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This paper presents a survey of existing robotic systems for lower-limb rehabilitation. It is a general assumption that robotics will
play an important role in therapy activities within rehabilitation treatment. In the last decade, the interest in the field has grown
exponentially mainly due to the initial success of the early systems and the growing demand caused by increasing numbers of stroke
patients and their associate rehabilitation costs. As a result, robot therapy systems have been developed worldwide for training of
both the upper and lower extremities. This work reviews all current robotic systems to date for lower-limb rehabilitation, as well as
main clinical tests performed with them, with the aim of showing a clear starting point in the field. It also remarks some challenges
that current systems still have to meet in order to obtain a broad clinical and market acceptance.

1. Introduction

Stroke is the third most frequent cause of death worldwide
and the leading cause of permanent disability in the USA and
Europe [1]. Neurological impairment after stroke frequently
leads to hemiparesis or partial paralysis of one side of the
body that affects the patient’s ability to perform activities
of daily living (ADL) such as walking and eating. Physical
therapy, involving rehabilitation, helps improve the lost
functions [2, 3].

The goal of rehabilitation exercises is to perform specific
movements that provoke motor plasticity to the patient and
therefore improve motor recovery and minimize functional
deficits. Movement rehabilitation is limb dependent, thus the
affected limb has to be exercised [4].

This paper focuses on lower-limb rehabilitation. One-
third of surviving patients from stroke do not regain
independent walking ability and those ambulatory, walk in a
typical asymmetric manner [1]. Rehabilitation therapies are
critical to recover, and therefore many research is ongoing on
the field.

The rehabilitation process toward regaining a meaningful
mobility can be divided into three phases [4–6]: (1) the
bedridden patient is mobilized into the chair as soon as

possible, (2) restoration of gait, and (3) improvement of gait
(i.e., training of free walking if possible).

Traditional rehabilitation therapies are very labor inten-
sive especially for gait rehabilitation, often requiring more
than three therapists together to assist manually the legs and
torso of the patient to perform training. This fact imposes
an enormous economic burden to any country’s health care
system thus limiting its clinical acceptance. Furthermore,
demographic change (aging), expected shortages of health
care personnel, and the need for even higher quality care
predict an increase in the average cost from first stroke to
death in the future. All these factors stimulate innovation in
the domain of rehabilitation [7] in such way it becomes more
affordable and available for more patients and for a longer
period of time.

Robotics for rehabilitation treatment is an emerging field
which is expected to grow as a solution to automate training.
Robotic rehabilitation can (i) replace the physical training
effort of a therapist, allowing more intensive repetitive
motions and delivering therapy at a reasonable cost, and (ii)
assess quantitatively the level of motor recovery by measuring
force and movement patterns.

In the recent literature many works deal with robotic
lower-extremity rehabilitation. The purpose of this paper is
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Figure 1: Robotic system types for lower-limb rehabilitation: (a) treadmill gait trainers, (b) foot-plate-based gait trainers, (c) overground
gait trainers, (d) stationary gait and ankle trainers, and (e) active foot orthoses.

to review existing interfaces, as well as ongoing work, to show
researchers current state of the art and roadmap in the field.
Passive robotic rehabilitation devices, although less complex
and cheaper, cannot supply energy to the affected limbs,
hence are limited compared to active devices and are out of
the scope of this work. Finally, current challenges in the field
are also pointed out in the last section.

2. Robotic Systems for Lower-Limb
Rehabilitation

Over the last decade, several lower-limb rehabilitation robots
have been developed to restore mobility of the affected limbs.
These systems can be grouped according to the rehabilitation
principle they follow (Figure 1):

(i) treadmill gait trainers,

(ii) foot-plate-based gait trainers,

(iii) overground gait trainers,

(iv) stationary gait trainers,

(v) ankle rehabilitation systems,

(a) stationary systems,

(b) active foot orthoses.

Following subsections describe the working principle of
each group and review all existing devices to date (to the best
of our knowledge). Clinical tests performed with patients
using such systems are also reported (test with healthy
patients are excluded).

2.1. Treadmill Gait Trainers. Traditional therapies usually
focus on treadmill training to improve functional mobility
[8]. This rehabilitation technique is known as partial body-
weight support treadmill training (PBWSTT). Three ther-
apists assist the legs and hip of the patient walking on a
treadmill while part of the patient’s body weight is supported
by an overhead harness.

