Assume that |w| > 1. Otherwise, we replace

w by w · w. By the definition of bad words, the word wω contains two successive letters

〈π1, π
′
1〉 and 〈π2, π

′
2〉 such that π′

1 	= π2. Let l be a level in the run DAG of An on vwω

such that l > |v| is such that 〈π1, π
′
1〉 is being read in level l − 1 and 〈π2, π

′
2〉 is being

read in level l. Note that 〈π1, π
′
1〉 is then being read again at level l + |w| − 1.

We show that there exists a vertex 〈q, l + |w|〉 reachable from 〈q, l〉 such that the path

from 〈q, l〉 to 〈q, l + |w|〉 visits an α-vertex. Since An is universal, the block of |w| levels

of G that starts in level l repeats forever, thus it follows that G has a path with infinitely

many α-vertices.

Let w′ be the word read between levels l and l + |w|. Note that w′ is w shifted so

that first(w′) = π2, and last(w′) = π′
1. Let σ = i1, . . . , in and σ′ = j1, . . . , jn be the

even-extensions of π2 and π′
1, respectively. Since π2 	= π′

1, there exists some odd k and

k′ such that ik = jk′ and k′ < k. Let q be the state ik = jk′ . The state q satisfies the

conditions of Lemma 5 with respect to level l and length l′ = |w|: it is the k-th state in

first(w′) for an odd k, and it is also the k′-th state in last(w′). Hence, since |w′| > 1 and

k′ < k, we have that 〈q, l + |w|〉 is reachable from 〈q, l〉 along a path that visits α.

Consider some bad word u ∈ Σω such that u does not have a cycle. It follows that u
can be partitioned to infinitely many finite subwords that are non-gluable. Consider two

such subwords w1 and w2. As w1 and w2 are non-gluable there exists some k and k′ such

that k′ < k and the k-th state in last(w1) is the k′-th state in first(w). There are infinitely

many subwords, we use Ramsey’s Theorem to find infinitely many points that have the

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 191

same k and k′. This defines a new partition to finite subwords. By using Lemma 5 we

can show that the run on w contains a path with infinitely many visits to α. ⊓⊔

Corollary 1. The language of An is {vuω | v ∈ Σ∗
n}.

In Figure 2, we describe a rejecting run of An on vω where v is obtained from u
by switching the order of the letters 〈315, 351〉 and 〈351, 513〉. The pair 〈153, 315〉
and 〈351, 513〉 is non-gluable. In the run DAG G, the state 1 satisfies the conditions of

Lemma 5 with l = 2 and l′ = 6. To see this, note that the subword of vω of length 6 that is

read at level 2 is w = 〈351, 513〉〈315, 351〉 〈513, 531〉 〈531, 135〉 〈135, 153〉〈153, 315〉,
with first(w) = 351 and last(w) = 315. The state 1 is the 5-th state in the even ex-

tension 32541 of first(w), thus k = 5, and is the 3-rd state in the even extension 32145
of last(w), thus k′ = 3. As promised in the lemma, the vertex 〈1, 8〉 is reachable from

the vertex 〈1, 2〉 via a path that visits the α-vertex 〈2, 3〉 — the rejecting path that is

highlighted in bold in the figure.

Fig. 2. The rejecting run of A5 on (〈135, 153〉〈153, 315〉〈351, 513〉〈315, 351〉〈513, 531〉

〈531, 135〉)ω

192 O. Kupferman and N. Piterman

We can now conclude with the statement of the lower bound for the linear case.

Theorem 2. There is a n+1
2 ! lower bound on the length of a witness accepted by a UCW

with n states.

Proof. Consider the sequence of UCWs A1,A3, . . . defined above. By the above, the

language of An is {vuω | v ∈ Σ∗
n}, where u is the word in (Σn)

n+1

2
! that contains all the

letters in Σn ordered lexicographically. Thus, the length of witnesses is at least n+1
2 !. ⊓⊔

