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LOWER SEMICONTINUTTY OF INTEGRAL FUNCTIONALS

BY

LEONARD D. BERKOVTTZ(l)

ABSTRACT. It is shown that the integral functional I(y,z) = J"0 f(t,y(t), z(t))dp. is
lower semicontinuous on its domain with respect to the joint strong convergence of yk -» y

in Lp(G) and the weak convergence of zk -» z in LAG), where 1 < p < oo and

1 < q < oo, under the following conditions. The function/: (t,x,w) -*f(t,x,w) is mea-

surable in / for fixed (x, w), is continuous in (x, w) for a.e. /, and is convex in w fot fixed

('.*)•

1. Introduction. To show that a functional attains a minimum on a given subset

S of its domain of definition "D the following procedure is commonly used. One

first shows that for an appropriate topology on <>D the set S is compact and then

one shows that the functional is lower semicontinuous on S with respect to the

topology in question. In this paper we shall consider the lower semicontinuity of

certain integral functionals that arise in various minimization problems.

In [3] F. Browder studied the weak sequential lower semicontinuity of the

functional

(1.1) J(<¡>) = fcf(t,(M<(,)(t),(lAp)(t))dp,

where G is a bounded open set in R", pisa, finite regular Borel measure on G, ̂

is an element of a Banach space 9, L is a bounded linear mapping of ^into Lp(G)

and M is a compact linear mapping of 9 into Lq(G). Browder obtained two

principal results [3, Theorems 4 and 5]. The first result involved certain Holder

type conditions on / and has applications to elliptic boundary value problems.

The second result involved certain growth conditions on / and simplified some

proofs and strengthened some theorems of Fichera [4] as well as some classical

results in the calculus of variations. For further bibliographic details and

discussion of applications see [3] and [4].

B. T. Poljak [9] studied the semicontinuity of the functional

(1.2) I(y,z) = ¡Gf(t,y(i),z(t))dp

with respect to convergence of sequences (yk,zk) -» (y,z), where the conver-

gence of yk is convergence in Lp(G) and the convergence of zk is weak
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52 L. D. BERKOVITZ

convergence in Lq(G), 1 < p < oo, 1 < q < oo. Here p and q need not be

conjugate indices. Poljak's result [9, Theorem 12] was an improvement over

Browder's Theorem 4 in that weaker continuity properties on/and less restrictive

Holder type conditions were assumed.

In this paper we shall also study the semicontinuity of (1.2) with respect to the

convergence studied in [9]. Our result in Theorem 1 below will be appreciably

stronger than that of Poljak (and hence stronger than Theorem 4 of [3]) in that

no Holder type condition on/will be assumed. Theorem 1 below will also include

Theorem 5 of [3] and a classical theorem of Money [7, Theorem 4.1]. It can also

be used to generalize some of the existence theorems of Lions [6] for problems of

optimal control. Some of the principal ideas of the proof were used by us in

investigations concerned with the existence of optimal controls in nonlinear

control problems [1], [2].

A result similar to our Corollary 1, with p = q = 2, was given by V. I.

Plotnikov [8, Lemma A]. Our proof is completely different from Plotnikov's and

is much simpler than his.

2. Notation and definitions. We shall use single letters to denote vectors, we

shall use subscripts to distinguish vectors, and we shall use superscripts to denote

components of vectors. The letter t will denote a vector (t',...,/') in real

euclidean space R',v> 1, the letter x will denote a vector (x1,...,x") in R", and

the letter w a vector in Rm, m'> 1. The euclidean norm of a vector will be

denoted by |jc|. The inner product of two vectors xx and x2 will be written as

<x„x2>. Thus |x| - «x,xy)V2.

Let/: (t,x,w) ->/(/,x,w) be a real valued function defined in Rp X R" X Rm.

Let G be a bounded open region on the /-space R' and let dp be a finite regular

Borel measure on G. Let <$ denote the Banach space of functions y = (y1,...,

y") defined on G with range in R" whose components y' are in LPi(G), with

respect to dp, where 1 < p¡ < oo. The norm of an element v = ( y1,... ,yn) in <?t

is given by

Ibll = (2 iiyifc) ,

where \\y'\\Pl denotes the Lp.(G) norm of y1. Let % denote the Banach space of

functions z = (z1,... ,z") defined on G with range in Rm whose components are

in Lq¡(G) with respect to dp, 1 < q¡ < oo, and where ||z|| is denned in a manner

analogous to || v||.

A sequence {(yk,zk)) in 3) X X is said to converge to an element (y, z) in 1 X 2

strongly in y and weakly in z if ]im(yk,zk) = (y,z) in the product topology of

1x2 determined by the strong topology of ^ and the weak topology of 2.

Let <$ denote the set of elements (y, z) in <$ X £ for which the integral in (1.2)

exists and is finite. Then <>D is the domain of the functional /. We henceforth

assume that <5 is not empty.
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3. Statement and discussion of theorem.