Many robotic systems have been developed with the aim
to automate and improve this training technique as a means

Table 1: Robotic systems for treadmill gait training.

Robotic system Company Clinical tests

Lokomat [10] Hocoma [11–15]

LokoHelp [16] LokoHelp Group [16, 17]

ReoAmbulator [18] Motorika —

ARTHuR [19] — [21]

POGO and PAM [20] — —

ALEX [22] — [23]

LOPES [24] — [25]

ALTRACO [26] — —

RGR [27] — —

String-Man [28] — —

for reducing therapist labor [9]. Usually these systems are
based on exoskeleton type robots in combination with
a treadmill (Figure 1(a)). Table 1 summarizes the systems
available in literature.

Of the 10 systems that compose the group, only three of
them are on the market: the Lokomat, the LokoHelp, and
the ReoAmbulator. The Lokomat (Hocoma AG) consists of
a robotic gait orthosis and an advanced body weight support
system, combined with a treadmill [10]. It uses computer-
controlled motors (drives) which are integrated in the gait
orthosis at each hip and knee joint (Figure 2). The drives
are precisely synchronized with the speed of the treadmill to
assure a precise match between the speed of the gait orthosis
and the treadmill. Till date, it is the most clinically evaluated
system [11–15] and one of the firsts of its type.

The LokoHelp (LokoHelp Group) is an electromechan-
ical device developed for improving gait after brain injury
[16]. The LokoHelp (Figure 3) is placed in the middle of
the treadmill surface parallel to the walking direction and
fixed to the front of the treadmill with a simple clamp.
It also provides a body weight support system for the
patient. Clinical trials have been conducted to analyze its
feasibility and efficacy [16, 17]. The results show that the
system improves the gait ability of the patient in the same
way as the manual locomotor training; however, using the
LokoHelp less therapeutic assistance is required and therapist
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Figure 2: Lokomat system (picture courtesy of Hocoma).

Figure 3: LokoHelp gait trainer “Pedago” (picture courtesy of
LokoHelp Group).

discomfort is reduced. This fact is a general conclusion for
almost all robotic systems to date.

ReoAmbulator (Motorika Ltd., marketed in the USA
as the “AutoAmbulator”) is another body-weight-supported
treadmill robotic system [18]. Robotic arms are strapped to
the patient’s legs at the thigh and ankle, driving them through
a stepping pattern (Figure 4). A single-blind, randomized
clinical trial to assess its effectiveness in stroke patients
is currently underway. ReoAmbulator was developed in
cooperation with the HealthSouth network of rehabilitation
hospitals.

Other robotic systems are at a research state or under
development, but have been already used to conduct some
clinical testing. For example, the Biomechatronics Lab at
the University of California has developed several robotic
devices for locomotor training after spinal cord injury: the
Ambulation-assisting Robotic Tool for Human Rehabilita-
tion (ARTHuR), a device designed to measure and manipu-
late human stepping on a treadmill [19]; the Pneumatically

Figure 4: ReoAmbulator robotic system (picture courtesy of
Motorika Ltd.).

Operated Gait Orthosis (POGO), an improved leg-robot
design; the Pelvic Assist Manipulator (PAM), a device that
can accommodate and control naturalistic pelvic motion
[20]. The former, ARTHuR, has been tested in a clinical
trial [21] showing its reliability to perform subject-specific
assisted stepping, thus reducing the effort required by the
trainer during manual assistance.

The Active Leg Exoskeleton (ALEX) is a powered leg
orthosis with linear actuators at the hip and knee joints, and
with a force-field controller developed to provide assistance
to the patient by using the assist-as-needed approach [22].
It has been tested with two chronic stroke survivors, whose
gait patterns were substantially improved after the training
[23]. Improvement was measured as an increase in the size
of the patients’ gait pattern and in their walking speeds on
the treadmill.

The gait rehabilitation robot LOPES (LOwer-extremity
Powered ExoSkeleton) can move in parallel with the legs
of a person walking on a treadmill, at pelvis height flexibly
connected to the fixed world [24]. A first clinical trial
is already completed that tests the efficacy of LOPES in
improving the walking ability and quality of chronic stroke
survivors [25].

Finally, there are three robotic systems under research:
ALTRACO, RGR, and String-Man. The Automated Locomo-
tion Training using an Actuated Compliant Robotic Orthosis
(ALTACRO) project aims to develop a novel step reha-
bilitation robot using a lightweight, compliant, pneumatic
actuator [26]. The device consists of a unilateral exoskeleton
and a supportive arm to passively gravity-balance the device.

