
• • I 
• , _ .?. ... 

NOVE~1BER 1976 PPPL-1308 

LOWER HYBRID PARAMETRIC INSTABILITIES 
NONUNIFORM PUMP WAVES 

AND TOKAMAK APPLICATin~s 

BY 

R, L. BERGER1 L, CHEN1 P. K, KAW 

AND 

F, W, PERKINS 

PLASMA PHYSICS 

LABORATORY 

DfSTRIBUTION OF THIS DOCUMENT IS UNLIMITED 

PRINCETON UNIVERSITY 

PRINCE T 0 N, NEW JERSEY 

This work was supported by u. S. Energy Research and Development 
Administration Contract E(ll-1)-3073. Reproduction, translation, 
publication, use and disposal, in whole or in part, by or for the 
United States Governmeut is permitted. 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



NOTICE 

This report was prepared as an account 
of work sponsored by the United States Gov­
ernment. Neither the United States nor the 
United States Energy Research and Development 
Administration, nor any of their employees, 
nor any of their contractors, subcontractors, 
or their employees, makes any warranty, express 
or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, 
product or process disclosed, or represents 
that its use would not infringe privately 
owned rights. 

Printed in the United States of America. 

Available from 
National Technical Information Service 

U. S. Department of Commerce 
5285 Port Royal Road 

Springfield, Virginia 22151 
Price: Printed Copy $ * ; Microfiche $3.00 

*Pages 

1-50 
51-150 

151-325 
326-500 
501-1000 

NTIS 
Selling Price 

$ 4.00 
5.45 
7.60 

10.60 
13.60 



• 

Lower Hybrid Parametric Instabilities 
Nonuniform Pump Waves and Tokamak Applications 

R. L. Berger, L. Chen, P. K. Kaw, and F. W. Perkins 
Plasma Physics Laboratory, Princeton University 

Princeton, N. J. 08540 

November 1976 

,-------NOTICE------, 
This report was prepared as an account of work 
rponsored by the United States Government. Neither 
the United States nor the United States Energy 
Research and Development Administnuion, nor any of 
their employees, nor any of their contractors, 
subcontractors, or thelr employees, maket any 
warranty. I'IIJ'Irf'.t1 nr imrli,.rl, nr tnu~r '~!!V !'!l{Jnl 
liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or 
process disclosed, or represents that its use would not 
infringe privately owned rights. 

PPPL-1308 

I 
fmS"JlRIBlfTIONOF THLS DOCUMENT IS UNUMITEO 

---- ~-- ---- ~1-



Lower Hybrid Parametric Instabilities -

Nonuniform Pump Waves and Tokamak Applications 

R.L. Berger, Liu Chen, P.K. Kaw, and F.W. Perkins 

Plasma Physics Laboratory, Princeton University 

Princeton. N.J. 08540 

ABSTRACT 

·ELectrostatic lower hybrid "pump" waves are often launched 

into tokamak plasmas by structures (e.g. waveguides) whose 

dimensions are considerably smaller than characteristic plasma 

sizes. · Such waves propagate in well-defined resonance cones and 

give rise to parametric instabilities driven by electron ~ x B 

velocities. The finite size of the resonance cone region 

determines the threshold for both convective quasimode decay 

instabilities and absolute instabilities. The excitation of 

absolute instabilities depends on whether a travelling or standing 

wave pump model is used; travelling wave pumps require the daughter 

waves to have a definite frequency shift. Altogether, parametric 

instabilities driven hy E x B velocities occur for thr:e::;liulu fields 
v """' 

significantly below the threshold for filamentation instabilities 

driven by pondermotive forces. Applications to tokamak heating 

show that nonlinear effects set in when a certain power-per-wave-

launching port is exceeded. For sufficiently high powers, these 

instabilities will occur in the low-density edge region of a 

tokamak. They are characterized by a daughter wave frequency 10% 

below the pump wave frequency - in agreement with experimental 

observations. 
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I. INTRODUCTION 

One of the principal approaches to radio-frequency heating of 

tokamak devices is the use of lower hybrid radiation· introduced 

by phased waveguide arrays. 1 By the term lower hybrid radiation, 

we mean waves which are principally electrostatic and wh"ich have 

a frequency at or above the local lower hybrid frequency. These 

waves obey t;he dispersion relation given in Eq. (7) ::below. 

The power levels sufficient to heat tok~mRk~ qrPatly exceed 

' ' 

the uniform-medium parametric instability threshold;:· suggesting 

the importance of n6nlincar effects. Indeed, experimental 

2 3 
results ' have shown that parametric decay instabilities occur 

and that a correlation exists between the presence,:,of parametric 

instabilities and ion heating. The observed thresholds, however, 

are well above those predicted by uniform medium theory. 

Lower hybrid radiation heating of tokamaks ther;efore raises 

important questions in nonlinear wave-plasma interactions: 

will the nonlinear heating be so strong as to depos~t the energy 

in only the surface layers? Can nonlinear heating be entirely 

avoided so that only linear .absorption processes take place? 

Will nonlinear processes heat electrons or ions? How will tokamak 

geometries differ from the uniform medium calculations? And 

most· importantly, how will all these processes scale as tokamak 

devices become larger and hottrer? 

This paper attempts to answer the question of how tokamak 

geometry affects the linear theory of lower hybrid parametric 

. b'l' .. 4-6 1nsta 1 1t1es. The key fea.ture of tokamak heating schemes is 

that the monochromatic "pump" radiation is introduced through 

' ),J 
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phased-waveguide arrays whose dimensions are considerably smaller 

than the characteristic plasma sizes (see Fig. 1). The lower 

hybrid ra~iation emanating from these arrays propagates 1n well-

defined resonance cones. Consequently, the most important spatial 

nonuniformities are those associated with the spatial variation 

of the pump intensity. As a specific example, consider a wave-

launching grill that has a dimension A /2 ~ 15 em along the 
0 

magnetic field. Then Eqs. (10) and (11) below show that the 

resonance cone has a radial extent of 

- lcm 

which is much smaller than the minor radius of typical tokamak 

devices. 

The principal goal of this paper is to investigate the 

linear theory of lower hybrid parametric instabilities via a 

model consisting of a nonuniform pump wave propagating in a 

resonance cone in an otherwise uniform plasma. The effects of 

density gradients, magnetic shear, etc .. , will be discussed in the 

final section. We shall consider two instability modes: 

convective decay into lower hybrid waves via quasimodes and four-

wave absolute inslabilities. Decay into two lower hybrid modes 

does not play an important role in tokamak heating. Also, the 

most unstable m0des will have frequency shifts much larger than 

the ion-cyclotron frequency so that a variety of cyclotron 

instabilities can be ignored. A second goal is to compare the 

threshold for exciting parametric instabilities driven by electron 
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E x B velocity with that of the filamentation instability 
/VV'.. 

recently pro~osed by Morales ~nd Lee
7 

as an explanation for the 

8 
experimental observations of -~<:;ekelman and· Stenzel. The symmetry 

assumed in t~e Morales-Lee paper suppresses any honlinear effects 

due to electron E x B velocities. In the theory of lower hybrid 

parametric instabilities -by -cCintrast, E x B veloci tie's are by 

far the most dominant coupling term. 

