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Abstract

Background: Ruminants burp massive amounts of methane into the atmosphere and significantly contribute to

the deposition of greenhouse gases and the consequent global warming. It is therefore urgent to devise strategies

to mitigate ruminant’s methane emissions to alleviate climate change. Ruminal methanogenesis is accomplished by

a series of methanogen archaea in the phylum Euryarchaeota, which piggyback into carbohydrate fermentation by

utilizing residual hydrogen to produce methane. Abundance of methanogens, therefore, is expected to affect

methane production. Furthermore, availability of hydrogen produced by cellulolytic bacteria acting upstream of

methanogens is a rate-limiting factor for methane production. The aim of our study was to identify microbes

associated with the production of methane which would constitute the basis for the design of mitigation strategies.

Results: Moderate differences in the abundance of methanogens were observed between groups. In addition, we

present three lines of evidence suggesting an apparent higher abundance of a consortium of Prevotella species in

animals with lower methane emissions. First, taxonomic classification revealed increased abundance of at least 29

species of Prevotella. Second, metagenome assembly identified increased abundance of Prevotella ruminicola and

another species of Prevotella. Third, metabolic profiling of predicted proteins uncovered 25 enzymes with homology to

Prevotella proteins more abundant in the low methane emissions group.

Conclusions: We propose that higher abundance of ruminal Prevotella increases the production of propionic acid and,

in doing so, reduces the amount of hydrogen available for methanogenesis. However, further experimentation is

required to ascertain the role of Prevotella on methane production and its potential to act as a methane production

mitigator.
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Background
Greenhouse gases include carbon dioxide (CO2), me-

thane (CH4), nitric oxide (N2O) and ozone (O3) [1]. The

atmospheric content of CO2 and CH4 has increased dra-

matically since the industrial revolution [1] and are

major contributors to global warming [2]. It has been es-

timated that methane may constitute up to 20% of

greenhouse gases [3] and wetland and ruminant me-

thane emissions have been on the rise since 2007, mainly

in tropical and subtropical regions [4].

Livestock production systems may account for up to

14% of all anthropogenic methane emissions [5]. Conse-

quently, more than 100 countries committed, in the Paris

agreement of 2015, to reduce greenhouse emissions from

agricultural activities [6]. In order to achieve this, however,

a full understanding of methanogenesis and its associated

microbes is needed. Methane is produced during enteric

fermentation in ruminants by anaerobic microorganisms

collectively known as methanogens in the Archaea do-

main and the phylum Euryarchaeota [7]. Plants fix atmos-

pheric CO2 through photosynthesis and generate biomass

rich in carbohydrates that is used to feed ruminants. Poly-

saccharides digestion then takes place under anoxic condi-

tions in the rumen and hindgut [7] and includes a

complex of anaerobic bacteria, fungi and protozoa that

progressively process carbohydrates through hydrolysis

and fermentation to produce acetic acid, CO2 and H2. Fer-

mentation also generates short-chain fatty acids, like acet-

ate, propionate and butyrate, which constitute an energy

source for many cell metabolic processes and contribute

to homeostasis of the digestive system [8]. Finally, metha-

nogens convert CO2 and H2 to methane via the hydroge-

notrophic pathway. Alternatively, the methylotrophic

pathway produces methane using methylamines and

methanol as substrates [9]. Methanogenesis is considered

an essential process for ruminants because if hydrogen

generated during carbohydrate fermentation is not re-

moved, it may inhibit microbiome metabolism [7]. Finding

ways to redirect hydrogen metabolism is a promising av-

enue to mitigate methane emissions and also to improve

energy retention from grazing [10].

Changes in abundance of methanogens themselves

would definitely affect methane production, but it re-

mains also possible that changes in microbial compos-

ition and structure that result in perturbation of

hydrogen metabolism or accumulation may also impact

methanogenesis [11]. Indeed, application of candidate

hydrogenotrophic bacteria that could redirect hydrogen

away from methanogenesis has been proposed as a strat-

egy to mitigate methane emissions [10]. More complex

relationships are also possible. For example, it has been

proposed that not only the abundance of methanogens

but also the composition of methanogenic communities

in the rumen seems to exert a strong effect on methane

emissions. Namely, the presence of species within the

Methanobrevibacter gottschalkii clade has been reported

associated with higher production of methane [12]. Mul-

tiple factors including breed, sex and diet, affect micro-

biome composition [13, 14], and host genetics play a

significant role in methane emissions without influen-

cing microbiome composition [15].