The Robotic Gait Rehabilitation (RGR) Trainer was
built to target secondary gait deviations in patients after
stroke. While patients ambulate on a treadmill, force fields
are applied to the pelvis, that generate corrective forces as
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Table 2: Foot-plate-based robotic systems.

Robotic system Company Clinical tests

Gangtrainer GT I [29] Reha-Stim [29–32]

HapticWalker [33] — [34]

GM5 [35] — [35]

LLRR [36] — —

Univ. Gyeongsang [37] — [37]

a response to deviations from normal pelvic motion [27].
The device is coupled to the patient via an orthopedic brace.

The String-Man [28], developed at Fraunhofer IPK,
Berlin, is a robotic system for supporting the gait rehabili-
tation and restoration of motor functions. It has a particular
kinematic structure with 7 wires attached to the trunk of the
patient.

2.2. Foot-Plate-Based Gait Trainers. Some rehabilitation
machines are based on programmable foot plates. That is,
the feet of the patient are positioned on separate foot plates,
whose movements are controlled by the robotic system to
simulate different gait patterns (Figure 1(b)). Table 2 shows
the review of such systems. It can be seen that only one
system is on the market, although many others have done
some clinical testing.

The Gangtrainer GT I (Figure 5), commercialized by
Reha-Stim, can assist the patient in the recovery of his
freedom of movement by relieving the body of its own
weight and adapting speed from the individual ability of
the patient [29]. Harness-secured patients are positioned
on two foot plates, whose movements simulate stance and
swing, and ropes attached to the patient can control the
vertical and lateral movements of the center of mass. Many
clinical studies have been conducted worldwide with this
device [30–32], and it is considered as one of the pioneering
robotic systems for rehabilitation. Similarly as for treadmill
gait trainers, the Gangtrainer GT I is at least as effective as
the manual treadmill therapy but requiring less input from
the therapist.

The HapticWalker is a haptic locomotion interface able to
simulate not only slow and smooth trajectories (like walking
on an even floor and up/down staircases), but also foot
motions like walking on rough ground or even stumbling or
sliding, which require high-order system dynamics [33]. It
is a major redesign of GT I with foot plate trajectories fully
programmable, and it is currently being clinically evaluated
in several trials with stroke patients and spinal cord injury
patients [34].

The GaitMaster5 (GM5) is a recently developed gait
rehabilitation system at the University of Tsukuba [35]. The
patient straps his/her feet into pads that are lined with
sensors (Figure 6). These pads are connected to motion
platforms that can move the user’s foot forward (simulating
walking) or up and down (like climbing).

The Lower-Limb Rehabilitation Robot (LLRR) can
assist patients in simulating normal people’s footsteps and

Figure 5: The Gangtrainer GT I (picture courtesy of Reha-Stim).

(a) (b)

Figure 6: The GaitMaster5 gait rehabilitation system (picture
courtesy of Dr. Hiroaki Yano).

exercising leg muscles [36]. It is comprised with steps
posture controlling system and weight alleviation controlling
mechanism.

A 6-degree-of-freedom (DOF) gait rehabilitation robot
has been developed at the Gyeongsang National University
with upper and lower limb connections that allow walking
velocity updates on various terrains. It is composed of an
upper limb device, a sliding device, two footpad devices,
and a body support system. A pilot clinical test has been
conducted with a hemiplegic patient [37].

2.3. Overground Gait Trainers. Systems reported in Table 3
consist of robots that servo-follow the patient’s walking
motions overground. They allow patients move under their
own control rather than moving them through predeter-
mined movement patterns (Figure 1(c)). It is very noticeable
that almost all systems reviewed have been commercialized.

The KineAssist is a robotic device (Figure 7), commer-
cialized by Kinea Design, LLC, for gait and balance training
[38]. It consists of a custom designed torso and pelvis harness
attached to a mobile robotic base. The robot is controlled
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Figure 7: KineAssist robotic device (picture courtesy of Kinea
Design, LLC).

Table 3: Overground gait trainers.

