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Lower thermospheric response to atmospheric gravity

waves induced by the 2011 Tohoku tsunami

Yonghui Yu1, Zhiyu Yan1, and Michael P. Hickey2

1College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2Department of Physical

Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA

Abstract Previous GPS observations have revealed that while ionospheric TIDs were seen propagating in

all directions away from the 2011 Tohoku earthquake epicenter, the total electron content (TEC) fluctuations

associated with the subsequent tsunami were largest for waves propagating toward the northwest of the

epicenter. Ionospheric motions observed approximately 10min after the earthquake were attributed to fast

acoustic waves directly produced by the earthquake. Waves that first appeared about 40min after the tsunami

onset in TEC measurements were attributed to atmospheric gravity waves. In this paper, we conjecture that

the remarkably different responses observed for the eastward and westward propagating waves noted in

previous observations can be explained by the different ocean depths associated with the two directions of

travel and by the effects of the mean winds. The former has consequences for the generated gravity waves

(wave spectrum), while their combination has consequences for the ability of the waves to propagate to higher

altitudes. Because the ocean depth to the east of the epicenter is greater than that to the west, the eastward

propagating tsunami travels faster than the westward propagating tsunami; and hence, the eastward

propagating gravity waves that are generated will be faster than thewestward waves. We demonstrate that the

faster eastward waves encounter regions of evanescence that inhibits their upward propagation, with the

result that the westward propagating waves reach the lower thermosphere sooner and with much larger

amplitudes than those of the eastward propagating waves. However, at much higher altitudes the slower

westward propagatingwaves are severely damped by viscosity, with the result that only the eastward propagating

waves survive to F region altitudes. These results are clearly seen in our full-wave model simulations and also

in the evolution of the wave momentum flux calculated using our 2-D, time-dependent model.

1. Introduction

The Tohoku tsunami was generated by an earthquake that occurred at 5 h 46m (UT) (14:46 JST) on 11 March

2011 and had a moment magnitude of about 8.9. The epicenter was located at 38.322°N and 142.369°E,

approximately 70 km off the east coast of Japan. The resulting tsunami propagated away from the epicenter

in all directions across the Pacific Ocean and resulted in tremendous damage to Japan. The massive amount

of tsunami debris that has been floating in the Pacific Ocean for the last few years still continues to

occasionally appear on the west coast of the USA. However, the earthquake led to more than just ocean

waves (the tsunami); through coupling with the atmosphere, the tsunami generated upward propagating

atmospheric disturbances which reached the upper atmosphere and were subsequently detectable with GPS

receivers by the radio scientific community [e.g., Galvan et al., 2012; Komjathy et al., 2012].

Tsunamis are long oceanic gravity waves usually excited by underwater earthquakes. Because their horizontal

wavelengths are considerably greater than the ocean depth (~4 km for the Pacific Ocean), they propagate

at speeds approximately equal to the shallow-water wave speed (~200m/s). Additionally, because their

characteristic scales (periods tens of minutes and wavelengths hundreds of kilometers) lie within the range

of medium scale atmospheric gravity waves, the coupling between tsunamis and atmospheric gravity

waves is expected to be strong, suggesting that a tsunami could be an efficient source of atmospheric

gravity waves [Hines, 1972].

In the past, several authors have modeled or reported atmospheric gravity waves driven by tsunamis. Peltier

and Hines [1976] first modeled the idealized atmospheric response to an idealized tsunami. Their studies

supported the plausibility of tsunami-generated atmospheric gravity waves propagating upward into

the ionosphere. Artru et al. [2005a] reported observations of a traveling ionospheric disturbance (TID)

YU ET AL. LOWER THERMOSPHERIC RESPONSE TO TSUNAMI 1

PUBLICATIONS

Journal of Geophysical Research: Space Physics

RESEARCH ARTICLE
10.1002/2015JA020986

Key Point:

• Travel speeds of tsunami outward

from epicenter are azimuthally

anisotropic

• Tsunamigenic atmospheric gravity

waves have anisotropic distribution of

phase speeds

• Atmospheric mean winds can amplify

wave upward propagation

characteristics

Correspondence to:

Y. Yu,

yuyong@nuaa.edu.cn

Citation:

Yu, Y., Z. Yan, and M. P. Hickey (2015),

Lower thermospheric response to

atmospheric gravity waves induced by

the 2011 Tohoku tsunami, J. Geophys.

