
TECHNOMETRICS ?, VOL. 21, NO. 4, NOVEMBER 1979 

Lower Rank Approximation of Matrices by Least 

Squares With Any Choice of Weights 

K. Ruben Gabriel S. Zamir 

Deportment of Statistics 
University of Rochester 
Rochester, NY 14627 

Department of Statistics 
Hebrew University 
Jerusalem, Israel 

Reduced rank approximation of matrices has hitherto been possible only by unweighted 
least squares. This paper presents iterative techniques for obtaining such approximations when 
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1. INTRODUCTION 

Approximation of matrices by other matrices of 
lower rank plays a useful role in fitting models to 
data (Mandel [15], [16]; Bradu and Gabriel [1]), in 
graphical representation of data by means of biplots 
(Gabriel [4], [5]), in principal component analysis 
(Whittle [24]) and in other mutivariate techniques. 
(In fact the underlying approach of S. N. Roy and his 
students [19], [20], has been that of studying the rank 
one approximation of the data matrix). The method 
of approximation used in all these applications is 
least squares, with the solution due to Householder 
and Young [13] (and earlier on to Fisher and Mac- 
kenzie [3]) for which a variety of special computa- 
tional routines are available (Golub and Reinsch 
[11]). An alternative method of approximation is an 
iterative procedure in which row and column weights 
are inversely dependent on row and column sums of 
squared residuals, and weighted least squares are 
used in each iterative step (McNeil and Tukey [17]). 
This is presumably more resistant to outliers. 

The need for approximation by weighted least 
squares also arises frequently. For example, a table 
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of means based on samples of widely varying sizes 
should be fitted with weights proportional to sample 
sizes. In the extreme case of zero size samples, an 

"entry" should play no role in fitting. This would 
also take care of missing values by assigning zero 

weights. 
This paper considers iterative methods of fitting 

lower rank least squares approximations for a gen- 
eral choice of weights. For an (n x m) matrix Y of 
elements y, it considers least squares fitting subject 
to weights w,j. Fitting by a matrix of rank p or less is 
equivalent to fitting by a matrix product AB' where A 
and B are n x p and m x p, respectively (Gabriel [6]). 
The minimizing criterion can therefore be written as 

D(A, B) = E wE,Jyi, - a,)2}, (1.1) 
i=! j=-1 

where a, and bj denote rows of A and B, respectively. 

2. THE CASE OF EQUAL WEIGHTS 

Householder and Young [13] dealt with equal 
weights, w,i = 1, and minimized 1 = [ Y - AB'112, the 
Euclidean norm of the matrix of residuals. A conve- 
nient method of solution (see, e.g., Good [9], page 
827) deals with the columns of A, and the corre- 
sponding columns of B, one at a time. The solutions 
for a, and b--the r-th columns of A and B, respec- 
tively-are obtained after solutions for a,, .*-, a,-, 
and b,, *.. , b,_, are available and subtracted out of Y 
to give residuals 

yr-i) = y_ y 
,r-I , a b,'. 

The equations determining a,, and b, are 

(,a 2)'/2 'bjr = ,a.iryi (r- 1) 

(2.1) 

(2.2) 
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and 

(jbj,r2) air = 
jbjr. r1i ). (2.3) 

These are iterated, from some initial a, until they 
converge. Equivalently, one could omit the square 
roots in both equations. The method then becomes 
one of criss-cross regression of columns of yr-I) onto 
a, to obtain b, as coefficients, and regression of rows 
of yr-I) onto b., to obtain a, as coefficients. 

This unweighted least squares fit is seen to proceed 
by dyadic (i.e., rank one) steps, from fitting dyadic 
a,b,,' to Y, through fitting dyadic a,2b' to Y" = Y- 
Y<,, (where Y,) = ab,b,') and on to fitting a.b,' to 

P-I). At each step the sum of the dyadic residual fits 
gives the overall fit of that rank, that is, 

p 

Y() = a,b,'. 
I-I 

(2.4) 

This stepwise fitting is possible because successive 
a,'s, and also successive b,'s, are orthogonal (or, in 
the case of multiple eigenvalues of YY, they can be 
chosen so as to be orthogonal). 

3. CRISS-CROSS REGRESSIONS AND SUCCESSIVE 

DYADIC FITS 

The method of criss-cross regressions of columns 
and rows of '-" onto, respectively, a, and b, is 
readily generalized to arbitrarily weighted least 
squares. (For the special use in which the weights are 
all 0 or I see also A. Ruhe [21].) The iteration equa- 
tions generalize to 

(Xiwijai,r2)bj, 
= Jiwi*,ai,rYi,r-1) (3.1) 

and 

(Ejw,,bj,2)a., = r jWijbjryiJr--. (3.2) 

Successive solution of these equations for r = 1, *--, p 
has been referred to as the NIPALS procedure (Wold 
[27]; Wold and Lyttkens [26]). 