The buffalo rumen microbiome remains largely under-

explored. In preliminary studies, the rumen microbiome

of Surti and Mehsani buffalos was found to be domi-

nated by phylotypes belonging to the Bacteroidetes/

Chlorobi, Firmicutes and Protobacteria phyla, and the

metagenome was consistent with a genetic profile spe-

cialized in carbohydrate fermentation [16]. Although in

a very small cohort, Kala and collaborators reported that

bacteria in the genera Prevotella, Bacteroides, Clostrid-

ium, Ruminococcus, Eubacterium, Parabacteroides,

Fibrobacter and Butyrivibrio were the most abundant in-

habitants of the buffalo rumen, and that the abundance

of Ruminococcus flavefaciens and R. albus increased

when animal were fed with high-roughage diet [17]. Fi-

nally, it was found that abundances of individual taxa

and specific metabolites were correlated. For instance,

Acetobacter abundance was positively correlated with

acetate, propionate and butyrate content, and so was

Prevotella abundance and butyrate content [18]. Thus,

an important question that remains largely unanswered

is how changes in microbiome structure affect methano-

genesis. Clearly, more studies on the rumen microbiome

in different breeds and geographical regions are urgently

needed.

We conducted a microbiome survey in ruminal fluids of

two cohorts of buffalos from a dairy farm in the depart-

ment of Cordoba, Colombia, which were shown to pro-

duce low or high methane emissions. We hypothesized

that animals with greater emissions of methane contained

more abundant methanogenic microbes. However, our

study revealed that the overall microbial composition did

not appear very different among groups; instead, we de-

tected higher abundance of Prevotella in the group with

lower methane emissions. An hypothetical scenario to ex-

plain the inverse correlation between Prevotella abun-

dance and methane emissions is presented.

Results
With the advent of next generation sequencing

(NGS), the microbiome of ruminants is being profiled

at high resolution and throughput and a complex pic-

ture is emerging wherein host genetics and micro-

biome structure additively contribute to several

phenotypes, including methane emissions [13]. In

order to investigate the ruminal microbiome compos-

ition of two cohorts of Colombian buffalos found to

produce high or low levels of methane, we conducted
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shotgun metagenomics. The bioinformatics pipeline

used in this study is described in Fig. 1.

Alignment of individual sequences

Taxonomic classification of sequences was performed

using the software Kraken2 [19], and the standard data-

base complemented with all bacterial, fungal, viral and

archaeal sequences in the GenBank (including incom-

plete genomes) plus all sequences deposited in the Gen-

ome taxonomy database, GTDB (gtdb.ecogenomic.org).

The GTDB hosts 145,512 bacterial accessions and 2392

archaeal accessions [20]. We discarded Kraken2 hits

with less than 10% of the k-mers matching the reference

sequence. Then, we kept hits with a relative abundance

of at least 3 reads (sequences) per sample. A list of hits

obtained with Kraken2 pseudoalignments is presented in

Supplementary Table S1. A total of 582 taxa were

identified in our data. Five taxa corresponded to Archaea

(Supplementary Fig. S1), along with 576 taxa in the do-

main Bacteria, one fungus of unknown taxonomy and

two virus taxa of unknown taxonomy.

Principal coordinate analysis ordination of a Bray-

Curtis dissimilarity matrix showed that the microbiome

of both groups of buffalos is apparently different, al-

though there is considerable variability among animals

in each group (Fig. 2a). The PCoA plot depicted in Fig.