Res. Space Physics, 120, doi:10.1002/

2015JA020986.

Received 6 JAN 2015

Accepted 13 MAY 2015

Accepted article online 15 MAY 2015

©2015. American Geophysical Union. All

Rights Reserved.

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402
http://dx.doi.org/10.1002/2015JA020986
http://dx.doi.org/10.1002/2015JA020986


following a tsunami generated by the Peruvian earthquake of 23 June 2001. Later, Artru et al. [2005b]

analyzed total electron content (TEC) measurements obtained from the GPS Earth Observation Network

(GEONET) in Japan to study ionospheric perturbations following the same tsunami. Occhipinti et al. [2008]

simulated the effects of different latitudes and directions of wave propagation on the ionospheric

response to the 2004 Sumatra tsunami. Recently, Hickey et al. [2009, 2010a] have modeled a spectrum of

gravity waves and corresponding airglow responses driven by the 2004 Sumatra tsunami propagating into

the thermosphere and ionosphere, and shown that significant acceleration of the atmosphere could occur

in the middle thermosphere as a result of the momentum deposition associated with the dissipation of

the gravity waves [Hickey et al., 2010b].

The Tohoku tsunami occurred in a region that was densely populated by a network of GPS receivers, which

meant that the ionospheric response to the earthquake/tsunami could be studied in unprecedented detail.

One set of TEC observations reported by Galvan et al. [2012] revealed that within the first hour following

the tsunami onset, more enhanced TID activity occurred which was presumably associated with the

underlying gravity waves. Although their TEC measurements (shown in their Figure 2) indicate ionospheric

TIDs occurring in all directions around the epicenter, the TID activity to the west and northwest of the

epicenter was particularly enhanced, while activity to the east was minimal (although we remark that the

GPS network to the east is quite sparsely populated compared to the west).

Galvan et al. [2012] conjectured that the westward traveling tsunami would have an increasing amplitude as

it approached the coast due to the decreasing water depth, which in turn would generate larger amplitude

atmospheric waves. Here we examine an alternative and plausible explanation for the apparently stronger

waves traveling toward the west and northwest. The tsunami speed, a function of water depth, will

be azimuthally anisotropic, which means that the generated atmospheric waves should also have an

anisotropic distribution of phase speeds with azimuthal direction. Hence, as the waves propagate obliquely

upward, their propagation characteristics will be different for the different directions of propagation.

Furthermore, these differences will also be amplified by the effects of the mean winds. We should add that

the wave amplification that occurs due to decreasing water depth as discussed by Galvan et al. [2012] will

also be an important factor for the westward and northwestward propagating waves, though we do not

consider that in this paper.

The purpose of the paper is to quantitatively evaluate the atmospheric response to the atmospheric gravity

waves driven by the 2011 Tohoku tsunami in order to determine how the wave amplitudes differ for the

different directions of propagation. First of all, an analysis of a primary wave amplitude and phase varying

with altitudes is performed in a nonisothermal atmosphere with viscosity and in the presence of

background winds. Second, in order to trace the upward movement and evolution of the wave packet

from the ocean surface to the mesosphere and lower thermosphere (MLT), the vertical flux of wave

horizontal momentum evolution with height and time is also presented. A 1-D linear, steady state full-

wave model and a 2-D nonlinear, time-dependent model are used in the current numerical simulations.

The paper is organized as follows. The undisturbed mean state of the atmosphere in the vicinity of the

earthquake is described in section 2. The numerical models and appropriate input parameters are

described in section 3. The results of the simulations are provided in section 4 and are further discussed in

the discussion section (section 5). Conclusions are presented in section 6. The 2-D model equations and

the viscosity and thermal conductivity profiles it employs are described in Appendix A.

2. Undisturbed Mean State

The mean atmosphere is defined here using the MSIS-90 model [Hedin, 1991] for conditions predominating

at the epicenter and at the time of the 2011 Tohoku tsunami, for a latitude and longitude of 38.322°N and

142.369°E, respectively, and for a universal time of 0546 h on 11 March. The solar F10.7 index and its 81 day

mean are chosen to be 88.7 and 102.8, respectively, appropriate to the time of the tsunami. The

geomagnetic index ap=12. The horizontal mean winds are described here by the HWM93 model [Hedin

et al., 1996] using these same inputs.