Porkolab
4 

has presented ;a•general ·~iscussion of lower hybrid 

waves 1n a nonuniform media. ·:This papilr ·employs the so.me 

general concepts, but includes qro11p vPl ncity propagd.tion bo~h 

transverse to and along the magnetic field for the purpose of 

determining which waves have ~he maximUm growth. It is necessary 

to maximize the spatial ampli1fication over all possible daughter 

wave frequenc;ies and wave numbers to find which instabilities 

actually exi~t. 

The travelling wave nature of the pump has important 

consequences.}or absolute inst-abilities. 'T.'he review article by 

Nishikawa and Liu
9 

showed that ·a travelling wave pump produces 

instabilities with a finite frequency shift from the pump. This 

means that one of the two high-ofrequency daughter waves is no 

longer resonant, so that the .pUrely growing mode evolves into a 

convective quasimode. Nishikawa and Liu did not treat a spatially 

iocalized travelling wave pump .• 

our model is presented in :sec. II. Section III:discusses 

absolute four-wave instabiliti~~, while Sec. IV addre~ses 

convective quasimode decay prqeesses. The paper con~iudes with 

a discussion bf tokamak applic~tl.ons. 



-5-

··c 
II. MODEL AND EQUATIONS 

Our starting point is a model of a uniform plasma with a 

straight magnetic field in the z-direction, and containing 

monochromatic lower hybrid pump radiation propagating in a 

resonance cone in the x-z plane. The plasma is compo~ed of 

electrons at temperature Te and ions of charge Z and mass M 

at a temperature T .• 
1 

The peak energy.density of the pump 

radiation satisfies the inequality E
2

/8rrnT << 1 
e 

so that radiation 

pressure forces are negligible. As Eq. (75) below demonstrates, 

this restriction is consistent with the power levels required to 

heat tokamak research devices and reactors. While the pump 

wave propagates solely in the x-z plane, E x B coupling will be 
"""' ,......,.. 

important only if the daughter waves have a component of their 

wave vector in the y-direction. We take this y-dependence to be 

sinusoidal - a simplification justified by the fact that the 

spatial inhomogenity of pump fields in tokamaks is much weaker 

in the y-direction than in the x-direction. 

A cold plasma, electrostatic model will be employed to 

describe both the pump and dau~hter lower hybrid waves. 

According to this model, the electron and ion velocities are· 

governed by the equations 

v 
"""'.1e 

-(\7 cf> X Z)c 
c 

+ Bn 
e 

(1) 

( 2) 
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Next, we int·roduce what amounts to a two time scale linearization 

of (1) and (2). This is accomplished by letting 

a 
at + Y (3) 

where a;at operates only on the rapidly varying, pur~ly oscillatory 

time dependence of ~, cp 1 etc. The physical interpr~,tation is 

that y repJJ'E'~_sents the growth rate of the instability, while yL is 

the linear damping decrement given in Eq. ( 9 ). Because the 

damping decrement depends on wavenumber, our tacit assumption of 

a constant decrement is not rigorous, but introduces no serious 

errors. 

The density continuity equations complete our fundamental 

set of equations: 

-v·(nv. )· 
- """'l,e 

(4) 

Let us now specialize to the case of absolute instabilities 

which will require a full wave treatment; geometric OJ?tics will 

suffice tor convective quasimodes. The nonlinear coupling 

between low-frequency density fluctuations and the daughter 

lower hybrid ~aves arises from the term on the right-hand side of 

(4) involvin9· the pump wave E x B velocity of the electrons,. 
""""· 

Only terms first order in nonl~near coupling and ~ will be retained. 

.. 
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Equations (1-4) can be combined so as to produce an equation 

governing lower hybrid daughter waves. This is accomplished 

by operating on (4) with operator (3) and utilizing (1), (2), 

Poisson's equation, the relationship.a
2
;at

2 
= -w

2 
valid for any 

small amplituae wave, and the linearized operator inversion 

- _!_ ( 1 + 2y _1_) 
2 2 at 

w w 
( 5) 

The resulting· equation is 

2 2 2 
2 

(1 + 
w 

w:l) 
w 

~- v2 <P -
pe 

"II <P 

( 6) 
""""~ -2 

n w 
e 

where ¢
0 

is the potential of the pump wave and w
2 

denotes the 
pe,L 

fluctuations in plasma frequency associated with the low-

frequency wave. 

Looking forward to the next section, our treatment of 

quasimode decay processes will employ a geometrical optics model 

for daughter wave propagation. When the small terms on the 

right-hand side of (6) are ignored, the familiar geometrical 

optics disp~rsion relation is recovered 
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2 
WLH = 

2 
w . = 
pl 

2 
4rrZn e . e 

M 
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(7) 

( 8) 

.~ 

The damping decrement oomes from straiqhtforward kinetic theory 

T. 
+....1:. 

T 
e 

w 2 2 
-- exp(-Mw /2k~T 1 .) k~ 

( 
·'" )1/2 2 2 ] 

2;e kwll exp (-mw /2k II Te) + 

where v is the electron-ion collision frequency. 
e 

(9) 

The next step is to rescale the z variable accoiding to the 

relation 1.. 

- 1 ) 
1/2 

(10) 

where w
0 

is the angular frequency of the pump wave .. The two 

daughter waves will have frequencies of w ± w , 
0 

with w being the 

frequency of: the low-frequency mode (w
0 

>> w). Equation (6) 
··~,·; 

~· 
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becomes 

2w w 
a2 ) .1.2<1>-

(!-~ 
-- ----=-2 <P = + 

0 

(w2 2 
X Z ) 

az - WLH) 0 

- 2 
+ 2y .1._ [-a- + 

2 at .... -2 
W aZ 

0 

-? 
az-

( 11) 

where, in the nonlinear and damping terms, we can safely ignore 

the difference between the daughter and pump wave frequencies. 

Figure 2 introduces the coordinate transformation which 

will greatly simplify the algebraic tasks ahead. In terms of 

the new variables. 

~ = 
x-z x+z 

' y - y ' (12) ' n = 
/2 

In addition, we note that the lowest order solution is obtained 

by setting the left-hand side equal to zero. Since the last 

term in (11) is small, we can replace <P to first approximation 

by its lowest order solution. Equation (11) becomes 

+ 

w w 2 

-(w--=2 o:::.....__l_) ( a an - aa~ ) <P 

0 

1 a 1 anL 
------,,---

n ~l.(v?-l)at n ~y 
1 0 

+ 

( 13) 
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.,,. 

where we have defined the nondimensional frequencies w = w jw 
o o LH 

w = w/wLH . As Fig. 2 makes clear, the pump wave depends only 

on ~ when dissipation processes are ignored. 