2a shows that, along the first component (PC1), which

capture 53% of the variance, most blue points (high me-

thane emissions) located on the left part of the plot,

while most red points (low methane emissions) clustered

on the right part of the plot. Permutational Analysis of

Variance (PERMANOVA), however, did not detect sta-

tistically significant differences between groups. We also

conducted Analysis of Similarity (ANOSIM) and

Fig. 1 Bioinformatics pipeline used for data analysis. Twelve buffaloes were included in each group. After quality control, individual sequences were

taxonomically classified with Kraken2 and functionally analyzed with HUMAnN2. Combined assembly was conducted with SPAdes and assembled

contigs were annotated with Prokka. In parallel, binning of contigs was conducted with MetaBAT2 and such bins were phylogenetically analyzed with

MAGpy. De novo assembly of proteins was carried out with PLASS. Protein sequences annotated with Prokka or assembled with PLASS were

consolidated and clustered with Linclust to determine a set of non-redundant representative sequences, which were aligned against several protein

databases using Diamond. All statistical comparisons were conducted with LEfSe. A description of all command lines used is in the bitbucket

repository (https://github.com/buffGenomic/PipelineColBuff)
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obtained a significant p-value (0.02), which again sug-

gests that the groups under comparison are not statisti-

cally different. At the phylum level, the microbiome was

dominated by Bacteroidetes and Firmicutes, and in de-

creasing abundance Actinobacteria and Protobacteria.

Euryarchaeota was among the seven most abundant

phyla, but with abundance much lower than that the rest

of phyla (Fig. 2b). At the genus level, Prevotella was

somewhat more abundant in the group of animals with

lower methane emissions (Fig. 2e). At higher taxonomic

levels, family, order and phylum, the same subtle trend

was observed for Bacteroidaceae, Bacteroidales and Bac-

teroidota, respectively, which showed a moderately

higher abundance in the group with lower methane

emissions. However, high variability is evident inside

each group.

We subjected the 100 most abundant taxa to hierarchical

clustering of their Bray-Curtis dissimilarity indices using the

hclust algorithm, which led to the identification of two clus-

ters (Fig. 3). Namely, a larger cluster comprising 14 samples

was integrated by 9 animals (64%) from the low-methane-

emissions group and 5 animals (36%) from the high-

methane-emissions group. This group exhibited higher

abundance of the majority of the 100 most abundant bac-

teria, including 23 species of Prevotella (green bars), seven

species of Butyrivibrio (blue bars), five species of Ruminococ-

cus (red bars), also Selenomonas ruminantium, and Fibrobac-

ter intestinalis, among others. The other cluster (on the

Fig. 2 Characterization of the rumen microbiome in buffalo cohorts. a Principal coordinate analysis plot. Permanova analysis between groups

showed a non-significant p-value. Taxonomic classification of sequences at the phylum (b), order (c), family (d), and genus (e). Prevotella or upper

taxa containing it are in pink colors in panels b-e
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right), was more heterogeneous and contained mostly ani-

mals from the high-methane-emissions group.

We compared the abundance of the five taxa in the family

Methanobacteriaceae detected in our libraries. In general, a

subtle higher abundance in four out of five Methanobacteria-

ceae taxa in the group of animals with higher methane emis-

sions was observed (Supplementary Fig. S1). Such differences

did not reach statistical significance, but they are clearly

Fig. 3 Hierarchical clustering of the 100 most abundant taxa using Bray-Curtis dissimilarities and the hclust method. Green bars on the right side

of the heatmap indicate Prevotella species. Red bars indicate Ruminococcus species. Blue bars indicate Butyrivibrio species
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appreciated in the boxplots, although considerable variability

inside groups was also observed (Supplementary Fig. S1).

We subjected the abundance of all taxa detected to

linear discriminant analysis, using the software LEfSe

[21]. Interestingly, based on uncorrected p-values,

LEfSe suggested that at least 29 species in the genus

Prevotella were more abundant in the low-methane-

emissions group (Fig. 4a). However, although LEfSe

reported increased abundance of those Prevotella spe-

cies, in most cases p-values lost significance after cor-

rection for multiple comparisons with the Benjamini-

Hochberg method. To better characterize this

observation, we plotted the relative abundance of

twelve species of Prevotella (Fig. 4b) and a clear trend

is observed, although variability inside each group is

considerably large.

We also conducted metabolic profiling with

HUMAnN2 [22], but as is usual with non-human sam-

ples, results were incomplete and not very informative.