Themean horizontal winds can significantly affect wave propagation and transmission through the atmosphere

and hence lead to the anisotropic propagation of the waves. Figure 1a shows that the meridional wind

(positive southward) is approximately within the range between �12m/s and 42m/s below 140 km
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altitude. Above that it decreases slightly and then asymptotes to about 24m/s in the southward direction by

500 km altitude. The zonal wind (positive eastward) is approximately within the range between 0 and 30m/s

eastward up to the turbopause (105 km), and then, except for a slight decrease between about 140 and

200 km altitude, it generally increases smoothly in the westward direction between about 100 and 300 km

altitude. At greater heights, it asymptotes to a westward speed of about 90m/s by 500 km altitude. Based

on the meridional and zonal winds, we also show the mean wind in the southeast direction (defined as

positive). The southeastward wind lies within the range between about �12m/s and 24m/s up to 100 km

altitude, and approaches a northwestward value of about 48m/s by 500 km altitude.

Figure 1b shows the altitude variations of the mean temperature and the Brunt-Väisälä period. The mean

temperature achieves an exospheric temperature of about 975 K at high thermospheric altitudes. The

Brunt-Väisälä period has a local minimum of slightly greater than 4.5min near 40 km altitude and slightly

less than 4min around 110 km altitude. Hence, waves of about 4min to 4.5min period will be evanescent

throughout the atmosphere. Above about 120 km altitude, the Brunt-Väisälä period increases with

increasing altitude. Because internal gravity waves necessarily exist at periods longer than this,

progressively more of the shorter period waves are removed during the upward propagation of a gravity

wave packet. Near the F region peak (300 km), the Brunt-Väisälä period is about 11.5min, so waves of

period longer than this are expected to dominate the F region response to an upward propagating wave

packet. The sound speed, also shown in this figure, has local minima near 18 km and 100 km altitude, with

values of approximately 300m/s and 280m/s, respectively. In the upper thermosphere, it asymptotes to a

value of about 800m/s.

3. Numerical Models and Input Parameters

The 2011 Tohoku tsunami occurred in response to an earthquake having its epicenter located at 38.322°N

and 142.369°E, and located on the North American Plate approximately one third of the way between the

east coast line of Japan and the center of the Japan Trench in a southeastward direction. The center depth

of the Japan Trench is about 7.4 km. Eastward and southeastward of the epicenter the ocean becomes

quite deep, while westward and northwestward of the epicenter (approaching the east coast of Japan) the

ocean becomes shallower. The relative location of the epicenter is shown on the ocean map provided

(Figure A1). The tsunami travels in all directions at the local shallow-water wave speed,
ffiffiffiffiffiffi

gh
p

, where g is

the acceleration due to gravity and h is the ocean depth.

Figure 1. (a) Horizontalmeanwinds (positive eastward, southeastward, and southward), (b) Brunt-Väisälä period (upper x axis),

sound speed, and mean temperature (lower x axis) near the epicenter.
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Galvan et al. [2012] provided some useful geographic parameters used in our simulations, which are summarized

as follows. For propagation toward the northwest and the west, where the average depth is 1.5 km, the

estimated shallow-water wave speed is 121m/s. For propagation toward the east, where the average depth

is 5 km, the estimated shallow-water wave speed is 221m/s. Ocean buoys in NOAA’s DART network (Deep-

ocean Assessment and Reporting of Tsunamis) measure the average tsunami speed between the epicenter

and the buoy location. For example, DART buoy # 21419 measured an average wave speed of 243m/s

southeast of the epicenter, consistent with an estimated average depth of 6025m (less than 7400m at the

center of the Japan Trench). The wave amplitude of about 0.76m derived from the sea surface height and a

wave period of about 32min are another two important parameters provided by DART [Galvan et al., 2012].

Two numerical models are used here in order to study the propagation of atmospheric gravity waves from

the lower atmosphere to the lower thermosphere (and the E region ionosphere). The first model is a linear

steady state full-wave model which has been described previously by Hickey et al. [1997]. It has been used

extensively since then by Hickey and colleagues to interpret acoustic-gravity waves [e.g., Hickey and Yu,

2005], and to study tsunami-driven gravity wave propagation and dissipation in the terrestrial atmosphere

using a spectral approach [e.g., Hickey et al., 2009, 2010a, 2010b]. The full-wave model solves the complete

linearized equations of continuity, momentum, and energy for a compressible, viscous, and thermally

conducting atmosphere with an arbitrary altitude variation in a thermal and windy structure of the basic

state. The model produces altitude profiles of the complex fluctuations of horizontal and vertical velocities,

temperature, and pressure, which we represent by their amplitudes and phases. The high-resolution model

domain extends from the ground to 500 km altitude with 100,000 grid points. The monochromatic 32min

wave is forced at the lower boundary (sea level) of the full-wave model with vertical velocity amplitude of

2.49 × 10�3m/s (=ωξ , where ω is the wave frequency and ξ is the maximum surface displacement).