There are two mathematical differences between 
the case of equal weights and the case of general 
weights, and these are very crucial to the appli- 
cability of the above-mentioned generalization: 

(i) For general weights, criss-cross regressions, 
which solve equations (3.1) and (3.2) iteratively, 
may converge to some local minimum which is not 
the desired closest fit. The fact that this may hap- 
pen even in the simple case of 0 and 1 weights was 
apparently overlooked in the existing literature. 
Judging from our own experience, the phenome- 
non of convergence to a "wrong" minimum is not 
at all unlikely when some weights are 0 (i.e., miss- 
ing observations). This is further discussed in Sec- 
tion 4, below. 

(ii) For p > 1 and general weights, the strategy 
of stepwise dyadic fits to residuals does not usually 

lead to the closest overall fit of rank p-though it 
does so when the weights are all equal. This is due 
to the fact that the successive a,'s (as well as the 
b,'s) are not necessarily orthogonal except when 
the weights are equal. 
To overcome difficulty (i) we propose in Section 4 

an initialization of the criss-cross regression method 
which prevents the most frequent type (and so far the 
only type known to us) of "wrong convergence." 

For difficulty (ii) we propose two alternative strate- 
gies: One is a sort of repeated NIPALS procedure 
which is based only on successive dyadic fits-Sec- 
tion 5. The other is based on criss-cross multiple re- 
gressions-Section 6. 

4. INITIALIZATION FOR DYADIC FITS 

As mentioned above, in the case of unequal 
weights the iterative solutions of (3.1) and (3.2) may 
not converge to the closest fit. In particular, when 
some weights were zero, these iterations occasionally 
converged well away from the least squares fit. If 
w,J = 0 for some given (i, j) and the dyadic fit itera- 
tion reached approximately 

1 
a -nd - ( j j.. ., y , -,. y, , j., y ,.)' (4.1) 

and 

b = O Y, Y,, , *y, i-,, a3, y,i+l, j-, yi,,) (4.2) 

for some constants a and /, then it converged to 
these vectors with infinitely increasing a and f. This 
provided perfect fit in all cells of row i and of column 
j, except cell (i, j) whose fitted value a/8 increased in- 
definitely (which did not affect the goodness of fit 
since w,j = 0). The fit outside these columns could be 
extremely poor, as each fitted value decreased indefi- 
nitely to zero. The sum of squared deviations there- 
fore converged to 

W,*= E W e,g,y,,- WE W.iYe,2 
e g e 

- Wi,g Yi.g2. (4.3) 

In all the numerical experiments that we ran with 
various initial vectors a(o), this was the only type of 
above-minimal convergence that we came across. In 
view of this, we tried to eliminate this undesirable 
phenomenon by a suitable choice of the initial vector 
a(o),. 

Note that on the i-th row and j-th column the same 
sum of squared deviations, namely zero, is obtained 
for any values a and f in the above vectors a, and b. 
These two values may therefore be chosen so as to 
minimize the deviations outside the i-th row and j-th 
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column; 1 will then be reduced below ,**--except 
in the special case when it remains equal to 4,j* be- 
cause all values in Y outside the i-th row andj-th col- 
umn are zero. 

An obvious way to choose a and f/ with this pur- 
pose is to regress the values (ye,; e # i, g # j) onto the 
products abg; e # i, g j). Thus, one may solve 

( e, We.j.2yig)/a/3 
\ e.i f^YJ 

I 

= ~ Weg Ye.i Yi.gYe,g (4.4) 
e#i g#i 

for a and ,/, where either of these can be given any 
arbitrary nonzero value. Putting a = 1, the regression 
coefficient in (4.4) is 1/f and the initial column be- 
comes 

a(o), = (y,. , - , ,Yii, , y,, , ,- , Y)'. (4.5) 

Unless I1/3 = 0, the initial fit must be at least as good 
as, and in non-trivial cases strictly better than, that of 
(4.1) and (4.2) and the process must converge to a 
sum of squares below ,,'.j* 

Motivated by this observation, we start the initial- 
ization with the calculation of ,,* for each (i, j) with 
w,ij = 0 (and also for (i, J)'s with weights which are 
close to zero). The (i, j) with the highest 

"P,, = 
.w,e.g e2 - = , W Ye. 

e,g e 

+ Wi,gyi,g2 (4.6) 
g 

is chosen and the appropriate vector a(), calculated 
from (4.4) and (4.5). Clearly, the iteration must con- 
verge to a lower sum of squares than that of any pair 
a and b of (4.1) and (4.2). All those above-minimum 
convergences are therefore improved upon. 