Robotic System Company Clinical Tests

KineAssist [38] Kinea Design LLC [39]

WalkTrainer [40] Swortec SA [41]

ReWalk [42] ARGO Medical —

HAL [43] CYBERDYNE Inc. [44, 45]

WHERE I-II [46] — [46]

according to the forces detected from the subject by the load
cells located in the pelvic harness. A recent clinical trial has
been conducted [39] in order to evaluate overground walking
speed changes when using the KineAssist system.

The WalkTrainer (Swortec SA) is a robotic rehabilitation
system composed by a deambulator, a pelvis orthosis, a body
weight support, two leg orthoses, and a real-time controlled
electrostimulator [40]. It is an overground walking reedu-
cation deambulator with the association of pelvic and leg
orthoses. First clinical trials have been carried out with the
system [41].

ReWalk is a wearable, motorized quasi-robotic suit from
ARGO Medical Technologies Ltd., (Figure 8) that can be
used for therapeutic activities [42]. ReWalk comprises light
wearable brace support suit, which integrates DC motors at
the joints, rechargeable batteries, an array of sensors, and
a computer-based control system. Upper-body movements
of the user are detected and used to initiate and maintain
walking processes. The device is undergoing clinical trial
testing at the Moss Rehabilitation Hospital in Philadelphia.

Hybrid Assistive Limb (HAL) is a wearable robot
designed for a wide range of applications, from rehabilitation
to heavy works support, and built in several versions (full
body version and two-leg version) [43]. Current version 5 has
been used to conduct clinical tests [44]. A single-leg version
of HAL has also been developed to support the walking of
persons with hemiplegia (Figure 9). The walking support was

Figure 8: ReWalk wearable system (picture courtesy of ARGO
Medical Technologies Ltd.).

Figure 9: Single-leg version of HAL robot (picture courtesy of
Professon Sankai, CYBERDYNE Inc./Univeristy of Tsukuba).

assessed with one hemiplegic subject who was not able to
bend his right knee [45].

WHERE I and II are two mobile gait rehabilitation sys-
tems that enable overground gait training. Pilot clinical trials
have been carried out to demonstrate the effectiveness of
both systems (patients were in the stage of gait rehabilitation
after suffering minor leg injuries) [46].

2.4. Stationary Gait Trainers. Table 4 presents robotic sys-
tems that are focused on guided movements of limbs in order
to have an optimal effect from a therapeutic and functional
perspective (Figure 1(d)). The objective of these systems is
to obtain efficient strengthening of the muscles and the
development of endurance, as well as joint mobility and
movement coordination.
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Table 4: Stationary robotic gait trainers.

Robotic system Company Clinical tests

MotionMaker [47] Swortec SA [40, 47]

Lambda [48] — —

AIST Tsukuba [49] — —

Figure 10: The MotionMaker rehabilitation system (Picture cour-
tesy of Swortec SA).

The MotionMaker (Swortec SA) is a stationary training
system which allows to carry out fitness exercises with active
participation of the paralyzed limbs [47]. The limbs are
only attached to the orthoses at the foot level to simulate
natural ground reaction forces (Figure 10). The advantage of
the MotionMaker is its real-time sensor-controlled exercises,
combined with the controlled electrostimulation, adapted
to the patients efforts. First clinical trials have been carried
out with the system [40], showing an improvement of the
patient’s ability to develop a higher voluntary force during a
leg-press movement.

Two other robotic systems that have been developed with
a similar working principle: the Lambda, a rehabilitation
and fitness robot used for mobilization of lower extremities
[48] that provides the movement of the lower extremities
in the sagittal plane, including an additional rotation for
the ankle mobilization; and a wire-driven leg rehabilitation
system [49] developed by the National Institute of Advanced
Industrial Science and Technology (AIST) of Tsukuba.

2.5. Ankle and Knee Rehabilitation Systems. Neurological
impairment after stroke can lead to reduced or no muscle
activity around the ankle and knee causing the inability
of an individual to lift their foot (drop foot). Ankle
motion is very complicated due to its complex bone
structures [50]. The overall motions of the ankle can be
arranged as dorsiflexion/plantarflexion, inversion/eversion,
abduction/adduction, and pronation/supination.

Many systems have been developed to enforce or restore
these ankle and knee motions specifically. These systems can
be grouped into stationary or active foot orthoses.

2.5.1. Stationery Systems. Stationary systems (Table 5) are
those robotic mechanism designed to exercise the human

Table 5: Stationery robotic systems for ankle rehabilitation.