Theorem 1. Let f be continuous in (x, w)for a.e. t in G and let f be measurable on

G for each (x, w) in Rn+m. For each (t, x) let f be a convex function ofw. Let \p be a

function in Li(G) such that for all (x, w) in Rn+m and a.e. t in G

(3.1) f(t,x,w) > tffi.

If{(yk,zk)} is a sequence in <$ converging to an element (y, z) in <$ X %strongly in

y and weakly in z and //lim inf I(yk,zk) < oo, then (y, z) is in <3) and

(3.2) lim inf I(yk,zk)> I(y,z).

Note that "(y,z) is in <$" is a conclusion of the theorem and not an

assumption.

If we assumed», z)to be in <>D and if lim inf I(yk,zk) = +oo, then the relation

(3.2) automatically holds. Thus, we have the following corollary.

Corollary. The functional I is sequentially lower semicontinuous on ^ with respect

to strong convergence in y and weak convergence in z.

Remark 1. The condition (3.1) is used in the proof to show that lim inf I(yk,zk)

> -oo and to justify the use of Fatou's lemma at a certain point. Upon reading

the proof it will be clear that the condition (3.1) can be replaced by certain

weaker conditions as in Poljak's paper. For example if all/», < oo and all q¡ < oo

we can replace (3.1) by the condition

f(t,x,w) > w) -ß(i UT + 2 kl*),

where ß > 0. If all p¡ = oo and all q¡ < oo, then we may replace (3.1) by the

following condition. For each M > 0, there exist a function \\iM in L, (G ) and a

constant ßM~>0 such that for all x in R" with \x\ < M, all w in Rm and a.e. t in G

f(t,x,w)>tM(t)-ßM%\w'\'".

A similar condition can be imposed if all q¡ = oo and all/», < oo. Finally, if all

p, = oo and all q¡ = oo then we need merely require that for each M > 0 there

is a function \f/M in Li(G) such that (3.1) holds with ip replaced by \¡/M for all

1*1 < M, \w\ < M, and a.e. t in G.
Remark 2. In [7, Theorem 4.1] Morrey showed that for/continuous,/convex

in w and appropriate assumptions on the boundary of G, the functional

$cf(t,fa V<b)dt is sequentially lower semicontinuous on its domain <$ with respect

to weak convergence of sequences {fa} in HXX(G). If </>* -* <? weakly in Hxl(G)

then V<fo -+ V<í> weakly in LX(G). Also, for the region G studied by Morrey,

<bk -» <f> weakly in Hxl(G) implies fa -* </> in Li(G). Thus, Morrey's result follows

from our corollary.
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Remark 3. In the introduction we discussed the relationship of our results to

those of Poljak [9] and hence also to Theorem 4 of [3]. In Theorem 5 of [3] the

integrand/in (1.1) is assumed to be continuous in (t,x,w) and convex in w, but

is not assumed to satisfy a Holder condition. Instead, it is assumed that there is

a function/) that is convex in w such that/0(w)/|w| -» oo as |w| -» oo and such

that/(/,x,H') > fo(w). It is not hard to see that this assumption implies that/is

bounded from below by an integrable function as in (3.1). Since in (1.1) the

mapping L is bounded and the mapping M is compact it follows that if <bk -* <¡>

weakly in 9 then Df>k -* Ia¡> weakly in Lq(G) and M<f>k -* A/<f> strongly in Lp(G).

Hence if for <p in 9 we set z = Iao and y = M<f>, we get Theorem 5 of [3].

Remark 4. In some problems of optimal control it is required to minimize the

functional (1.2) subject to contol constraints involving z (the control) and the so-

called "state equation" constraints, which involve z, y (the state) and differential

operators applied to y. In problems in which the state equations are linear in w

(the control variable) and x (the state variable) and the differential operators are

linear, a semicontinuity theorem for the functional is quite often used as one of

the cornerstones of the proof.

In his book, Lions [6] usually considers quadratic functionals in which / is

essentially of the form

f(t,x,w) = <x,Q±i)x> + <b,x) + <yv,R(t)w}

and uses well-known results about the lower semicontinuity of such functionals.

Theorem 1 enables one to extend many of the results of Lions to more general

functionals (1.2) in which/satisfies the hypotheses of Theorem 1. Other examples

of control problems in which one requires the semicontinuity of the functional

(1.2) can be found in [8] and [9].

4. Proof of Theorem 1. The following lemma is crucial to the proof of Theorem

1.

Lemma 1. Let g: (t,x)-* g(t,x) be a mapping from GxRr-*Rl that is

continuous in xfor a.e. t in G and measurable in t for fixed x in Rr. Let [vk] and [uk]

be sequences in $ = ni=i LJ((G) such that \\uk\\ < R and \\vk\\ < R for some

R > 0 and such that (uk — vk) -* 0 in measure on G. Then

g(t,uk(t))- g(t,vk(t)) ^ 0

in measure on G.