4 Universal Co-Büchi Tree Automata

Given an alphabet Σ and a set D of directions, a Σ-labeled D-tree is a pair 〈T, τ〉,
where T ⊆ D∗ is a tree over D and τ : T → Σ maps each node of T to a letter

in Σ. A transducer is a labeled finite graph with a designated start node, where the

edges are labeled by D and the nodes are labeled by Σ. A Σ-labeled D-tree is regular

if it is the unwinding of some transducer. More formally, a transducer is a tuple T =
〈D, Σ, S, sin, η, L〉, where D is a finite set of directions, Σ is a finite alphabet, S is a

finite set of states, sin ∈ S is an initial state, η : S ×D → S is a deterministic transition

function, and L : S → Σ is a labeling function. We define η : D∗ → S in the standard

way: η(ε) = sin, and for x ∈ D∗ and d ∈ D, we have η(x·d) = η(η(x), d). Intuitively, a

Σ-labeled D-tree 〈D∗, τ〉 is regular if there exists a transducer T = 〈D, Σ, S, sin, η, L〉
such that for every x ∈ D∗, we have τ(x) = L(η(x)). We denote by Ts the transducer

〈D, Σ, S, s, η, L〉, i.e., the transducer T with s as initial state. Given a transducer T , let

reach0(T) = {sin} and let reachi+1(T) =
⋃

s∈reachi(T)

⋃

d∈D{η(s, d)}. The width

of T is the minimal j such that |reachi(T)| = j for infinitely many i. That is, starting

from some i0, we have that |reachi(T)| ≥ j for all i ≥ i0. Note that while the width

of an infinite tree generated by a transducer is unbounded, the width of a transducer is

always bounded by its number of states.

Auniversalco-Büchi treeautomaton(UCT,forshort) isa tupleA=〈Σ, D, Q, Qin, δ, α〉,
where Σ, Q, Qin, and α are as in UCW, D is a set of directions, and δ : Q×Σ → 2(D×Q)

is a transition function. When the language ofA is not empty, it accepts a regular Σ-labeled

D-tree [16,13]. It is convenient to consider runs of A on transducers.

Consider a transducer T = 〈D, Σ, S, sin, η, L〉. A run of A on T can be arranged in

an infinite DAG G = 〈V, E〉, where

– V ⊆ S × Q × IN.

– E ⊆
⋃

l≥0(S ×Q×{l})× (S×Q×{l+1}) is such that E(〈s, q, l〉, 〈s′, q′, l + 1〉)
iff there is d ∈ D such that (d, q′) ∈ δ(q, L(s)) and η(s, d) = s′.

The run DAG G is accepting iff every path in it has only finitely many vertices in

S × α × IN. A transducer is accepted by A if its run DAG is accepting. In the sequel we

restrict attention to binary trees, i.e., D = {0, 1} and T = {0, 1}∗. All our ideas apply to

larger branching degrees as well.

5 Lower Bound on Width of Accepted Transducers

In [8], it is shown that if a UCT with n states is not empty, then it accepts a transducer of

width bounded by (2n!)n2n3n(n+1)/n!. An improved upper bound for determinization

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 193

shows that the width reduces to 2n(n!)2 [14,10]. It is conjectured in [8] that this bound

can be tightened to 2O(n). Intuitively, it is conjectured there that if a UCT is not empty,

then different states of a transducer it accepts that are visited by the same set of states of

the UCT can be merged.

In this section we construct, for every odd n ≥ 1, a UCT Bn with n states such that

the language of Bn is not empty and yet the width of a transducer accepted by Bn is at

least n+1
2 !.

We extend the ideas in Section 3 to a tree automaton. The basic idea is to create a

mismatch between the permutation the automaton has to send to the left successor of a

node and the permutation the automaton has to send to the right successor. Doing so, we

force the input tree to display all possible permutations in one level. Thus, the minimal

width of a transducer generating such a tree is n+1
2 !.

Recall the alphabet Σn defined in Section 3. We reuse this alphabet in the context of

a tree. Whenever we refer to a letter 〈π, π′〉 ∈ Σn we assume that π′ is the successor

of π according to the lexicographic order. Consider a letter 〈π, π′〉 ∈ Σn and a node

x labeled by 〈π, π′〉. Intuitively, when the automaton Bn reads the node x, it “sends”

the permutation π′ to the left successor of x and it “sends” the permutation π (i.e., the

same permutation) to the right successor of x. Consider a Σn-labeled binary tree 〈T, τ〉.
Consider a node x and its two successors x · 0 and x · 1. Let τ(x) be 〈πx, π′

x〉, τ(x · 0)
be 〈πx0, π

′
x0〉, and τ(x · 1) be 〈πx1, π

′
x1〉. We say that the node x is good if πx0 = π′

x

and πx1 = πx. That is, the left successor of x is labeled by the successor permutation

π′
x (paired with its successor permutation) and the right successor of x is labeled by the

same permutation πx (paired with its successor permutation). A tree 〈T, τ 〉 is good if all

vertices x ∈ T are good. Given a permutation π there is a unique good tree whose root

is labeled by 〈π, π′〉. We denote this tree by 〈T, τπ〉.