Robotic System Company Clinical Tests

Rutgers Ankle [51] — [52–54]

IIT-HPARR [56] — —

AKROD [57] — —

Leg-Robot [58] — —

GIST [59] — —

NUVABAT [60] — —

Univ. London [61] — —

Univ. Auckland [62] — —

Univ. Cheng Kung [63] — —

Univ. Fuzhou [50] — —

AIST Tsukuba [64] — —

Figure 11: High Performance Ankle Rehabilitation Robot devel-
oped at the Istituto Italiano di Tecnologia.

ankle and knee motions without walking. The patient is
positioned always in the same place, and only the target limb
is exercised (Figure 1(d)).

The Rutgers Ankle was the first of this kind. It is
a Stewart platform-type haptic interface that supplies 6
DOF resistive forces on the patient’s foot, in response to
virtual reality-based exercises [51]. Many clinical trials have
been conducted with this system [52–54], showing the
improvement of the patient on clinical measures of strength
and endurance. In [55], the system was extended to a dual
Stewart platform configuration to be used for gait simulation
and rehabilitation.

The Istituto Italiano di Tecnologia (IIT) has devel-
oped a High Performance Ankle Rehabilitation Robot
[56]. The proposed device allows plantar/dorsiflexion and
inversion/eversion using an improved performance parallel
mechanism that makes use of actuation redundancy to
eliminate singularity and greatly enhance the workspace
dexterity (Figure 11).
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A more recent system, the Active Knee Rehabilitation
Orthotic Devices (AKROD), provides variable damping
at the knee joint, controlled in ways that can facilitate
motor recovery in poststroke and other neurological disease
patients and to accelerate recovery in knee injury patients
[57]. Although it has been grouped as a stationary system,
future work is focused on an actuated AKROD during
walking.

The Osaka University has developed a leg-shaped robot
(Leg-Robot) with a compact magnetorheological fluid clutch
to demonstrate several kinds of haptic control of abnormal
movements of brain-injured patients [58]. This system can
be used in the practical training for students of physical
therapy.

The Gwangju Institute of Science and Technology (GIST)
has developed a reconfigurable ankle/foot rehabilitation
robot to cover various rehabilitation exercise modes [59].
The robot can allow desired ankle and foot motions,
including toe and heel raising as well as traditional ankle
rotations. The system was designed to perform strengthening
and balance exercises.

The so-called Northeastern University Virtual Ankle and
Balance Trainer (NUVABAT) rehabilitation system is a low-
cost, compact, mechatronic rehabilitation device for training
of ankle range of motion (ROM) exercise in sitting and
standing positions and also weight shifting and balance
training in standing position [60].

The Department of Mechanical Engineering at the King’s
College has proposed an ankle rehabilitation robot based on
a parallel mechanism with a central strut [61]. The University
of Auckland has also developed a parallel robot to perform
ankle rehabilitation exercises [62]. In this last system, the
human ankle is secured to the end effector in such a way that
it forms part of the kinematic constraint of the robot.

The Man-Machine Systems Laboratory (MML) at the
National Cheng Kung University (NCKU) has developed
a robot for assisting rehabilitation of patients with ankle
dysfunction [63], and the School of Mechanical Engineering
and Automation at the University of Fuzhou has performed
an in-depth motion analysis of the ankle and has proposed
two different kinds of rehabilitation robots [50]. The AIST
of Tsukuba has developed a robotic device for ankle dorsi-
flexion/plantarflexion that can be applied to patients with
complicated ankle joint deformity [64].

2.5.2. Active Foot Orthoses. On the contrary to stationary
systems, active foot orthoses (Table 6) are actuated exoskele-
tons that the user wears while walking overground or in a
treadmill (Figure 1(e)). They are intended to control position
and motion of the ankle, compensate for weakness, or
correct deformities. They are an evolution of traditional
passive lower limb orthoses, with additional capabilities
to promote appropriate gait dynamics for rehabilitation
[65].

Two early attempts to develop such systems were the
Powered Gait Orthosis (PGO) [66] and the Pneumatic Active
Gait Orthosis (PAGO) [67]. Both devices underwent testing
on human participants, but they were not commercialized.

Table 6: Active foot orthoses.