If no w,, is zero or very small, our initialization 
consists simply of choosing the column with the long- 
est weighted norm 

0,= w,yi,2 (4.7) 
i 

overall fit by means of a succession of dyadic fits. 
Thus one would repeat each step of the NIPALS on 
residuals from fits of all other columns until the en- 
tire matrices A and B converged. This procedure will 
be referred to as successive dyadic fits. Several alter- 
native programs of such procedures are given in Sec- 
tion 6. They all have the advantage of using only 
dyadic fits and thus require only the repeated solu- 
tion of equations (3.1) and (3.2). Relying entirely on 
dyadic fitting makes these procedures relatively 
simple and also gives us confidence that they avoid 
"wrong" convergences by using proper initialization. 

6. CRISS-CROSS MULTIPLE REGRESSIONS 

A more direct approach to higher rank fits deals 
with the entire factor matrices A(n,p) and B(mx,), rather 
than separately with each column. Thus, for a given 
matrix A one would obtain B as coefficients of the 
weighted multiple regressions of the columns of Y 
onto those of A. Similarly, for given B, one would ob- 
tain A as coefficients of the weighted multiple regres- 
sion of the rows of Y onto the columns of B. The 
equations are 

((,iw,j ai,gai,g,))bj = ((Wi, ai,,.yi,,)) (6.1) 

and 

((iw,.jebje.))a, = ((Z,w,.ij,.y)) (6.2) 
for the rows of B and of A, respectively. 

Since neither A nor B are given, one starts with 
some initial guess A(o) and iterates from A to B then 
from B to A, etc. 

The least squares properties of multiple regression 
can be used to show that this method of iteration 
must converge, though it does not prove that it con- 
verges to the minimum value of (. However, the 
convergence point of the iterations, say (A*, B*), sat- 
isfies 

minA(A, B*) = minA((A*, B) = O(A*, B*) (6.3) 
which is a necessary, though not sufficient, condition 
for (A*, B*)'s being the minimum point of (. 

and putting 

a(o), = O(y, j , Yi, y-, ")'. (4.8) 

This initialization has converged to the true mini- 
mum of < in all the examples we have tried. We con- 
jecture that it does so for all except perhaps some 
highly pathological cases. 

5. FITS OF RANKS HIGHER THAN ONE 

It was noted above that with unequal weights, the 
NIPALS procedure, i.e., stepwise dyadic residual fit- 
ting, may fail to provide the best overall fit of rank p 
(p > 1). However, it is still possible to obtain that 

7. ROUTINES AND PROGRAMS 

Programs for weighted least squares approxima- 
tion were built up from a small number of routines 
which carry out the computations described in the 
preceding sections. The basic iterative routines are: 
FR(Y; a(o,) - (a; b), which uses initial a(), to fit Y 
dyadically by ab'; FRINT(Y) - (a; b), which uses 
the initialization discussed in Section 4 to produce 
dyadic fit ab' to Y; GENERT(Y; A(0) -* (A; B), 
which uses alternate row and column multiple re- 
gressions to fit Y by AB' from initial A(o,. It will be 
noticed that FR(Y; a,o,.) -- (a; b) is a special case of 
GENERT(Y; A(o) -- (A; B) in which A(o, A and B 
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DISPLAY 1. Building blocks for routines. 

(D Read data Y and weights 

FRINIT(Y) +(a, 1b 1) -,1i -, 1 

(dyadic) 

FRINIT(Y -a b')-+(a, ;b 2) 

FR(Y-a b' ;a 1)-(a, ;b, ) 

FR(Y-a b' ;a )-)+(a ;b 2) --,,1 - -,2 - 

Repeat until < converges 

(multiple 
regression) 

? 

GENERT(Y;A) +(A,B) 

Repeat until ~ converges 

FRINIT(Y-AB') +(a 3;b ) --,3 -- 3 

At this stage 

A = (a b ) -B = (1'-12 

B = (b ,b ) 
.-f -i - ~2< 

FR(Y-a 2b 2-a,3_,3;-1 - -,1;-,1 FR(Y-a b' -a b'; a )+(a ,;b ) (dyadic) ,3-,3 -, - -, 

FR(Y-a b1-b' a b' )-(a ;b ) -,1-,1 -,2-, -,3 -,3 -,2 

Repeat until % converges 

GENERT(Y; A) +(A;B) 

Repeat until ~ converges 

At this stage 

A 

B 

FR(Y-a 1b,1-a b' ;a )b' (a ;b ) 
FR(Y-a ,1- , - 3 - 

FR(Y-a b' -a b' a )+(a b ) FR(Y-a b'-a 
,3b';a 

)(a 2 ,) 

Repeat until ~ converges 

Repeat until ~ converges 

umn. However this simplifies programming so much 
that the special routine FR is used for that case. 
These basic iterative routines were used to construct 
program building blocks as shown in Display 1. Sev- 
eral alterative programs were then built up from 
these building blocks as shown in Display 2. 

Programs I and II have to be run separately for the 
fit of each rank except 1. Thus, if one requires ap- 
proximations of ranks 2 and 3, one has to run either 
of the programs twice, i.e, I2 and I3 or II1 and II3 of 
Display 2. 