Lemma 7. For every permutation π, the width of a transducer that generates 〈T, τπ〉 is
n+1

2 !.

Proof. We can construct a transducer generating 〈T, τπ〉 with n+1
2 ! states. Indeed, the

states of such a transducer are the letters of Σn. The 0-successor of a state 〈π, π′〉 is the

unique state 〈π′, π′′〉, for the successor π′′ of π′, and its 1-successor is 〈π, π′〉.
Let π0, . . . , πn+1

2
! be an enumeration of all permutations according to the lexico-

graphic order. For simplicity we assume that π = π0. We can see that 〈π0, π1〉 appears

in every level in 〈T, τπ〉. By induction, 〈πi, πi+1〉 appears for the first time in 〈T, τπ〉 in

level i−1. It follows that 〈πi, πi+1〉 appears in 〈T, τπ〉 in all levels above i−1. In partic-

ular, in all levels after n+1
2 !, all permutations appear. It follows that |reachj(T)| ≥ n+1

2 !
for all transducers T that generate 〈T, τπ〉 and j ≥ n+1

2 !. ⊓⊔

Corollary 2. Every transducer T that generates a tree that has a subtree 〈T, τπ〉, for

some permutation π, has width at least n+1
2 !.

We now defineBn as a UCT variant of the UCW An constructed in Section 3. Essentially,

every transducer accepted by Bn generates a tree that contains 〈T, τπ〉 as a subtree, for

some permutation π of all the letters in Σn.

Let Bn = 〈Σn, {0, 1}, Qn, δn, Qn, αn〉, where Qn = {1, . . . , n}, αn ={i | i is even},

and δ : Qn × Σn → 2{0,1}×Qn is as follows. Let 〈π, π′〉 ∈ Σn and let σ = i1 · · · in and

σ′ = j1 · · · jn be the even extensions of π and π′. Then, for every 1 ≤ k ≤ n, we define

194 O. Kupferman and N. Piterman

δn(ik, 〈π, π′〉) =

{

{(0, j1), . . . , (0, jk), (1, i1), . . . , (1, ik)} if k is odd

{(0, j1), . . . , (0, jk−1), (1, i1), . . . , (1, ik−1)} if k is even

When going left, Bn treats the pair 〈π, π′〉 like the UCW An treats it. When going

right, Bn mimics the same concept, this time, without changing the permutation. From

state q ∈ Qn, our automaton checks the location of q in σ and sends copies to all states

in smaller (or equal, if k is odd) locations in σ′ in direction 0 and all states in smaller (or

equal) locations in σ in direction 1.

Consider a transducer T = 〈D, Σn, S, sin, η, L〉 accepted by Bn. Given a permutation

π, we say that π′ is the 0-successor of π for the successor π′ of π according to the

lexicographic order (i.e., the unique π′ such that 〈π, π′〉 ∈ Σn) and we say that π is the

1-successor of π. Consider a path p = s0, a0, s1, a1, . . . ∈ (S × D)ω , where si+1 =
η(si, ai). We say that p is good if for all i ≥ 0 we have L(si+1) is the ai-successor of

L(si). We say that p is bad otherwise4. If p is bad, every location i ∈ IN such that L(si)
is not the ai−1-successor of L(si−1) is called an error in p.

Consider a transducer T = 〈D, Σn, S, sin, η, L〉 and an infinite path p =
s0, a0, s1, a1, . . . ∈ (S × D)ω , where si+1 = η(si, ai). Consider a sub-path v =
sl, al, . . . , sl′−1, al′−1, sl′ . We denote by first(v) the permutation π ∈ Πn such that

〈π, π′〉 = L(sl). We denote by last(v) the permutation π′′ ∈ Πn such that L(sl′−1) =
〈π, π′〉 and π′′ = π if al′−1 = 1 and π′′ = π′ if al′−1 = 0. That is, the last permutation

read in v is determined by the last direction p takes in v.