What is the proper solution of (13) that corresponds to 

. 
·the pump wave propagating energy in the positive n- direction? 

Ignoring the last, nonlinear term on the right-hand side of (13), 

one finds that 

r CJ<I> 
1 Joo c (k) exp(-Akn) exp[i (k~ + wkt) ]dk t =-~ = 27T c. s (14) 

-oo 

where 

must be positive. This condition demands that k and wk rsee (7)1 
... ....... 

have the same sign. The condition that f be real implies 

* [ (-k) = ::: (k) .• 

A simple expression for a propagating pump can be obtained 

when the attEinuation A k is negligible One then finds 

1 
- p 

7T 

--- · d~ = E ( ~) cosw t 
E(t_:)j.exp(iw0 t) ·J 

0 
E;,- t;,' +i£ 

dCI E(t;:') 

s ~-~· 

,, 

( 15) 
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1 
27T r 

-co 
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£ (k) exp (iki;) dk 
(16) 

10 11 
in agreement with previous results. ' The point that Eq. (15) 

makes is that a propagating pump wave must contain both cosw
0

t 

and sinw
0

t components. Equation (15) provides the relation be­

tween these components corresponding to energy propagation in 

the positive n- direction. Figure 3 portrays the function E
1 

and E
2 

associated with a split waveguide launcher: 

1 

I 

- ln 
7T 

E2 = 
1 ln 
lf 

0 < l; < .e. 

-.e. < l; < 0 

2 2 
(l; -J.. ) 

l;2 

.e.2-s2 
( . ') ) 

l;L. 

(17) 

l;2 > l2 (18) 

l;2 < l2 

The E
2 

function provides finite wave amplitudes outside of the 

geometrically defined resonance cone. The logarithmic diver-

gences in ~ 2 stem from the discontinuities in E
1

. At the 

plasma boundary, the E
2 

function associated with the positive-z 

resonance pone precisely cancels the E
2 

function associated with 

the negative-z resonance cone, while the corresponding E
1 

func­

tions add to give the electric field impressed by the waveguide 

lu.uncher. 



"-12-

Our interest in pump propagation is to provide a correct 

description of the environment in which instabiiities occur. 

Indeed, the frequency shifts for absolute instabilities are 

different for travelling-wave and standing-wave pumps. More 

extensive discussions of pump propagation can be found in papers 

devoted to the subject.lO,l~ 

The zero-order description for the daughter waves is 

obtained by neglecting the right-hand side of (13) with the 

;result 

<P = 
1 
2 ~~l U;J exp [i(qn -

t •. ' 
~:I;+ ky- (w

0 
+ w)t)] (19) 

The slow t,;-dependence of ¢
1 

and ¢
2 

will be determined from 

the n·onliriear coupling equati-ons. 

Let us' now turn our att~ntion to the lnw-frPIJlH;>nr:-y 

equations. We shall assume that electrons achieve a hydrostatic 

balance along the magnetic fi'eld, bu1: we will retain kinetic 

effects for the ions because the frequency w of the 'low-frequency 

mode will turn out to be non~zero and, in fact, much larger than 

the ion-·cyclotroh frequency pe~rmi tting us to neglect 'the magnetic 

field in the ion dynamics. 
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The hydrostatic balance equation for the equations is 

= 
nee 

Bw
2 

0 

and the ~ )> brackets denote a time average 

< ""'> = 1 
/ T J

T 
dt 

0 

with the time T selected to be long compared to the high-

(20) 

frequency daughter wave periods but short compared to the period 

of the low-frequency fluctuations. As a result, boundary terms 

can be neglected in integrations by parts and one obtains 

nee < · 
-2 '~II (_~_.J. <P 
2Bw --~-

acp> 
x z ) • 'I - = -T 'I II n + ne 'I II <P 

""" .1. at e L L 
( 21) 

o 

Equation ( 21) is readily integrated to yield 

n - n ex{:eL ce 

< ('I .J. <P z ) • 'I.J. tt>] 2 
X 

L 
2BT w ~ """' """" 

e o 
(22) 
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where the-potential¢ includes both pump¢ and daughter wave 
0 -

¢ contributions,¢ = ¢ + ¢ . _:·-A further simplificatio-n of (22) 
0 

results because ¢ depends only on ~ and not on y. Algebraic 
0 

manipulations lead to the linearized expression 

( 2 3) 

·where 

U (t;,t) - l U (f,;) 't:!X.I:-l(lw l) ·+'U '(t;:) GXp(-iW. t)=· _ ___!:_ ____ _ 
o 2 o o o o . Bw at ax [ 

* -~ ri a~n 

' -
0 

·( 24) 

Substituting (19) into .(23),-dne:finds·that 

··* . 'k2 I 
"'l o ~2 ·o 2q y 

(.+. U -r.+.;.·'U ) exp[1(qn- --- ~ + k - wt)'] + c.c._ 

(25) 

The low-frequency ion dy:rlamics is ta.ken to be governed by 

the nonmagnetic Vlasov ~quation 

yielding an -ion density fluctuation 

n. -
1 

·zn . e¢L 
01 W. 
T. ·1 

1 

(26) 

. (27) 

t_ 
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where 

2 
p = q + (k /2q) 

is the magnitude of the daughter wave vector and W .· = W (w/pv. ) . 
1 1 

Here W(s) =l+sZ(s) where Z(s) is the plasma dispersion function. 

Combining (23-27) with the quasineutrality condition, one obtains 

the low-frequency density perturbation 

d.ke 
4w ·r· 

o e 

w. k2 l 
[(T./Z*) +W.] exp[i(qn- 2q t,;+ky-r.~.lt)] +c.c.r 

1 e 1 J 

(28) 

Our derivation of the equations governing lower hybrid 

parametric instabilities in a bounded pump is now complete. 

Equations (13), (19), and (28) form a coupled set of equations 

which are linear in the amplitude of the daughter waves and 

quadratic in the pump amplitude. 
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III. ABSOLUTE INSTABILITIES 

The question posed in this section is: Can an absolute 

four-wave instability be generated by a pump wave spatially 

well defined by the resonance cone and propagating energy in the 

n-di.rection? Since our model will only generate daughter waves 

when the daughters have a finit.e y-component of propagation, 

the group velocity of the daughter waves will not be parallel 

to that of pump. Consequently, the daughter waves will propa-

gate ou.t of· the resonance cone· reg.ion and we must look for 

solutions with outward energy propagation. 