Robotic system Company Clinical tests

PGO [66] — [66]

PAGO [67] — [67]

Anklebot [68] Interactive Motion [69, 70]

MIT-AAFO [71] — [71]

AFOUD [72] — —

KAFO [73] — [81]

RGT [75] — [76]

Yonsei-AAFO [77] — [78]

SUkorpion AR [79] — —

Currently, the only commercialized system for rehabil-
itation is the Anklebot (Interactive Motion Technologies,
Inc.), an ankle robot developed at the Massachusetts Institute
of Technology (MIT) to rehabilitate the ankle after stroke
[68]. It allows normal range of motion in all 3 DOF of
the foot relative to the shank while walking overground or
on a treadmill. Pilot controlled trials with such device were
presented in [69, 70], showing a carry over to characteristics
of gait with a general improvement in the walking distance
covered and time.

The MIT also developed an Active Ankle-Foot Orthosis
(AAFO) where the impedance of the orthotic joint is
modulated throughout the walking cycle to treat drop-foot
gait [71].

Another system is the Ankle Foot Orthosis at the
University of Delaware (AFOUD) with 2 DOF. The two
motions incorporated are dorsiflexion/plantarflexion and
inversion/eversion motion [72].

Knee-Ankle-Foot-Orthosis (KAFO) is an orthosis pow-
ered by artificial pneumatic muscles during human walking
[73]. The authors had previously built a powered Ankle-
Foot-Orthosis (AFO) and used it effectively in studies on
human motor adaptation and gait rehabilitation [74].

The Robotic Gait Trainer (RGT) developed in the
Human Machine Integration Laboratory at the Arizona State
University is a walking device (Figure 12) meant to be used
on a treadmill [75]. It is naturally compliant due to the spring
in muscle actuators and has the ability to achieve a more
natural gait by allowing the patient’s ankle joint to move in
eversion, inversion, plantarflexion, and dorsiflexion. A case
study conducted with a female was reported to examine the
performance of the system [76]. The patient suffered no dis-
advantage as a result of the RGT incorporated therapy, where
performance indicators either improved or stayed the same.

The Yonsei University has developed an active ankle-
foot orthosis (Yonsei-AAFO) that can control dorsiflex-
ion/plantarflexion of the ankle joint to prevent foot drop and
toe drag during walking [77]. Gait analyses were performed
on a hemiplegic patient, and the results indicated that the
developed AAFO might have more clinical benefits to treat
foot drop and toe drag in hemiplegic patients, comparing
with conventional AFOs [78].

In a recent work, The Sabanci University Kinetostati-
cally Optimized Reconfigurable Parallel Interface on Ankle
Rehabilitation (named SUkorpion AR) has been presented,
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Figure 12: The Robotic Gait Trainer developed in the Human
Machine Integration Laboratory at the Arizona State University.

which can be either employed as a balance/proprioception
trainer or configured to accommodate range of motion and
strengthening exercises [79].

3. Challenges

Robotic systems are believed to be used as standard reha-
bilitation tools in the near future. Furthermore, worldwide
efforts are being made to automate locomotor training to
reduce health care costs. The capacity of robots to deliver
training with high intensity and repeatability make them very
valuable assistant tools to provide high quality treatment at
a lower cost and effort. These systems should also be used at
home to allow patients to perform therapies independently,
not replacing the therapist but supporting the therapy
program.

This work has reviewed 43 robotic systems for lower-limb
rehabilitation, of which more than half have not yet been
marketed. Moreover, those systems available at the market
are not developed as yet for application at home. Main
reasons are elevated costs, lack of high clinical improvement
evidence, and the need for a therapy protocol and assessment
criteria. In addition, current systems are somewhat bulky
and the mobile systems still lack long duration power supply
solutions.

The usage of robotic systems allows precise measurement
of movement kinematics and dynamics, which should be
used for assessing patient recovery ability and progress. How-
ever, there is a need to develop standard protocols and pro-
cedures to obtain reliable assessment data. Currently, patient
recovery of walking ability is usually quantified by employing
clinical measures such as the Barthel index [80]. Regarding
robotic systems, gait velocity and walking distance, ROM,

and many other dynamic measures have been used for
assessment. However, there is not an standardized and widely
(and clinically) accepted method. Therefore, large clinical
trials are needed to determine clinical criteria for its use.

Finally, clinical studies conducted still show little evi-
dence for a superior effectiveness of the robotic therapy,
although a clear benefit is shown in reduced therapist effort,
time, and costs. It has been shown that robotic rehabilitation
can be as effective as manually assisted training for recovery
of locomotor capacity, but a higher benefit should be
desirable to spread its use in clinics worldwide.
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