It was felt that programs might run more effi- 
ciently if they used the rank (p - 1) fit in initializing 
for the rank p fit. In other words, the rank p iteration 
was to begin with 

A(O) = (a(k),l, a(k).2, ", a(k).-_, a), (7.1) 
where k is the number of iterations at which the rank 
(p - 1) fit was said to converge and a., is the dyadic 
fit to 

p-- 

yP-,) = y- E a(k),,b(k).,'. 
t-i 

(7.2) 

A number of programs were constructed which in- 
corporate this rank-by-rank fitting idea. For the rank 
p fit Program III separately iterates rank (p - 1) fits 
and an additional dyadic fit. Program IV uses the 
criss-cross multiple regression routine for each rank 
whereas Program V uses successive dyadic fits. Pro- 
grams VI and VII combine the latter two, VI first us- 
ing successive dyadic fits and then criss-cross mul- 
tiple regression, and VII combines them in the 
reverse order. 

We tried out all these programs because we have 
no proof that any one of them invariably converges 
to the true minimum. A comparison of several alter- 
native calculations might therefore have shown 
which program, if any, was uniformly more reliable. 
Alternatively, it was hoped that it would show that 
several of the methods always converged to the same 
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DISPLAY 2. Seven program flow charts using building blocks. 

RANK 1 AND 2 12 

2d 

RANK 1 AND 3 

RANKS 1,2,3 

RANKS 1,2,3 
RANKS 1,2,3 

13 1 

2d 2r 

3d (3r 

Ill 
IV 

3 2r 2d 

3d 3r 3d 

VI 

112 

2 

13 1 

2d 

3 

3d 

V @ 

2 

3d 

VII 

Skew dyadic 
blocks 

point-which would make it reasonably certain that 
all these methods did reach the true minimum. 

As such agreement had been found we thought it 
well to opt for the method which used least computer 
time. Rank one, two and three fits were computed in 
each case. In all instances the seven programs con- 
verged to the same fit. 

This is strong evidence that all the programs work 
and reach the true least squares approximation. Ad- 
ditional evidence to this effect was obtained by trying 

Multiple regression Dyadic blocks 
blocks 

weights which factored into column and row com- 
ponents and finding that the present programs ar- 
rived at the true minimum as obtained by an exten- 
sion of the Householder-Young method (Haber and 
Gabriel [12]). In particular, for equal weights, the 
programs always yielded the Householder-Young 
approximation. 

When fits of both rank 2 and 3 were calculated, it 
was found cheapest (fastest) to run program IV, 
which uses criss-cross multiple regressions. Next fast- 

TECHNOMETRICS ?, VOL. 21, NO. 4, NOVEMBER 1979 

2r 

2r 

3r 

2r 

3r 

493 



K. R. GABRIEL AND S. ZAMIR 

have only one single colest were programs V and 
then III, which use successive dyadic fits. Double 
checking programs VI and VII was of course slower, 
but not as slow as making separate runs for each 
rank's fit i.e., 12, and I3 or II2 and II3. 

The advantage in cost of program IV over V was 
not found to be large enough to warrant an unequiv- 
ocal recommendation. 

8. RELATION TO EXISTING RESULTS 

Golub and Pereyra [10] have provided an al- 
gorithm for solving the following minimization prob- 
lem: 

Find a and a which minimize r(a, a) where: 

r(a, a)= II- u(a)all2, (8.1) 

y E Rs, a E RP, a E Rq and u(a) is an s x q 
matrix. 

Ruhe and Wedin [22] suggested three variations for 
this algorithm. The third one is very similar to criss- 
cross regression. 

The problem we are concerned with in the present 
note is the following (See 1.1): 

Find an (n x p) matrix A and an (m x p) 
matrix B which jointly minimize: 

4I(A, B) =11 W*(Y- AB')\12 

where Y and Ware (n x m) matrices and * 
denotes the Hadamard (i.e., element by ele- 
ment) product. 

(8.2) 

Ruhe [21] considered (8.2) for p = 1 and all elements 
of W being 0 or 1. For this case he wrote (8.2) as a 
special case of (8.1) and applied the methods of Ruhe 
and Wedin [22] for solving (8.1). (See also Wold [27], 
Wold and Lyttkens [26], and Christofferson [2].) 

Although it is not entirely straightforward it can be 
shown that what Ruhe did can also be generalized to 
p > 1 and general W, i.e., (8.2) can always be written 
as a special case of (8.1). So, in principle, all existing 
methods for solving (8.1) are applicable to (8.2). 
However, in the present note we chose to handle (8.2) 

as it is and not as a special case of (8.1). The main 
reasons for this approach are the following: 

(i) Writing (8.2) as a special case of (8.1) enor- 
mously expands the dimension of the problem. 
More precisely, instead of the original (n x m) ma- 
trices in (8.2), the equivalent (8.1) has a matrix 
,u(a) of dimention (nm x np). Most of the elements 
of this matrix are zeroes and its rank is far below 
maximal. Working with such a matrix is not effi- 
cient numerically. 