Combined assembly and identification of bacterial

genomes

NGS libraries are a very fragmentary representation of

the metagenome [23]. Thus, recovery of bacterial

Fig. 4 Statistical comparison of taxa. a Linear discriminant analysis results. LEfSe was run with default parameters. b Box plots presenting the

relative abundance of 12 Prevotella species in samples associated with high or low methane emissions

Aguilar-Marin et al. BMC Microbiology          (2020) 20:364 Page 6 of 13



genomes is incomplete and somewhat stochastic. This

implies that in two or more samples harbouring the

same bacterium, different parts of the genome might be

recovered. Therefore, it makes sense to conduct se-

quence assembly combining all samples and after identi-

fication/annotation of assembled contigs, alignment of

individual samples to assembled contigs will determine

the relative contribution, if any, of each sample to each

contig. Therefore we conducted combined assembly of

all 24 samples. The assembly of reads generated 3.6 mil-

lion contigs with an N50 of 481 bp (min. 373; max. 53,

776; average 491). We then subjected such contigs to

binning with metaBAT2 [24]. From those, MetaBAT2

was able to cluster 78 putative bacterial genomes (bins),

which were subjected to phylogenetics analysis and an-

notation with MAGpy [25]. Hereinafter, bins are referred

to as MAGs.

The phylogenetic tree generated by MAGpy comprised

three major clusters. The larger cluster (Fig. 5a; in black)

contained many putative genomes that were very similar

among them. The other two branches of the phylogen-

etic tree were more heterogeneous. The annotation

assigned to each bin can be found in Supplementary

Table S2. LEfSe analyses suggested that the genera

Fibrobacter, Oscillibacter, Prevotella and the species

Ruminococcaceae bacterium, Prevotella ruminicola, Bac-

teroidetes bacterium and a phage from Bacteroidetes

were more abundant in the low-methane-emissions

group, but p-values lost significance after correction for

multiple comparisons. Because contigs used in this study

are the result of an assembly procedure that included all

samples, the relative contribution of each sample to each

MAG is presented in Fig. 5b. Essentially, most MAGs

were represented in all samples, with rather few excep-

tions (black cells in the lower half of heat map). The

relative abundance of MAGs reported above is visibly

larger in the group with lower methane emissions, but

considerably heterogeneity is observed inside groups.

Protein predictions and annotation

We predicted a total of 4,467,657 representative non-

redundant protein sequences that were aligned against

the protein databases UniRef100 [26], RumiRef100 [26]

and Hungate1000 [27]. RumiRef and Hungate1000 are

databases of bacterial sequences from ruminal samples.

Alignments were conducted with Diamond and the top

hits were recovered. The best hit from each of the three

alignments was selected for annotation.

To quantify the contribution of each sample to each

protein sequence, individual samples sequences were

aligned to the protein reference sequences with the

method blastx of Diamond. An astringent filtering proced-

ure was implemented as described in the Methods section.

A total of 1309 protein sequences passed such filtering

process (Supplementary Table S3). Among proteins most

frequently detected were FAD-dependent oxidoreductase,

Acyl-CoA dehydrogenase, Urocanate hydratase (homolo-

gous to Prevotella), subunit beta of a DNA-directed RNA

polymerase, Methylmalonyl-CoA mutase, Pyridine

nucleotide-disulfide oxidoreductase (homologous to Eu-

bacterium cellulosolvens) and a Glutamate formimidoyl-

transferase (homologous to Prevotella sp. HUN102),

among many others (see Supplementary Table S3).

When we conducted hierarchical clustering on the 100

most abundant proteins, the exact same larger cluster of

samples identified with Kraken2 taxonomy assignments

(Fig. 3a) was recapitulated (Fig. 6a). Based on linear dis-

criminant analysis, 60 enzymes were more abundant in

the group with lower emissions of methane, and only 10

were more abundant in the group with higher emissions

of methane. Interestingly, 25 enzymes with homology to

Prevotella proteins are among the hits more abundant in

the low-methane-emissions group (Fig. 6b). All those

hits, however, were not statistically significant after cor-

rection for multiple comparison.

In summary, we conducted a thorough characterization

of the rumen microbiome of two small cohorts of buffalos

that were found to produce either high or low methane

emissions. The main findings suggest increased abun-

dance of Prevotella species in the group of low methane

emissions. This was very clear in results from several ana-

lytical approaches presented here, however statistical sig-

nificance was not reached in many cases, which probably

is derived from intra-group variability. Lack of statistical

significance in microbiome means comparisons is often

the result of the large number of taxa detected, which

makes correction of p-values very stringent. The number

of animals in each of our experimental groups was rela-

tively small (n = 12), which will also result in relatively

high p-values. Nonetheless, and apparent higher abun-

dance of Prevotella in the group of animals with lower

methane emissions is evident.