The equations· governing abso·lute instabilities come from 
.... 

the combination of. (13), (19), and ('28) which generates coupled 

equations for the two daughter lower hybrid waves. 

au<l 

= 
w(w+iy) 

0 

Mk2. W-
1 

- 4 z T [ w . + ( T . I z T ), ] 
e 1 1 e 

(w~- 1) wLH 

.... 4 z T [ w·. + ( T . I z ·rr ) l 
e 1 1 e 

2 
(w - 1) 

0 

(29) 

(30) 

I 
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iJ 

Still further algebraic manipulations utilizing the sub-

stitutions 

exp [(1.!1',; 
<Pl = ljJ 1 (I;;} 

0 

[(f
r,; Mk

2
w.lo 1

2 
.t dr,; )] 

<P2 = -iljJ2(r,;} exp i 1 o 2 
8ZqT [W. + (T./ZT } (w - 1}] 

0 e 1 1 e o 

~ = z;.t 

reduce these equations to 

di/Jl 
~-

aljJ2 
~= 

with the 

11.1 

11.1 ljJ1 + 
2 

11.2° ljJ2 

11.1 ljJ1 
*2 - - 11.20 ljJ1 

definitions 

w (Y iw}pi -
0 = 2 (w/. --· 

l)wLH 
0 

- 1} 

. 2 

( 2q2q; 
k2) 

w. 
1 

TW. + (T./ZT ) ] 
1 1 e 

(31} 

(32} 

( 3 3} 

(34} 

(35} 

(36) 

(37) 
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and E
1

, E
2 

are given in (17) - (18). The boundary conditions on 

(33) are tha~ ~ 1 , ~ 2 vanish as lsi ~ oo 

What expression (35) says is that the threshold field re-

quired for absolute instabilities will decrease as the' product 

p.t is increased. On the other hand, the wavenumber p cannot be 

indefinitely increased without incurring heavy electron-Landau~ 

damping. Therefore, in the region w
0 

> wLH (1 + T i/Te~ l/
2 

where 

electron-Landau dampinq dominantes· ovP.r i nn-q:mr'l.:\1.1 damping, one 

is mot1vated to write p in terms of Ve 

v 
e 

1/2' 
= (w/kle (m/Te) 

using the W.K.B. dispersion relation (7). This yields; 

2 1/2 
pl = (n/V ) (me /T ) (2L/A } 

· e e o . . 

(38} 

(39) 

A.
0 

denoting· the vacuum wavelen.gth associated with th·e pump fre-

quency w
0 

Hence in the electron-Landau damping :r.P.gi on, wP fi nil. 

... 2 2) 
2 ( 2/2) . ( 2q. 2+q2k Ve exp ·-Ve -

(40} 

'" . 
' ~ ... 

(4L) 

(42) 

I. 

I. 

•, 
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with x. = w/pv. denoting the argument of thew. function. For 
1 1 1 

most practical circumstances, the length L of the phased wave-

guide array· will be approximately L = A
0
/2 (see Fig. 1). 

Formulas (40)-(42) permit us to reach some helpful conclu-

sions. First, a value V ~ 4 is sufficiently large so that damp­
e 

ing can be ignored. Conversely, when V takes on values V < 4, 
e e 

the plasma wave damping becomes severe and instabilities will not 

arise. Thu~, with good accuracy, one can use Ve = 4 to compute 

the threshold fields via· (42). Our second conclusion is that for 

moderate values of xi :S 1, the phase shift ImA.
1 

can achieve signi-

2 2 
ficant values (Im!l.

1 
~ TI), especially when 2q < k . This corre-

sponds to daughter wave propagation close to propagation direction 

for the pump. Consequently, 11.
2 

will be almost real. Third, be­

cause mc
2 
/Te >> 1, 11.

2 
can achieve significant values for 

c
2

E
2

M;B
2

ZT < 1 vindicating our weak coupling theory. The factors 
o e 

involving k~, q
2 

pertain to the orientation of the daughter wave 

vector in the plane perpendicular to the magnetic field. From the 

definition 

one·can show that 

1- cos<P 
= 

2 
2 

2 
q l+cos<f> = 

2 

( 4 3) 

(44) 

Clearly for only moderately small values of <1>, one can make the 

phase shift., 11.
11

, large, while hardly affecting the threshold field 

via 11.
2 

. 
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The up~hot of this discussion is that one is led to consider 

a simplified version of ( 33), -in which spatial damping is ignored 

a = .. 

with the boqrrdary conditions, 

s -+ 

J -+m I a -+ 0 r 

l -oo , r1 -r ron st , , b 

:b const. 

0 

and the definitions 

· While the exact relationship between the eigenv(;!.lu~s A
1 

.. 
and A

2 
depends on the comput~t.ional solutions reported below, 

it is quite instructive to sdive the model problem 

lsi < 1 

I r; I > 1 

( 45) 

( 16a) 

( 16b) 

(47) 

(48) 

which simulates a traveling Wq,ye pump by its monotonic progression 

in phase. The solution whic~ !pbeys boundary condition (46a) is 

while boundq_ry condition (4QP}) generates the eigen.value equation 

.. 

\., 
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{ 
. 2 2 1/2} 

tan 2 [A
2 

+ (Ali+ n) l = 

A solution is A
1
I=-n, fl

2
=n/4. 

I (Ali+ 71'). 

(50) 

Neighboring solutions can be found by a perturbation ap-

proach. Defining 

obtains the relationship 

(51) 

The physical consequences of (51) is that small complex 

correction~ to A
2 

[(c.~. (35)) will not suppress absolute insta­

bilities. The argument proceeds as follows: The real parts of 

oA
1 

can be made zero (the threshold condition) by ·appropriate ad­

justment of E~ [c.f. (35)) while any imaginary contributions to A2 

due to the finite argument of w. can be balanced by the appro-
1 

priate frequency shift in (34). 

Figure 4 shows the results of computational solutions using 

the correct form for U
0

, i.e. (17), (18), and (36). The role of 

ion dynamics is represented by the phase angle 8 defined according 

to 

A
2 

= IA
2

1 exp(i8). (52) 

The computational results bring out a key point. Over a good 

range of phase angles, -1 < 8 < 1 , there are only small variations 

in the mag~itude of A
2 

Consequently, the threshold condition 

is well represented by using W. a 1 in (35). 
1 
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Absolute instab'i'lities ~haracteristicaiTy have small 

frequency shifts. One can re~ast (41) to read 

w 
w 

0 

= -/2 ( ~!r) 2 
2 

q 

Numerically,-" Eq. -1 . 
(54·) yeilds w/w - (0. 5-l) •10 for typ~caJ_· 

0 

tokamak par<;l,meters, justifying our ass:umption .that w >>w>>Q .. 
0 ~ 

One can now check ~ _postter·iori tha-t ra~iiation p:ressure 

effects are small by recastin.g (42) into ·the form 

STinT 
e 

.. 1 /? 
V ;; v 2 T , . A. . 

;:;; ~ (_...!!.) ·( ~) (~);(w 2 -l) << 1 
2 2 · ·2 2L . o 'J 

c me · 

where A2 ~ TI/4 was used.~ Except at ve~y low densiti~s, 

parametric iristabilities dominate over the s~Lf-focusing 

7 
instabilities of Morales and :L.~e. 