(ii) All existing algorithms of (8.1) involve com- 
puting generalized inverses and derivatives of ma- 
trices. The algorithm proposed in this note for (8.2) 
is considerably "simpler" and involves solving 
mainly the trivial equations (3.1) and (3.2). (Com- 
pare to (3.4) of Ruhe [21] page 8 for the case p = 
1.) 

(i) and (ii) have direct implications for the 
amount of computation involved in the procedure. 
As an illustration Ruhe and Wedin [22] found that 
the number of products and divisions needed in 
each iteration of their algorithm III (this is the 
crisscross regression type algorithm on their page 
27) is of the order of s(p2 + q2) + z, - (p3 + q3)/3 
where z, is the number of non-zero elements in 
l,'(a). For solving (8.2) with p = 1 via (8.1) with 
this algorithm we have s = mn, p = n, q = m. 
Hence (omitting z,) we would need the order of N, 
= n3(m - 1/3) + m3(n - 1/3) multiplications per 
iteration. (This does not include the formation of 
t,(a) which has to be done at every iteration.) On 
the other hand, each iteration of (3.1) and (3.2) re- 
quires N2 = n(4m + 1) + m(4n + 1) multiplica- 
tions (or divisions). So for n = m we have N, - n4 
compared to N2 - n2. For instance if n = m = 8 
one has N, - 7000 while N2 - 530. 

(iii) By transforming (8.2) into the form of (8.1) 
one loses the intuitive meaning of the problem and 
of the iterative steps that we propose, namely those 
of simple (or multiple) regression. 

(iv) The methods suggested in this note are 
closely related to the well-known methods of least 
squares approximations for equal weights. This en- 
ables us to point out, and respond to, the new phe- 

TABLE la-Ratios of seeded to unseededprecipitation (with S.E.) on various types of days (Gabriel and 
Baras [7a]). 

Temperature at Precipitable Water in Atmosphere (in mm) 700 mb 
0-11 12-13 14- 

<-8 2.265 ?.307 0.973 +.136 1.031 ?.154 

-7< <-3 1.522 ?.254 1.146 ?.126 1.327 ?.111 

-4< 0.284 ?.690 2.259 ?.527 0.971 +.091 
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TABLE Ib-Rank two approximation to data of Table la-fitted by least squares weighted inversely to 
variance (i.e. squared S.E.). 

A AB' 

.6071 .1794 2.026 0.910 1.194 

.6240 -.0636 1.715 1.209 1.227 

.5020 -.9984 -0.024 2.019 0.986 

B' 2.8991 1.8258 1.9667 

1.4813 -1.1042 0.0017 

Goodness of fit = 99.26% 

nomena that may occur in the case of general 
weights, namely: (a) possibility of "wrong con- 
vergence" of the criss-cross regression, and (b) loss 
of the orthogonality which made the stepwise 
dyadic fits to residuals (NIPALS) work for equal 
weights. 

9. SOME APPLICATIONS 

9.1 As a small example, consider Table la which 
gives ratios of amounts of precipitation under cloud 
seeding to corresponding amounts in the absence of 
seeding. The data are from the first Israeli rainfall 
stimulation experiment and the method of calcu- 
lating the ratios and their standard errors has been 
described by Gabriel and Feder [8]. The rank two 
approximation AB' is given in Table lb and has, not 
surprisingly, excellent fit. (Goodness of fit is 99.26% 
by ratio of weighted Euclidean norms criterion). 

Since the rank two approximation is so close, fac- 
torization AB' can be used to represent the matrix in 
the plane. This is done by plotting the row vectors of 
A and B in the biplot (Gabriel [4]), where the i-th row 
vector of A provides a marker for row i of the matrix 
and the j-th row of B a marker for column j of the 
matrix. It was shown by Bradu and Gabriel [1] that 
collinearity of row markers and/or column markers 
is indicative of certain models for the matrix. 

The row vectors of A and B are biplotted in Figure 
1. It is immediately evident that the row markers a,, 

a2, a3 are almost perfectly colinear and the column 
markers b,, b2, b3 are also close to another straight 
line which is not perpendicular to the first. In terms 
of the diagnostic rules applicable to biplots (Bradu 
and Gabriel [1]) this indicates a concurrent model 
(i.e., y,j = ,i + a, + f3j + \aAfij subject to g,a, = jf3j = 
0). An iterative weighted least squares algorithm 
(Kester [14]) was therefore applied to provide the fit- 
ted model of Table Ic. 

It should be noted that direct inspection of Table 
la would not have made it easy to diagnose the con- 
current model, mostly because of the different preci- 
sions of the various entries in the table. And yet it fits 
sufficiently well so that the weighted sum of squared 
deviations of the model which has 6 fitted parameters 
does not exceed the 5% value of chi-square with 9 - 
6 = 3 d.f. 