Discussion
In this report we present the characterization of the

microbiome of two cohorts of Colombian buffalos that

produced either high or low methane emissions, in

search for microbial determinants of methane produc-

tion. Our original hypothesis was that a difference in

methananogens abundance was the underlying cause of

differential methane emissions. We did find subtle differ-

ences in four out of five Methanobacteriaceae taxa de-

tected in our data. In all four cases, although

considerable variability inside groups was evident, ani-

mals of the group associated with higher emissions ex-

hibited higher abundance of such methanogens. So, it is

possible that subtle differences in methanogens are suffi-

cient to influence methane emissions.
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More generally, and in agreement with previous re-

ports, we found that the buffalos microbiome was mainly

composed by Bacteroidetes and Firmicutes phyla [17, 18,

28]. At the family level, Bacteroidaceae, Lachnospiraceae

and F082 predominated, while at the genus level, Prevo-

tella and Butyrivibrio were dominant. High abundance

Fig. 5 Metagenome assembled genomes (MAGs). a Phylogenetic tree generated by MAGpy. b Relative contribution of each sample to each

putative genome
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of Prevotella in the rumen microbiome has been re-

ported by several groups in the past [29–33]. Import-

antly, at all taxonomic levels, the abundance of

Prevotella, or the upper taxa containing it, were visibly

more abundant in the group of animals with lower me-

thane emissions. This effect was more pronounced at

the genus level, where 10 out of 12 animal showed high

proportion of Prevotella.

Taxonomic classification of sequences with Kraken2

[19] also suggested higher abundance of Prevotella in

the group with lower methane emissions. This was con-

firmed by phylogenetic analyses with MAGpy [25]. This

approach suggested that Prevotella ruminicola and an-

other species in the genus Prevotella were more abun-

dant in the group of lower methane emissions.

Furthermore, after prediction an annotation of bacterial

Fig. 6 Summary of bacterial protein identification. a Hierarchical clustering of the 100 most abundant proteins delineated two clusters of samples

(see upper dendrogram). b Relative abundance of proteins in animals with high or low methane emissions. Proteins with homology to Prevotella

proteins are highlighted with green squares
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proteins, 60 enzymes were found to be more abundant

in the group of lower methane emissions and from those

25 corresponded to protein sequences with high hom-

ology to Prevotella proteins. Thus, from these three lines

of evidence we conclude that sequences with homology

to Prevotella were more abundant in the group of ani-

mals with lower methane emissions. However, we do ac-

knowledge that after correction of p-values for multiple

comparisons, most comparisons were statistically non-

significant, but the trend observed is very clear and fa-

vors the notion that Prevotella is more abundant in ani-

mals producing less methane. We want to point out that

Prevotella is likely not the only cause of lower methane

emissions and other factors, like animal genotype for ex-

ample, might also exert an effect on such phenotype, as

has been previously suggested [15].

The above-described observation poses the central

question of this discussion. How can we explain reduc-

tion in methane emissions based on increased abun-

dance of ruminal Prevotella? We favor the hypothesis

that increase in the production of propionic acid by Pre-

votella reduces availability of hydrogen for methane pro-

duction. In different contexts, it has been suggested that

hydrogenotrophic bacteria might be used to divert

hydrogen away from methane synthesis [10].

Diet of herbivores consists mostly of complex polysac-

charides that are not digestible by host cells and most

energetic requirements are satisfied through microbial

fermentation [34]. In a simplified manner, polysaccha-

rides breakdown starts with the adhesion of cellulolytic

bacteria like Ruminococcus and Fibrobacter to the sub-

strate. Solubilized polymers, formate, succinate, but also

CO2 and H2, are then intercepted by butyrate-producing

bacteria like Butyrivibrio and Roseburia and succinate-

and propionate-producing bacteria like Bacteroides and

Prevotella. Methanogenic archaea compete for the

hydrogen pool [34]. Experimentally, it has been demon-

strated that adherent fibers and the liquid fraction of the

rumen contain similar microbial ensembles, which vary

in relative abundance, while the rumen epithelium har-

bor unique microbial taxa. Namely, adherent fibers are

rich in fibrolytic microorganisms like member of the

family Ruminococcaceae and the genus Fibrobacter,

while the aqueous phase have abundant members of

Prevotellaceae [35, 36]. Interestingly, in our phylogenetic

analyses with MAGpy we found increased abundance of

Fibrobacter, Oscillibacter, Ruminococcaea bacterium,

Prevotella, and Bacteriodetes bacterium in the group

with lower methane emissions, which perhaps suggests a

microbiome with higher fermentative capabilities.