·'I 

(53) 
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IV. CONVECTIVE QUASIMODE INSTABILITIES 

Convective decay instabilities can occur in the lower hybrid 

frequency regime via nonlinear damping on the electrons or ions. 

The uniform medium growth rates have been discussed exhaustively 

by Porkolab. 5 The goal of this section is to compute the spatial 

amplification, and maximize it over all possible wavevectors and 

frequencie~ of the daughter waves. The principal limitation of 

convective.amplifi~ation is propagation of dauyhter wave energy 

away from the localized pump. This process always occurs, 

because as we shall show below, the group velocity of the 

daughter wave can never be precisely parallel to the pump. In 

our model,'we shall assume that the pump wavelength greatly 

exceeds the wavelength of the daughter waves. This is justified 

by two argumerits: First, we shall show that the shortest 

wavelength daughter waves undergo the largest amplification, 

hence any difference wavenumber ·1~-~1 is well approximated 

by the daughter wavenumber: (This stems from 

the fact that the shortest wavelengths have the lowest group 

velocity.) Secondly, in contrast to the purely growing mode, 

feedback of energy plays no role in an amplification process 

so that gradual phase variations in the pump are unimportant. 

Figure 5 sketches the geometry appropriate to the quasimode 

decay process. The standard theory for amplification gives 

(54) 
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where y is the uniform medium growth rate and ~l, w
1 

denote 

the wavevector and frequency of the dnu<Jhter wave. 

The group velocity of lower hybrid waves can be calculated 

1n a straightforward manner from dispersion relation (7). The 

results are 

Using 

v 
gz 

(55) 1 we can 

V • (V 

VLJf, = ~1 """90 

12 1~01 

find 

xxJ 

,. 

directly that 

2 2 

[(:~ 
2 . 1/2 

- cos$] ull - WLH bl~l!) 
/2wl k .L.l 

WLH 

describes the orientntion of the 

daughter wave -number in the~ - plane. 
. 5 

Porkolab's paper 

presents a general formulation for the grow~h rntP ot lOWQr 

hybrid parametric instabilities. Casting his Eq. (15} into 

our notation and ignoring the anti-Stokes term, one obtains 

t: ( ltl + (J) ) 

0 

where w = 

relation 

2 2 
c E 

0 2 [x.(w) [1 + xe(w)_J J 
k I m 

1
--------==----

y E.(t..e) 

and we hav~ assumed that the dispersion 

2 
{.t) 

pe 
0. i -

e 

2 2 
(l) ku_ 

pe 
2 2 

().)l k 

= 0 

(55) 

l~b) 



-25-

is satisfied for the daughter l?wer hybrid wave. One then obtains 

y = y + YL = 

Im 

2 
w 

0 

. 2 ,h 
Sln 'I' (57) 

where W is related to the plasma dispersion function Z vi~ W=l+zZ . 

The sub~cripts specify the arguments of W: 

0 w. 
l 

w 
e 

(A) 

0 

In the development below, we shall ignore the linear 

damping, yL except to note that it become~ very strong when 

(58) 

the phase·velocities become comparable to the thermal velocities, 

effectively preventing instabilities for low phase velocities. 

Combining (54) - (58) 1 one obtains 

-( 1 f 

c
2

E
2

(S}M 

d") 
2 

k.J.w
1 0 A = 2 

B ZT 

Ls 

( 

. . 2 
s1n ¢ 

(w;-1)/(wi-1)
1

/
2 

- cos$ ) 

e 

Im 

2 2 
wo(wl - 1) 

2 2 

( 

(k D + W )T ZW./T. ) e e e 1 1 

2 2 
k D + W + ZT W./T. 

e e e 1 1 

(59) 
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Equation {59·) shows that the dependence of the amplification on 

the daughte~~wavevector ori~ntation ~and magnitude"kfl 

is separable. Hence one can maximize (59) over ~ to obtain: 

max A 

+ W ) ZW. T /T. ) e 1 c 1 

+ w + £, 'l' w . /'1' . ' 
e e J_ 1 

The angle ~ which gives maximum 

2 l)l/2 (w2 .. (w - -
cos~ 

0 0 = 2 l)l/2 'I 
(wl -

-

l)l/2 _ (w2 
0 

amplification is given 

W2) l/2 
l 

. -

by 

(60) 

(61) 

and, as a rule, cos~ has the value ~~s for maximum amplification. 

Physically, the angular optimization represents a tra~eoff 

between maximizing y(~ + 90°) and minimizing v ~ (~ + 0°). 
g 

Next, let us relate E
2 

to the imput power from a waveguide 
0 ' 

port. 'l'he dimensions of the·w.aveguide port are taken to be L 

in the direction alonq the magnetic field ~nd 3A /4 in the 
. - . 0 

y-direction, A
0 

being the vacuum wavelength associated with w
0

. 

Combining the·· formula for the -energy density of a lower hybrid 

wave, 

(62) 

... 
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. 
with t~e group velocity, etc., one computes the relation 

b f 
2 . f th etween the power-per-port P and the. value o E 1n one o e 
0 

two resonance cones which eminate from the port to be 

where a/r ~s a cylindrical focussing factor appropriate to 

tokamaks, and 

v = 
go,x 

c 
n 

z 

(w2- 1)3/2 Z 1/2 
0 (~) 

2 M 
w 

0 

( 6 3) 

( 6 4) 

Here nz denotes the parallel phase velocity generated by the 

phased waveguide array. Finally, one can use (10) to relate L~ 

to L 

combine (60) - (65), use ( 7) tu Lelale k.L
1 

to kIll 

where 

p = 
0 

B2 
-2-
w . 

pl 

3/2 

<~>(z:e) 

( G 5) 

,:md obtain 

(GG) 

(67) 
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3 [ ( 2 1) 1/2 w w w - ' -
0 1 0 

(w2-w2)1/2] 
0 1 

v 
e 

B (68) 

(69) 

Formula (66) has been r.ast sn ~s to be most uceful in the 

low density region near the edge of the plasma when w , 
0 

Here the principal damping of daughter waves is via eiectron-

Landau dan~ing and one must require that V be sufficiently 
e 

large to avoid serious damping. A direct calculation of the 

-s 
linear spatial damping e suffered by the daughter wave 

combines (13), (56), (61), and (65) into the result 

y T, 
S = L [;, 

v 
g i; 

where 

1/2 2 l/ 2 

= ; . ( ~Tc -) 

e 

L = >. /2 
0 

( 2 2)1/2 w w -w 
0 0 1 

, ( 7 0) 
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was employed to estimate the size of the waveguide launching 

structure (Fig. 1). Evidently, V > 4 assures negligible 
e 

spatial daciplng, while for v < 4, the damping is appreciable. 
e 

Consequently, the a~plification can be estimated with good 

accuracy by using V = 4 in formula (68). 
e 

In the low-density region near the edge of a tokamak, the 

local lower hybrid frequency is quite low so that w
0

, w
1 

>> (llLH. 