9.2 For an example that is not quite so small, con- 
sider the data of Table 2a on science doctorates 
awarded in the United States. In a table of frequen- 
cies f,j (i = 1, -. , n; j = 1, .. , m), contrasts Yic,log,f, 
(Z,ci = 0) have asymptotic variances 

,ic,2/f,, (Plackett [18]) so that logarithms of frequen- 
cies are appropriately weighted by frequencies. In 
this application these logarithms are adjusted for 
their mean, i.e., log,fe, - (,logJfJ)/nm. This adjust- 
ment is convenient for graphical representation (see 
Bradu and Gabriel [1], Section 5). 

Table 2b gives matrices A and B for the rank two 

TABLE Ic-Concurrent modelfit to data of Table la-fitted by weighted least squares (Kester [141). 

Column Effects 

1 = .4566 82 =-.1325 3 = -.3241 

1j = -.0310 2.040 0.926 1.315 
Row 
Effects 2 = -.2870 1.517 1.105 1.249 Effects a2 

a3 = .3180 0.334 1.736 1.014 

=- V/1 6 -1 u u u 

Goodness of fit = 98.77% Weighted SOS = 6.67 

TECHNOMETRICS ?, VOL. 21, NO. 4, NOVEMBER 1979 

495 



K. R. GABRIEL AND S. ZAMIR 

TEMP<-8ma 
18a 14<P.W. 
- I .l- I 

ma2 
-7 TEMP<-5 

-4<TEMP 
- *a3 

b2y 12<P.W.<13 

FIGURE 1. Biplot of ratios of seeded to unseeded precipitation. 

approximation AB' fitted to these adjusted loga- 
rithms by least squares weighted with the frequencies 
f, of Table 2a. 

The rank two fit is biplotted in Figure 2. A clear 
time trend is evident from 1960 to 1970, with a less 
striking movement in a different direction after 1970. 
The disciplines are scattered from Anthropology with 
fewest Ph.D.'s to Biology and Engineering with most. 
The scatter is elongated in a direction perpendicular 
to the 1960-70 trend: this indicates (Bradu and Ga- 
briel [1]) that an additive model is appropriate for 

those years. Since we are dealing with logarithms, 
that implies a multiplicative model for the frequen- 
cies themselves, i.e., independence of discipline and 
time. 

The biplot markers for some disciplines are not 

quite on the line orthogonal to the 1960-70 trend. 
Thus, on the one side, Agriculture, Earth Sciences 
and Chemistry had smaller 1960-70 increases; 
whereas, on the other side, Psychology and other So- 
cial Sciences (which includes Statistics) had larger in- 
creases. 

As to the 1970-75 changes, these appear less pro- 
nounced and go in a different direction of the biplot. 
Considering the roughly SWS direction of that 

change, the biplot indicates a strong increase in An- 

thropology Ph.D.'s and a less strong increase in Soci- 

ology. In the other direction, it indicates decreases in 

Biology, Chemistry and Engineering. These biplot 
patterns mostly conform to the frequencies of Table 
2a, except that the number of Biology Ph.D.'s did not 
diminish after 1970, but remained pretty much con- 
stant. 

On the whole, the biplot is seen to allow rapid ap- 
praisal of the main features of the data but some de- 
viations occur. This is to be expected, since the rank 
two approximation is not perfect. 

9.3 Missing values in a two-way table (or a higher 
order table collapsed into matrix form) can be fitted 
by lower rank approximation of the entire matrix, 
entering the available values with weight one and ar- 
bitrary values with weights zero for the missing cells. 

TABLE2a-Science doctorates conferred in the U.S. in 1976. 

Ph.D.s 1960 1965 1970 1971 1972 1973 1974 1975 

Total 6263 10477 17731 18880 18940 18948 18316 18352 

Engineering 794 2073 3432 3495 3475 3338 3144 2959 

Mathematics 291 685 1222 1236 1281 1222 1196 1149 

Physics & Astro. 530 1046 1655 1740 1635 1590 1334 1293 

Chemistry 1078 1444 2234 2204 2011 1849 1792 1762 

Earth Sciences 253 375 511 550 580 577 570 556 

Biological Sci. 1245 1963 3360 3633 3580 3636 3473 3498 

Agric. Sci. 414 576 803 900 855 853 830 904 

Psychology 772 954 1888 2116 2262 2444 2587 2749 

Sociology 162 239 504 583 638 599 645 680 

Economics 341 538 826 791 863 907 833 867 

Anthropology 69 82 217 240 260 324 381 385 

Other Soc. Sci. 314 502 1079 1392 1500 1609 1531 1550 

Source: Statistical Abstract of the US, 1976 -- Table 958 
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TABLE 2b-Reduced rank fit coefficients. 
A 

.4482 

.0663 

.1780 

.2741 
-.2260 

.4847 
-.0564 

.3320 
-.2012 
-.0496 
-.4874 

.1374 

-.0166 
-.2389 
-.1158 

.0106 
-.2924 

.0147 
-.1974 
-.1386 
-.4361 
-.2361 
-.6620 
-.3273 

.2453 
1.4937 
2.6466 
2.7480 
2.5615 
2.5565 
2.5911 
2.4121 

4.0512 
2.3897 

.3549 
-.0524 
-.0631 
-.2542 
-.2651 
-.3454 

Goodness of fit to matrix of 

logefij-(mean of logef's) 

is 98.95% 

For an illustration see Bradu and Gabriel [I], Section 
10. Christofferson [2] had earlier used this method 
with rank one fits. 