Taxonomy of Prevotella ruminicola, one of the best

studied species of Prevotella, has been revised several

times considering microbiological and biochemical evi-

dence. P. ruminicola was originally known as Bacteroides

ruminicola [37]. As far back as 1966, it was demon-

strated, using isotopic and enzymatic techniques, that B.

ruminicola used the acrylate reductive pathway (using

acrylyl-CoA as an intermediate) to produce propionate

[38]. Not long after, Van Nevel and collaborators ele-

gantly showed that inhibition of methanogenesis by

chloral hydrate led to accumulation of gaseous hydrogen

and an increase in propionic acid production. It is there-

fore accepted that metabolic hydrogen produced during

ruminal fermentation is partitioned between production

of methane, propionic acid and butyric acid [39].

Conclusions
We propose that higher abundance of Prevotella in the

rumen of animals with lower methane emissions nega-

tively influences methane production. More abundant

Prevotella species would outcompete methanogens for

hydrogen utilization, which will be diverted for produc-

tion of propionic acid.

Of course, our hypothesis needs experimental valid-

ation. A simple way to test it would be to measure the

content of propionate in animals with high or low abun-

dance of Prevotella and methane emissions. Artificial en-

richment of Prevotella from cultures is also an appealing

approach to study metabolic flow. Ultimately, if proven

true, microbiota from low methane emission animals

could be transferred via ruminal liquid to animals with

high production of methane and colonization of the

rumen in the latter group would be monitored as well as

methane emissions. Transferring the whole microbiome

has the obvious advantage that any other microorganism

contributing to the hypothesized role of Prevotella

would also be transferred. Finally, we do not discard a

role of genetic factors on methane production. Studies

to characterize the genotype in animals with low or high

methane production are currently underway.

Methods
Description of animals and collection of ruminal samples

The buffalo dairy farm is located at 8°10′34″ N and

76°03′46″ W in the Tierra Alta locality, in the depart-

ment of Cordoba, Colombia. The dairy farm contains 11,

718 animals, and a database with records that extend

back 22 years. For the measurement of CH4 emissions,

four breathing chambers of metal structure with walls

and roof covered with high-density polyethylene and

sealed with velcro were used. Dimensions of each cham-

ber were 2.2 m × 1.7 m × 0.9 m length, height and width,

respectively, and allowed to control measurement condi-

tions by confining the animals in small spaces and acting

as flow accumulators of the gases belched and coming

from the excreta. A Gases PRO Sensor Board (Cali-

brated) from Waspmote (Libelium®) was used, together

with a Methane and Fuel Gas Sensor (Calibrated)
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reference CH-A3, also from Libelium®. The sensor can

perform CH4 measurements in the environment every

30 s, with a nominal low explosive level (LEL) between

zero and 100% with an accuracy of ±0.15% LEL. One

buffalo was placed in each of the chambers and the walls

were sealed 5 min before the measurement correspond-

ing to each chamber. The measurement was performed

individually for each animal for a period of 10 min with

captures of CH4 in the environment of the breathing

chamber by the sensor every 30 s, followed by a meas-

urement of CH4 in the environment outside the cham-

ber for a period of 5 min with the same sensor settings.

In this way it was possible to obtain the difference be-

tween the CH4 concentration inside the chamber and

the surrounding environment. In total 115 female and

six male buffaloes were used to measure methane breath

emissions. Each animal was measured three times a day,

each measurement lasting 10 min.

Twelve animals, which were found to emit either high

(1.36 ± 0.11 g CH4/ kg dry matter ingested) or low (−

1.36 ± 0.16 g CH4/ kg dry matter ingested) amounts of

methane were included in each group.