The principal low-frequency coupling is then via ion sound 

waves and the maximum of the coupling function B occurs when 

k~(ZT + 3T.) 
e 1 ( 7 0) 

M 

The actual maximum value of B depends strongly on the effective 

temperature ratio ZT /T .. When ZT /T. < 3.5, the real part of 
· . e 1 e 1 • 

the denominator of (69) never vanishes and true ion-acoustic 

waves do not exist. In this regime, the maximum value of B 

depends strongly on temperature ratio as Fig. 6 shows. In the 

opposite case ZT /T. > 3.5, the maximum value of B is determined 
e 1 

by the electron-Landau damping contribution to W , which can 
e 

be expressed as 

::: 1 + i :::l+i 

In this limit, one finds that 

max B 
2 1/2 (wi - 1) 1/2 

;;;;; (-) 

TI (1 + 3T./ZT >
112 

1 e 

(71) 

( 7 2). 
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The frequency shift w
0 

- w
1 

may be computed using (71~, (68), 

and dispersion relation (7). The result is 
.:;.,;. 

wl ~ 
3T. 1/2 

+ _l) wLII u)LH 
(1 + 

lT. 1/2 . 

ZT l) wl >> wLH w - wl = v~"' 1 
--

0 ZT 2 . )1/2 v· 
e (wl - wLH e e 

For the modes~with maximum amplification, one takes V ~ 4 
e 

and finds that the frequency shift is a good fraction of the 

local lower hyhrirl frequency. 

Figures~~)and(B)present the results of a computational 

(73) 

evaluation o£ (68) maximized over wave number for fixed w
0

,w
1

• 

The linear. d~mping decrements, which we dropped following (57), 

were reinstated to obtain a maximum. As Figs.(J) and (8) show, 

the maximum amplification occurs for V ~ 4 and r.ns~ ~ .5, in 
t! 

agreement with our values for V and cos¢ When w ·:is large, 
e o 

the combination of ( 6 6) , ( 68) ., and ( 7 2) leads to 
,, 

p 1/2 cos¢ . 
A (~) .m max = n 

1/2 wl z p 7f 
v (1 0 + 3T./Z'J.' ) 

e l c 

(74) 

.. 

where cos¢ i~ the value of Eq. (61) at maximum amplL~ication. 
m 

Let us estimate that instabili~ies will occur ~hen max A > 6. 

This condition implies that there is a threshold power Pth for 

convective instabilities t·o. occ·ur in the low density ·r.egions 

3T. 1/2 

( 1 +-l) (£) 
ZT a 

e 
i:> > pth = 

9(n/2)
1

/
2v 

·.. e 
2 ZT )

3
/

2 

B ( e 
~r:1 
w . 
pl 

(75) 
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z 1/2 
( -) 
A 

. 1/2 
V ( 3T.) ~ 1 + __ 1 

n· ZT 
z e 

(76) 

where z and A are the atomic number and mass of the plasma ion. 

Evidently, instabilities will break out first where the quantity 

(Z/A)l/2T 312n-l (r/a) has a minimum value. 
e e 

In higher density regions, the lower hybrid frequency begins 

to become comparable with the pump frequency, and Fig. (8) shows 

) 

that the threshold power decreases because A becomes larger than 

its asymptotic value. 

Special consideration must be given to the case where the 

daughter wave frequency is close to the lower hybrid frequency 

and an apparent divergence occurs in (68). As is well known, 

linear mode conversion processes constrain the dau~hter wave 

frequency to be a finite amount above the lower hybrid 

frequency 

w . -
1 

= /3 (T. /ZT ) l/2 (1/V ) 
1 e e 

Furthermore, it is clear that the inequality k II 
1 

> k II 
0 

= n w /c must hold in order that waves be localized within 
z 0 . 

the resonance cone of the pump. This leads to 

(77) 
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wl - 1 > 13 n w~ (T./mc2) l/2 
z 0 l - 0 · 1 

and removes the apparent divergence. Consequently, our plots 

contain ent~ies only for w
0

,w
1 

> 1.1 

(78) 

It is instructive to employ the relationship between the · 

pump electric field and the incident power (62) - (64) to 

transform the threshold criterion for absolute modes in low 

density regions (w >> 1) into 
0 

P > P = ( 3IA21) (ve)·(l + 2L)(£) 
A /. n ZT n 

: ·. z e 
(79) 

with IA
2

1 given by Fig. (4). A comparison with ~he :corresponding 

formula (75) for quasimode decay instabilities points out that, 

the threshold for absolute modes iR cnmnarahle ~0 nr l9ss 

than the threshold for decay instnhilities 1 but depends on the 

frQquonay w . 
0 

Overall, the key feature which a spntially localized pump 
. ' 

produces is that the low phase velocity daughter waves underqo 

.. 
the largest convecti.ve amplification by dint of their low yroup 

velocity. Only linear damping processes prevent very small phase 

velocities and correspondingly large amplifications. Low-

phase velocity waves have large wavenumbers and gene;r~te a 

substantial irequency shift between the pump and daughter lower 

hybrid waves [see (73)]. 

l 
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V. TOKAMAK APPLICATIONS 

Efficient heating of tokamak plasmas has become one of 

the key objectives of controlled fusion reserach. Out of the 

variety of heating schemes proposed, only lower hybrid heating 

offers the dual advantages of an established technology for 

power generation and a particularly simple waveguide method for 

introducing power into the plasma. 
2 3 

But experimental attempts ' 

to heat plasmas via lower hybrid radiation have raised serious 

questions concerning whether nonlinear ,processes absorb the 

energy at the plasma periphery. The principal application of 

this paper is to show how to avoid nonlinear absorption mechanisms. 

A companioh paper addresses the question of the nonlinear satura-

tion of lower hybrid instabilities and the consequent nonlinear 

absorption of the pump wave, which will be serious for large tokamaks. 

Our most significant conclusion pertains to the threshold 

for parametric instabilities in the low density periphery 

where the frequency is several times the local lower hybrid 

frequency. Threshold formulas (76) and (79) show that the 

threshold is in thP. rP.gime of current tokamak experiments, and 

that nonlinear effects can be suppressed by high toroidal field, 

low-density and high-electron tempe~atures. Furthermore, if 

ZT /T. < 3~5, the frequency dependence shown in Figs. (6-8) and 
e 1 

in (79) predicts that the threshold power increases linearly with 

applied frequency. When ZT /T. > 3.5, ion-acoustic waves exist 
e 1 · 

and there is no explicit frequency dependence of the threshold 

as (74) makes clear. 
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It is difficult to apply our results to real tokarnaks 

because not much is known regarding the temperature and density 

profiles in the periphery of actual devices, and partially 

ionized impurities also serve to reduce the threshold field. But 

the threshold conditions do predict that an increase 4n electron 

temperature generated by nonlinear heating will quench parametric 

instabilities. High-power, lower hybrid radiation may suppress 

severe absorption near the surface of a tokamak_ merely by raising 

the electron temperature by a modestamount of nonlinear absorption. 