This method of interpolation assumes that the 
missing values fit the general dyadic, rank two or 
rank three pattern which approximates the available 
values. Since one is unlikely to have a priori reasons 
to assume a pattern of a certain rank one would pre- 
sumably do well to try fits of several ranks and 
choose the least rank that gave a close fit. 

The relation to the common method of inter- 
polating missing values by an additive fit is simple. 
For rank one, the multiplicative fit is an alternative 
to the additive fit-a measure of goodness of fit 
should determine which method is more appropriate 
for a particular matrix. Additivity is a special case of 
the rank two model and, a fortiori, of the rank three 

01960 

model-hence the latter two will never fit worse than 
additivity. Whether calculation of their additional 
parameters is worthwhile will depend upon how 
much closer their fit is. Wishart [25] pointed out how 
some methods of fitting missing values introduce bias 
in clustering. It would seem that the higher the rank 
one uses in fitting, the less the bias-this is worth in- 
vestigating. 

Another application (Shwertman and Allen [23]) is 
to the "smoothing" of covariance matrices whose ele- 
ments are not all based on the entire sample because 
some observations were missing on some of the vari- 
ables. 

9.4 An obvious application of reduced rank ap- 
proximation is to the MINRES method of factor 
analysis. This method aims at a reduced rank ap- 
proximation of the off-diagonal elements of the cor- 
relation matrix and therefore fits into the present 
framework simply by setting all diagonal weights to 
zero and all off-diagonal weights to one. (Examples 
are discussed elsewhere (Gabriel [7]).) 

9.5 A method for checking for outliers in a matrix 
would be to divide the elements into a number of 
subsets scattered over each row and column. Each 
element y,j then belongs to a set Sk and may be com- 
pared with the reduced rank interpolation value ,j 
fitted by putting zero weights on itself and all other 
elements of Sk. Jackknifing or cross-validation tech- 
niques could provide tests of significance. 

01965 

+ Chem O Bio 
EngO 

Phys * Psy 
*Agr 

Econ * * Math 
* Earth 

* Other Soc Sc 

72 

73( 
0 
75 

Soc 

* Anthro 
FIGURE 2. Biplot of science doctorates in the U.S.-log; 
of frequencies. 

10. SUMMARY 

The Householder-Young method is well known 
for approximation of matrices by matrices of lower 
rank. It provides the best approximation under un- 
weighted least squares. However, there are many sit- 
uations in which weighted least squares are more ap- 
propriate, be it because of differing precision of 
entries in the matrix or because of missing values 
(treated by assigning zero weights). No exact mathe- 
matical solution is available for weighted least 
squares and indeed many of the properties of the un- 
weighted methods do not hold. Thus, one must not 

01970 proceed by successive rank one fits to residuals from 
previous fits. 

0071 This paper presents some considerations in deriv- 
4 ing an algorithm for weighted least squares and de- 

scribes programs that will carry out such a fit itera- 
tively. One of these programs is chosen for being fas- 
ter than the others. A number of applications are 
shown: in modelling, biplotting, contingency table 
analysis, fitting of missing values and in checking 
outliers. 

arithms 

11. ACKNOWLEDGEMENT 

The authors express their appreciation of Israel Ei- 
not's (Jerusalem) and Janet Gough's (Rochester) 
thoughtful and patient programming of successive 

TECHNOMETRICS ?, VOL. 21, NO. 4, NOVEMBER 1979 

497 



K. R. GABRIEL AND S. ZAMIR 

versions of these procedures. Much of the success of 
this work is due to their efforts. Computer programs 
in FORTRAN are available on request from the Di- 
vision of Biostatistics, University of Rochester Medi- 
cal Center, Rochester, NY 14642. 

The referee's comments about relevant work in nu- 
merical analysis are greatly appreciated. 

REFERENCES 

[1] BRADU, D. and GABRIEL, K. R. (1978). The biplot as a di- 
agnostic tool for models of two-way tables. Technometrics, 20, 
47-68. 

[2] CHRISTOFFERSON, A. (1969). The one-component model 
with incomplete data. Ph.D. Thesis, Uppsala University, In- 
stitute of Statistics. 

[3] FISHER, R. A. and MACKENZIE, W. A. (1923). Studies in 
crop variation. J. Agric. Sc., 13, 311-320. 