Sample collection, DNA extraction, library construction

and sequencing

For collection of ruminal samples, animals were sedated

with Xylazine (10%). The jaw of animals was immobi-

lized and a 1/2 in. siliconized probe was introduced and

ruminal liquid was extracted using a manual Humboldt

pump into sterile glass bottles. Samples were then ali-

quoted into 50 ml Falcon tubes and snap-frozen in liquid

nitrogen.

DNA was extracted using the QIAamp PowerFecal

DNA Kit (QIAGEN) according to manufacturer’s in-

structions, which includes bead-beating. DNA was then

quantified using Qubit and a dsDNA HS Assay kit

(Thermo Fisher Scientific). NexteraXT (Illumina) librar-

ies were constructed from 1 ng of genomic DNA accord-

ing to manufacturer’s protocols. Indexed libraries were

then inspected on a high sensitivity Bioanalyzer 2000

chip (Agilent) and quantified using Qubit as above. For

library pooling, molarity of libraries was calculated using

the average library size and the DNA concentration and

a 4 nM pool was prepared. Libraries were sequenced at

10 pM on a MiSeq instrument (Illumina) using a 300 cy-

cles paired-end protocol that included demultiplexing.

Bioinformatics analysis

Sequence’s quality was inspected with fastqc and bases

with Q scores < 30 were trimmed off with fastq-mcf

keeping only sequences with a final length > 100 bases.

These are referred to as ‘clean-sequences’ and were used

for all downstream procedures.

Taxonomic classification

Sequences were classified using Kraken2 [19]. We used

the Kraken standard database complemented with all

whole-genome and partial sequences of bacteria, ar-

chaea, fungi and viruses found in NCBI. Such database

was complemented with the Genome Taxonomy Data-

base, GTDB [20] (Fig. 1). Kraken2 results were filtered

to allow only hits with at least 10% k-mers aligned.

Combined assembly

We conducted combined assembly of all our 24 samples

with SPAdes [40], with default parameters. For deconvo-

lution of assembled contigs, each individual sample was

mapped to each contig and the number of aligned reads

to each contig was normalized by library size and was

considered the relative contribution of each sample to

each contig.

Metagenome-assembled genome prediction

Contigs generated with SPAdes were also subjected to

phylogenetic analysis with MAGpy [25]. Initially, contigs

were binned with MetaBAT2 [24] and such bins were

then analyzed with MAGpy. MetaBAT2 generates a file

where the relative contribution of each sample to each

bin is indicated. We normalized such a table for compar-

isons of bins after MAGpy annotation.

Protein sequences generation

In order to maximize chances of detecting putative bac-

terial proteins, two complementary approaches were im-

plemented. First, we annotated in silico translated

contigs from combined assembly with the software

Prokka [41]. Prokka utilizes third-party feature predic-

tion tools to identify genomic features contained in con-

tigs. It translates in silico the features identified and

annotates them by comparison with bacterial protein da-

tabases. One of the outputs is a FASTA file containing

protein sequences predicted from the scaffolds. Second,

we used PLASS [42] to assemble protein sequences de

novo. See Fig. 1 for a schematic of our workflow. Since

the Prokka translated and the PLASS predicted protein

sets may be partially redundant, we concatenated them

and conducted clustering with Linclust [43] to obtain a

non-redundant set of representative sequences.

Alignments of protein against several databases

We conducted Diamond [44] alignments against the

database UniRef [26] and against two databases contain-

ing ruminal bacterial proteins, UniRef [29] and Hun-

gate1000 [27]. Because RumiRef includes annotations

derived from alignments against multiple databases

(CAZy, KEGG, UniRef and Hungate) when possible, we

recovered all annotations. To determine the relative con-

tribution of each sample to each protein sequence, each
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library was aligned with Diamond (method blastx)

against the database of non-redundant protein represen-

tative sequences and to account for the resolution lost

during clustering of protein sequences, a hit was consid-

ered true if it had an identity of at least 90% over a

stretch of at least 50 amino acids. Moreover, we dis-

carded hits for which less than five reads per sample, on

average, were registered and hits that were present in

less than three samples in each group.

Statistical analysis

In all cases, statistical comparisons were conducted using

linear discriminant analyses with the software LEfSe [21]

or by conducting Wilcoxon test in R. A detailed workflow

and required scripts describing the implementation of our

analysis is publicly available in GitHub (https://github.

com/buffGenomic/PipelineColBuff).
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