'l'he most straightforward way to eliminate nonlinear effects 

.1.:::; Lu lntroduce the requ1site power through a number of wave-

guide ports, thereby reducing the peak electric field in the 

resonance cone associated with a particular waveguide. No mutual 

coupling occurs between resonance cones because of the strong 

spatial attenuationof the daughter waves due to their ~ow-phase 

velocity. 

What about other methods to suppress parametri·c instabilities? 

Convective decay instabilitie~ will not be controlled by a fini.te 

bandwidth of the pump wave unl·ess this bandwidth is as large as 

the characteristic frequency shifts (73) - typically ~0% of the 

pump frequency. The stabilization of absolute instabilities can 

be effected by smaller bandwi~ths comparable to the frequency 

shifts of the daughter waves (53) - perhapR S~ nf ~he pump 

frequency. High toroidal fields are doubly beneficial; not only 

do they increase the threshold field for parametric instabilities, 

but also the energy confinement improves thereby reducing the 

' 
power required for heating. 

<. 
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Although instabilities may be eliminated near the plasma 

periphery, Figs. (6-8) clearly indicate that the threshold for 

parametric1instabilities falls by one or two orders of magnitude 

as the lower hybrid layer is approached. Hence, nonlinear 

absorption will probably attenuate the pump wave before it 

reaches the linear mode conversion surfaces . 

. 
Our second key result concerns the fate of the energy 

transferred to the daughter waves. These waves rapidly propagate 

out of the!resonance cone region where they are no longer unstable 

and are absorbed by Landau damping with electrons of energy roughly 

8T playing the principal role. 
e 

Since the frequency shift 

of the daughter wave remains a small (but not completely negligible) 

fraction of the pump frequency,and since quasimode coupling 

conserves plasmon number, most of the energy transferred out of 

the pump wave goes to the lower hybrid daughter wave. One 

concludes that nonlinear lower hybrid heating will proceed via 

the formation of an energetic tail in the parallel velocity 

distribution. Two recent experiments corraborate this ex­

. 2,12 
pectat1on 

If the formation of parallel velocity tails serves to 

increase the fraction of the plasma current carried by runaway 

electrons, ·lower hybrid heating could cause a reduction in the 

Ohmic heating of a tokamak. Such an effect would clearly be 

observed on the loop voltage record. Since runaways are to be 

avoided, the pump lower hybrid radiation would best be a 

travelling:wave propagating in a direction opposite to that of 

runaway electrons (i.e. propagating with the plasma current). 

The parallel velocity tail formed by the linear damping of the 

pump wave would then consist of anti-runaways and would increase 

the Ohmic heating. 
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'• 

Experiments have also shown the formation of en~.rgetic ion 

tails, raising the question: When is ion heating exp~cted? 

The answer is that nonlinear ion heating can occur in two ways. 

First, ion-Landau damping provides part of the dissipation in 

quasimodes, and the energy associated with the quasimode can be 

transferred to partially to ions. The remainder of ~he quasimode 

energy goes .to electrons. Indeed, according to the model of this 

paper, if ZT /T. > 3.5, then the quasimode dissipation is 
e 1 

dOm1nantly electron-Landau damping and very little energy is 

transferred to the ions. However, the plasma in the· ont.8 i nP. 

regions of a tokamak is not a single species plasma, A>ut is 

composed of partially ionized impurities plus hydrogen or . 
deuterium. Impurities lower the sound speed so that Landau 

damping by the hydrogen isotopes becomes important, and hydrogen 

can be energized directly. Concomitantly, there will· be little 

direct heating of impurity ions because their velocities 

are less than that of hydrogen. Nonlinear ion heatin~ also occurs when 

-- . 1/2 
w (l+T./ZT ) and 

LH 1 e 
the daughter wave frequency w

1 
satisfies w

1 
< 

the principal damping process changes from electron fo ion- Landau 

damping. Again, a multiple species plasma will diff~F from our 

simple model. Hence, we conclude that nonlinear absorption near 
[ 

the linear mode conversion surface will ·heat the lightest ions. 

Our mod~:l of a spatially localized pump leads d.i'rectly to 

the predictiqn that the frequency shift [Fig. 8 and Y13)] is 
,. 

about 10~ of the pump frequency in agreement with experimental 

results. 
3 

\ 

:.~ 
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Next, let us briefly argue that decay into two lower hybrid 

modes will not play an important role. The paper by Ott
13 

compares 

the threshold for quasimode decays versus that for decay into 

two lower hybrid modes. Transferring his Eq. (13a) into our nota-

tion, one obtains 

Pquasimodes 
p 
decay 

2 T 1/2 
n (~) 

z 2 
me 

2L wl 

x- 2 1 
0 w -

1 

(~) 
v 

e 
<< 1 ( 80) 

where w
1 

is the frequency of the daughter decay wave, and the 

convective damping decrement was estimated as v - VgJJIL. The 

principal reason why decay into two lower hybri~ modes fails to be 

important is that it depends on the finite wavelength of the pump. 

In the nonlinear saturation of growing short wavelength daughter 

waves, the decay into two other waves could well play an 

important role. 

Parametric instabilities can also occur for very large phase 

velocity waves which can transit several times around the torus 

before damp,ing. Equation ( 7 3) points out that such instabilities 

will be characterized by a very small frequency shift. When 

translated into energy, this means that essentially all the 

energy transferred out of the pump appears in the daughter wave, 

so that a true absorption process has not taken place. On the 

other hand, the daughter wave vector will be directed principally 

in the short azimuthal direction, so that the daughter wave 

propagates much more slowly to the center, and may even return 

to the outside due to the magnetic shear effects. 
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As an estimate for the threshold of high phase velocity 

waves, let us set the 

damping rate ·and take 

growth rate (57) equal to the collisional 

2 
E

0 
to be the average electric field in the 

torus. 

2 
411 RrV 

gr 
= p 

The threshold condition then becomes P > P with 
0 

p 
0 

= 

·i 

~ (:~. )(~)~ 
rn 

2 2 2 
( 2 7T) B e Rr lni\ 

3 

n2 + w 2 
e pc 

where (72) has been used. 