A proof of this lemma can be found in [5, p. 355]. In [5] it is assumed that all

of the i, are equal, say s¡ = s. To obtain the statement used here take s = min s¡

and recall that G has finite measure.

In the course of the proof of Theorem 1 we shall select subsequences of various

sequences. Unless stated otherwise we shall relabel the subsequence with the

labeling of the original sequence.
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Let

(4.1) y = lim M I(yk,zk).

By virtue of (3.1), y > —oo. Since by hypothesis y < oo, we have that y is finite.

We first select a subsequence {(yk,zk)} such that

(4.2) hml(yk,zk) = y.

From the definition of % in §2 it follows that the sequences of components {y\A

converge in LPi(G) toy'. Henceyk -* v in measure on G.

Since .y* -* v strongly in ^ and zk -» z weakly in 2, the sequences {(yk,zk)} and

{(y,zk)) sue bounded in norm in the space 1x1 Moreover if vk = (yk,zk) and

uk = (y,zk), then vk — uk -* 0 in measure. Let

(4.3) MO =/(',ä('U«) -/(f.X'Utt);

then by Lemma 1, hk -» 0 in measure on G.

Since A* -* 0 in measure, there exists a subsequence {(.y*,zt)} such that for a.e.

fin G

(4.4) MO-0.

Since zt -» z weakly in % we obtain the following statement from Mazur's

theorem. For each integer / there exists an integer itj, a set of integers

/' = 1,..., k, where k = k(j) depends on/, and a set of numbers av,..., a^

satisfying

(4-5) ay > 0,       2 ctu = 1,
i-i

such that nJ+x > n¡ + k(J) and

(4.6)

Let

i—1 4

(4-7) Vi = 2 «»V/-

From (4.6) we have that i//y -» .z in X. Hence there is a subsequence {uV,} such

that

(4.8) <ri(0^¿(')   a.e.

We now suppose that (4.7) is the subsequence for which (4.8) holds. Corre-

sponding to (4.7) we define a sequence {\j} as follows:
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(4-9) A,(r) = 2 ayf(t,ynj+i(t),znj+i(t)),
i— i

where for each / the numbers a,-,-, the indices n} + /, and hence the functions z„j+„

are as in (4.7). Define \(t) = lim inf \(t). From (4.9), (4.5), and (3.1) we get that

for each / and a.e. t in G

(4.10) \j(t) > 2 «»m = m-

We may therefore apply Fatou's lemma and get that

JG\(t)dp <]iminffa\j(t)dp

k       .

= lim inf 2 ay}Gf(t,ynjH(t),znj+i(t))dp

k

= lim inf 2 avI(ynj+h2nj+i)-
1-1 '      '

We had originally selected a subsequence {(yk,zk)) such that I(yk,zk) -* y.

Therefore it follows from (4.5) that

(4.11) fa\(t)dp<y.

From (4.10) we get that \(t) > xj^t) a.e. Hence A is finite a.e.

Let Gx denote the set of points at which \(t) is infinite. Let G2 denote the set

of points at which (4.4) fails and let G3 denote the set of points at which (4.8)

fails. Let C4 denote the set of points in G at which / is not continuous in (x, w).

Let G5 = U?_, G¡. The /¿-measure of G5 is zero. Let G' = G — G4.

Let

k

*>j(t) = 2 otyf(t,y(i),^iit)\

where the numbers ay,i = 1, ..., k, the indices n} + i and the functions zn+i are

as in (4.7). From (4.9) and (4.3) we have

k

A,W - <•>,(') = 2 avh n(t).

Since hk(t) -» 0 on G', it follows from (4.5) that

(4.12) Xj(t) - uj(t) -> 0   onG'.

Let / be an arbitrary point in G'. There exists a subsequence, which may

depend on t, such that \j(t) -* X(t). For this subsequence we have w,(r) -» \(t) by

virtue of (4.12). Since for fixed (t, x),fis a convex function of w, we have
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«>(0 = 2 auf(t,y(t),ZnJ+Àt)) >f(t,y(tH(t)),

where we have used (4.5) and (4.7). If we now let/ -» oo and make use of (4.8),

the continuity of/with respect to w, and the fact that w,(r) -* \(t) for the point

t and subsequence in question, we get

(4.13) \(t)>f(t,y(t)Xt))-

Since t was an arbitrary point of G', we have that (4.13) holds a.e. in G.

Under our hypothesis on/the mapping / -» f(t,y(i),z(t)) is measurable. It then

follows from (4.13) and (3.1) that/is in Li(G) and that

¡a \(i)dp > jGf(t,y(i)At))dp > -oo.

Thus (y, z) is in ^

From (4.11) and the preceding inequality we get

y > fGf(t,y(t),z(t))dp.

The relation (3.2) now follows from the definition of y in (4.1) as lim inf I(yk,zk),

where {(yk,zk)} is the original sequence.
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