[4] GABRIEL, K. R. (1971). The biplot-graphic display of ma- 
trices with application to principal component analysis. Bio- 
metrika, 58, 453-467. 

[5] GABRIEL, K. R. (1972). Analysis of meteorological data by 
means of canonical decomposition and biplots. J. App. Me- 
teor., 11, 1071-1077. 

[6] GABRIEL, K. R. (1978). Least squares approximation of 
matrices by additive and multiplicative models. J. Roy. Stat- 
ist. Soc., B, 40, 186-196. 

[7] GABRIEL, K. R. (1978). The complex correlational biplot. 
Theory Construction and Data Analysis in the Behavioral Sci- 
ences (S. Shye, ed.), pp. 350-370. San Francisco: Jossey-Bass. 

[7a] GABRIEL, K. R. and BARAS, M. (1970). The Israeli rain- 
making experiment. Jerusalem: Hebrew University (mimeo- 
graphed). 

[8] GABRIEL, K. R. and FEDER, P. (1969). On the distribution 
of statistics suitable for evaluating rainfall stimulation experi- 
ments. Technometrics, 11, 149-160. 

[9] GOOD, I. J. (1969). Some applications of the singular value 
decomposition of a matrix. Technometrics, 11, 823-831. 

[10] GOLUB, G. H. and PEREYRA, V. (1973). The differenti- 
ation of pseudo-inverses and non-linear least squares prob- 
lems whose variables separate. SIAM J. Numer. Anal, 10, 
413-432. 

[11] GOLUB, G. H. and REINSCH, C. (1970). Singular value de- 
composition and least squares solution. Numer. Math., 14, 
403-420. 

[12] HABER, M. and GABRIEL, K. R. (1977). Weighted least 

onical correlation and biplot display (mimeographed). De- 
partment of Statistics, University of Rochester. 

[13] HOUSEHOLDER, A. S. and YOUNG, G. (1938). Matrix 
approximation and latent roots. Am. Math. Monthly, 45, 165- 
171. 

[14] KESTER, N. K. (1979). Diagnosing and fitting concurrent 
and related models for two-way and higher-way layouts. Un- 
published Ph.D. thesis, University of Rochester, Rochester, 
NY. 

[15] MANDEL, J. (1969). A method of fitting empirical surfaces 
to physical and chemical data. Technometrics, 11, 411-430. 

[16] MANDEL, J. (1971). A new analysis of variance model for 
non-additive data. Technometrics, 13, 1-18. 

[17] McNEIL, D. R. and TUKEY, J. W. (1975). Higher order 
diagnoses of two-way tables illustrated on two sets of demo- 
graphic empirical distributions. Biometrics, 31, 487-510. 

[18] PLACKETT, R. L. (1962). A note on interactions in contin- 
gency tables. J. Roy. Statist. Soc., B, 24, 162-166. 

[19] ROY, S. N. (1957). Some Aspects of Multivariate Analysis. 
New York: Wiley. 

[20] ROY, S. N., GNANADESIKAN, R. and SRIVASTAVA, 
J. N. (1971). Analysis and Design of Certain Quantitative Mul- 
tiresponse Experiments. Oxford: Pergamon. 

[21] RUHE, A. (1974). Numerical computation of principal com- 
ponents when several observations are missing. University of 
Umea, Institute of Mathematics and Statistics Report (mime- 
ographed). 

[22] RUHE, A. and WEDIN, P. A. (1974). Algorithms for sepa- 
rable non-linear least squares problems. University of Umea, 
Institute of Mathematics and Statistics Report (mimeo- 
graphed). 

[23] SCHWERTMAN, N. C. and ALLEN, D. M. (1973). The 
smoothing of an indefinite matrix with applications to growth 
curve analysis with missing observations. University of Ken- 
tucky, Department of Statistics, Technical Report No. 56 
(mimeographed). 

[24] WHITTLE, P. (1952). On principal components and least 
square methods of factor analysis. Skand. Aktuar., 25, 232- 
239. 

[25] WISHART, D. (1978). Treatment of missing values in cluster 
analysis. Compstat 1978-Proceedings in Computational Sta- 
tistics (L. C. A. Corsten and J. Hermans, eds.), pp. 281-287. 
Vienna: Physica-Verlag. 

[26] WOLD, H. and LYTTKENS, E. (1969). Nonlinear iterative 
partial least squares (NIPALS) estimation procedures. Bull. 
Inter. Statist. Inst., 43, 29-51. 

[27] WOLD, H. (1966). Nonlinear estimation by iterative least 
squares procedures. Research Papers in Statistics (F. N. Da- 
vid, ed.), pp. 411-444, New York: Wiley. 

TECHNOMETRICS ?, VOL. 21, NO. 4, NOVEMBER 1979 

498 


	lower
	p.489
	p.490
	p.491
	p.492
	p.493
	p.494
	p.495
	p.496
	p.497
	p.498