Equation (81) has been written to facilitate comparison 

with (75). For present-day tokamaks, one can estimate that 

the factor in [ J brackets in much less than unity so that the 

threshold fo~ high-phase velocity waves is much lower than 

convective quasimodes in the peripheral region. Casting 

(81) 

(81) into practical units, one obtains the threshold condition 

1,( 
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1/2 2 
. (lOOeV\ ( B ) ( r) 

k1lowatts) Te ) ·SOkG Ao 
(' 

1 
n 

z 

(82) 

where inA ~ 20 was used. Evidently high-phase velocity waves be­

come unstable at quite low_powers. On the other hand, high-phase 

velocity instabilities are not a major obstacle to tokamak heating 

because the nonlinear coupling rates are of the order of the 

collision frequency. Hence, the effective collision frequency 

for the pump wave caused by the instabilities will also be of the 

order of the collision frequency and not important in the absorp-

tion of the pump wave. Experimental results on the ATC Tokamak 

show instabilities slightly below the pump frequency as (82) 

predicts.· 

Another possibly important effect remains to be investigated: 

scattering of lower hybrid radiation by drift-wave irregularities 

in the plasma periphery. The lower hybrid dispersion relation 

can be written as 

w 
0 

(w2 -l)l/2 
0 

( 8 3) 

which shows that k~pi ~ 1 for typical tokamak discharges. Hence, 

lower hybrid waves could scatter off of drift wave turbulence. 

Since drift waves generally have a much longer parallel wave-

length than lower hybrid waves, and a very much lower frequency, 
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the scatteri~g process will simply result in a reorientation of 

the perpendicular wave vector~ With frequent scatt~ring, the 

lower hybrid waves will penetrate a-tokamak only by a diffusive 

random walk process. 

The attenuation length caused by scattering cari be computed 

by starting with Eq. (11) rewtitten as 

-i 
w 

0 

n. 
1 

2
1 

k 1 •.(k xz) 
( w -·- 1 ) """"' :..vvo IVY\ 

0 

+ 2 2 
WLH (W - 1) 

0 

n 

(84) 

This equation gives the evolution with time T (we used -iw+y+3/3T) 

of the amplitude ¢k 1 scattered from the incident wave ¢k by the de 
"""'0 

density fluctuation nk1 1 ( k I I = k I - k0) • Since k 1 1 = ·0 , we con-
NV'II /V>A 

sider wave vector components only in the two dimensions trans-

verse to the magnetic field. 

obtain the equation 

where sine =1<:
1 • (k x z)/k

2 
NV'o. ~ """' 0 

Defining k 
12 = k 2 

+ 2k cSk 
0 0 

(1,\ 

'1 
.L. 

LH 
sine 

2S1. 
l 

n 

, one can 

(85) 

This equatio~ can be treated via the usual perturbation methods 

of quantum mechanics to obtain the scattering frequency V 8 • 

2 2 ak.J.. 
4 < ft~n (k I I) l·.t> 

~ 
wLH ( 8 6) 

\) 

~l: 
TT (-) """' 

s = = k n.T 2 
k 2 2 0 aw 

l n 
k;.,' Nv-.0 

,...... 

. r... 

... 
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Next, we will 

space < jiln.(k 1 1
) j

2
> 

approximate the 

2 2 
by (iln) /nk

0 
::: 

power spectral density in k -

2 
< liln ( k 1 1 

) I > a formula 
"""' 

which assumes that most of the naturally occurring density flue-

tuations have wave numbers - k . With the help of (55), one ob­
o 

tains the characteristic distance for attenuation by scattering 

.e. 

2 2 Q~ 2 >. -1/2 (w2-l)5/2 Q~ 2 v 
2 

(w -1) 
g~ 0 l n 0 M 0 l n 

= = = ( zm> s \) lf 2 ~ 
(iln) 

2 2 n -·-T 
( iln) 

2 
s k w wLH lf z w 

0 0 0 

(87) 

This scattering length is generally long in the tenuous periphery 

-2 
of the plasma (assuming iln/n ~ 10 ) , but can become short in the 

high-density regions because of the strong scaling with density 

(i a n- 5 /~ for fixed iln/n). Scattering, then, plays a negli­
s 

gible role in lower hybrid heating. 

Magnetic shear will influence the propagation of long-wave-

length daughter waves which transit many times around the torus. 

But since we have argued following Eq. (82), that such waves 

will not constitute an important absorption process, magnetic 

shear will.be neglected. 

Overall, our assessment is that parametric instabilities 

place an important limit on the power-per-port that a lower 

hybrid heating scheme can employ [c.f. (70)]. The experience of 

present-day tokamaks will most likely be quite relevant to fusion 

reactors, because they too must have low-temperature, low-density 

regions on:the outside. Parametric in$tabilities may be avoided 

by high toroidal field and many separate wave-launching ports. 

Also, launching the electromagnetic whistler mode, instead of the 
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slow electrostatic wave as assumed in this work, may well lead 

to superior heating. The whistler has a higher perpendicular 

group velocity, thereby lowering the pump electric field. Fur-

-
thermore, it is a global mode and does not possess a resonance 

cone structure. 
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(a ) 

(b) 

762202 

Fig. 1 (a). Sketch of ·two· element phased array waveguide 
coupler in ~·tokamak. The electric field vectors are out of 
phase. L is the total length along the magnetic field. (b) 
Sketch of re.?onance cone propagation in minor radius r and 
distance along the magnetic field z. 
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Fig. 2. The resonance cone lies at 45° in terms of the 
scaled variable z [see Eq. {14)]. The s,n coordinate system is 
defined by { 16) . 
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Fig. 3. The electric fi~ld amplitudes E~ and E
2 

. 
corresponding to the cosw t and sinw t components respect1vely 
[see Eq. (17, 18)]. Thesg amplitude~ model the resonance cone 
fielcs generated by the waveguide coupler in Fig. 1. 
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Fig. 4. Results of computational solutions for the 
~igenvalue p~ir ~A 1 , I A2 1). of E9s. (45), {~2) i,n t':~ms. of ~he 
paramAter whJ.ch 1s rclu.ted to 1011 Law.lau damping d1ss1pat1on 
via {42). As lei + u/2, solutions to {45) cease to exist. 
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X 

762199 

Fig. 5. Geometry of the quasimode amplification process. 
The pump wave propagates in the well-defined resonance (whose 
angle with respect to the a - direction is greatly exaggerated) . 
The component of the daughtgr wave group velocity in the x-z 
plane is sketched. [See (56) for the precise formula]. Lis 
the dimension of the waveguide launcher along the magnetic field. 
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5 

Fig. 6. The maximum value of B as a function of the 
sideband frequency in unils of the lower hybrid frequency 

1 
w

1 1 
.·'·;,. 

for electron to ion temperature ratios T = 1 {the lower curve} ··~ 
and T = 6 {the upper curve}. 
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Fig. 7. The vaiues of V = w
1
;k 1l v (upper curves) and 

Vi= w
1

/kJ_v': (lower curve) asea functioneof the pump frequency 
normal1zed lo the lower hybrid frequency for values of electron 
to ion temperature ratio T = 1,3,6. Here v (v.) is the electron 
(ion) thermal velocity. e 1 
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Fig. 8. The logarithm of the amplification factor A 
given in Eq. (68) maximized with respect to w1 as a function o~ 
w for electron to ion temperature ratios T = 1,3,6 (upper curve). 
THe relative frequency w /w and cos~ defined in Eq. (61) 
that corre~pond to maximu~ ~plificati~n as a function of w

0 
for values of T = 1,3,6. 