Let G be the DAG run of Bn on T , p = s0, a0, s1, a1, . . . an infinite path in T , and

v = sl, al, . . . , sl′−1, al′−1, sl′ a sub-path of p. Consider the part of G consisting of all

nodes in levels l to l′ that read the states sl, . . . , sl′ . Let π be first(v) and π′ be last(v).
We arrange the states in Q according to their order in the even extensions σ and σ′ of π
and π′. The following lemma is the tree variant of Lemma 5. It shows that if q is the k-th

state in σ and q′ is the k′-th state in σ′, then k′ ≤ k implies that q′ is reachable from q in

this part of the run. Furthermore, if k′ < k then q′ is reachable from q along a run that

visits α. The proof is identical to that of Lemma 5.

Lemma 8. Consider a transducer T = 〈D, Σn, S, sin, η, L〉 and the DAG run G of Bn

on it. Let p = s0, a0, s1, a1, . . . be a path in T and let v = sl, al . . . , sl′−1, al′−1, sl′ be

a sub-path of p. Let q be the k-th state in the even extension of first(v) for an odd k,

and let q′ be the k′-th state in the even extension of last(v), for k′ ≤ k. Then, the vertex

〈sl′ , q
′, l′〉 in G is reachable from the vertex 〈sl, q, l〉. Moreover, if l′ − l > 1 and k′ < k,

then a path connecting 〈sl, q, l〉 to 〈sl′ , q
′, l′〉 visits α.

The following Lemma resembles Lemma 6. It shows that in a transducer accepted by Bn,

every path has only finitely many errors.

Lemma 9. For every path p in a transducer T ∈ L(Bn), the path p contains finitely

many errors.

Proof. Let G be an accepting run of Bn on T = 〈D, Σn, S, sin, η, L〉. Assume that

p = s0, a0, s1, a1, . . ., where si+1 = η(si, ai), is a path in T with infinitely many errors.

Let sl0 , sl1 , . . . denote the error locations in p. By definition, for every m ≥ 0 we have

4 Notice that the definition of bad here is slightly different from the definition of bad in Section 3.

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 195

L(slm) is not the alm−1-successor of L(slm−1). With every index lm we associate a

triplet 〈πm, π′
m, dm〉 such that L(slm−1) = 〈π, π′〉 and πm is the alm−1-successor of

π (i.e., π′ if alm−1 = 0 and π otherwise), L(slm) = 〈π′
m, π′′′〉, and dm = alm−1.

That is, we record the permutation π′
m labeling slm , the unmatching πm, which is the

alm−1-successor of the label of slm−1, and the direction that takes from slm−1 to slm .

There are infinitely many errors and finitely many triplets. There is a triplet 〈π, π′, d〉
associated with infinitely many indices. We abuse notations and denote by sl0 , sl1 , . . . the

sub-sequence of locations associated with 〈π, π′, d〉. Without loss of generality, assume

that for all m ≥ 0 we have lm+1 − lm > 1.

For m, m′ ≥ 0 such that m 	= m′, let vm,m′ denote the sub-path of p that starts in

slm and ends in sl
m′

. Then π′ = first(vm,m′) and π = last(vm,m′). By assumption π′

is not the d-successor of π. Let σ = i1, . . . , in be the even extension of the d-successor

of π and let σ′ = j1, . . . , jn be the even extension of π′. Then there exists some odd k
and k′ such that jk = ik′ and k′ < k. Let q be the state jk = ik′ . The state q satisfies

the condition of Lemma 8 with respect to vm,m′ : it is the k-th state in first(vm,m′) for

an odd k, and it is also the k′-th state in last(vm,m′). Hence, since lm′ − lm > 1 and

k′ < k, the node 〈sl
m′

, q, lm′〉 in G is reachable from the node 〈slm , q, lm〉 along a path

that visits α.

For every two different integers m and m′ we identify one such state qm,m′ . By Ram-

sey’s Theorem, there exist a state q and a sequence l′0, l
′
1, . . . such that for every m ≥ 0

the sub-path vl′
m

,l′
m+1

connects state q to itself with a path that visits α. We have found a

path in G that visits α infinitely often. ⊓⊔

We now show that every tree generated by T contains 〈T, τπ〉 for some π as a subtree.

Lemma 10. For every T ∈ L(Bn), there exists a permutation π and a state s reachable

from sin such that the transducer Ts generates 〈T, τπ〉.

Proof. We add an annotation to the edges in T . Every edge s′ = η(s, a) such that s′ is

an error in a path that contains s and s′ is annotated by 1. Every other edge is annotated

by 0. According to Lemma 9, every path in T is annotated by finitely many 1’s.

We say that a state s is 1-free in T iff all the edges in T that are reachable from s are

not labeled by 1. It is enough to find one such state s. Assume by contradiction that no

such state s exists. We construct by induction a path that is labeled by infinitely many

1’s.5

By assumption, sin is not 1-free. Hence there is some state s1 reachable from sin and

a direction a1 such that the edge from s1 to η(s1, a1) is annotated by 1. By induction the

path from sin to η(si, ai) has at least i edges annotated by 1. By assumption η(si, ai) is

not 1-free. There exists a node si+1 reachable from η(si, ai) and a direction ai+1 such

that the edge from si+1 to η(si+1, ai+1) is annotated by 1. It follows that the path from

sin to η(si+1, ai+1) has at least i + 1 edges annotated by 1. In the limit, we get a path in

T that has infinitely many edges labeled 1. In contradiction to Lemma 9.

It follows that there exists a state s in T such that s is 1-safe. As s is 1-safe, the subtree

generated by Ts contains no errors. Let π be the permutation such that L(s) = 〈π, π′〉.
Then Ts generates 〈T, τπ〉. ⊓⊔

5 Notice the resemblance to the definition of α-free in Section 2. Indeed, the proof of the existence

of a 1-free state follows closely the similar proof in [7].

196 O. Kupferman and N. Piterman

We can now conclude with the statement of the lower bound for the branching case.

Theorem 3. There is a n+1
2 ! lower bound on the width of a transducer accepted by a

UCT with n states.

Proof. Consider the sequence of UCTs B1,B3, . . . defined above. For every permutation

π, the transducer that generates 〈T, τπ〉 is accepted by Bn. By Lemma 10 and Corollary 2,

every transducer accepted by Bn is of width at least n+1
2 !. ⊓⊔

References

1. Brzozowski, J.A., Leiss, E.: Finite automata and sequential networks. TCS 10, 19–35 (1980)

2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Int. Congress

on Logic, Method, and Philosophy of Science. 1960, pp. 1–12. Stanford Univ. Press (1962)

3. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)

4. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation, 2nd edn. Addison-Wesley, Reading (2000)

5. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T.,

Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)

6. Kupferman, O., Sheinvald-Faragy, S.: Finding shortest witnesses to the nonemptiness of au-

tomata on infinite words. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137,

pp. 492–508. Springer, Heidelberg (2006)

7. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM ToCL 2(2),

408–429 (2001)

8. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th FOCS, pp. 531–540

(2005)

9. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,

Princeton (1994)

10. Liu, W.: A tighter analysis of Piterman determinization construction (2007),

http://nlp.nudt.edu.cn/˜lww/pubs.htm

11. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. I&C 9, 521–

530 (1966)

12. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. TCS 32, 321–330 (1984)

13. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic au-

tomata: New results and new proofs of theorems of Rabin, McNaughton and Safra. TCS 141,

69–107 (1995)

14. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity au-

tomata. LMCS 3(3), 5 (2007)

15. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th POPL, pp. 179–

190 (1989)

16. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Transaction

of the AMS 141, 1–35 (1969)

17. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science,

pp. 133–191 (1990)

18. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.

In: Proc. 1st LICS, pp. 332–344 (1986)

19. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. I&C 115(1), 1–37 (1994)

http://nlp.nudt.edu.cn/~lww/pubs.htm

	Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata
	Introduction
	Universal Co-Büchi Word Automata
	Lower Bound on Length of Accepted Words
	Universal Co-Büchi Tree Automata
	Lower Bound on Width of Accepted Transducers