The second model is a 2-D time-dependent, nonlinear model [Yu and Hickey, 2007a, 2007b, 2007c; Yu et al.,

2009]. Details of this model are provided in Appendix A. For the 2011 Tohoku tsunami, the prescribed

source of the vertical displacement ξ , at the lower boundary (sea level) of the 2-D model, is applied to the

right-hand side of the vertical momentum equation (A1, in Appendix A) and is described analytically as a

traveling sinusoidal wave modulated by a Gaussian envelop over time, as follows:

ξ x; 0; tð Þ ¼ 0:76� exp � t � τð Þ2=2Δt2
� �

sin k0x � ω0tð Þ: (1)

Here x is the horizontal position, and t is the time. The half width Δt is equal to 16min for t ≤ 46min and

32min for t> 46min, t is centered at time τ =46min and coincident with the 2011 Tohoku tsunami onset

at 05:46 UT. The dominant wave of 32min period measured by DART [Galvan et al., 2012] suggests that

a half width of 32min be used after the center time (46min), and half of this value (16min) be used

before the center time in order to provide a ramp that approximates the rising displacement of the sea

surface and mimics a sudden emergence of the tsunami. The remaining parameters of the wave source

are ω0=2π/τw where the period τw is 32min, and k0= 2π/λh where the horizontal wavelength λh (and

associated phase speed) is 424.32 km (221m/s), 232.32 km (121m/s), 232.32 km (121m/s), and 466.56 km

(243m/s) for the eastward, westward, northwestward, and southeastward propagation direction, respectively.

These prescribed source configurations are applied in the 2-D nonlinear, time-dependent model and

implemented using four separate model simulations, one for each propagation direction.

4. Results of Simulation

Figure 2 shows the temporal evolution of the ocean surface displacement at the epicenter due to the

simulated tsunami. It is characterized by a rapid rise in amplitude within two primary wave periods, and

followed by two or more periodic trailing waves of diminishing amplitude. An analysis of the prescribed

source configuration in equation (1) is consistent with the maximum amplitude (0.76m) occurring

between the time of 40 and 60min. Also shown in this figure is the corresponding normalized spectral

amplitude as a function of wave period. The spectral amplitude is obtained by using the fast Fourier

transform applied to the time series of the sea surface displacement (ξ , equation (1)). It has been

normalized by partitioning a fraction of the total power amplitude for each wave component. Most gravity

wave components lie within the range between 20min and 60min. The maximum of the normalized

spectral amplitude is about 0.42 for the primary 32min wave period.
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The refractive index (m2, where m is the

vertical wave number calculated using

the nonisothermal dispersion relation

of Einaudi and Hines [1971]) obeys the

approximate dispersion equation for low-

frequency gravity waves (in our case, for

the 32min period waves),

m2
≈

N2

c2
�
ωa

2

Cs
2
: (2)

It is straightforward to show that the

maximum phase speed, cmax, for internal

wave propagation is given by cmax≈ 2HN

[Walterscheid and Hickey, 2011]. Here H is

the atmospheric scale height, N is the

Brunt-Väisälä frequency, c is the intrinsic

phase speed with respect to a frame refer-

ence moving with the background wind,

Cs is the sound speed, and ωa= Cs/(2H)

is the acoustic cutoff frequency. For

an isothermal atmosphere cmax≈ 0.93Cs,

but for a nonisothermal atmosphere and

for conditions appropriate to the tropo-

sphere cmax≈ 0.54Cs (≈150m/s in the

midtroposphere).

The refractive indexes for the 32min gravity

waves are shown as a function of height in

Figure 3. The eastward propagating wave

Figure 2. Ocean surface displacement (solid line, upper x axis, left y axis)

and normalized spectral amplitude (dashed dotted line, lower x axis,

right y axis) at the epicenter.

Figure 3. Refractive indexes for the 32min waves propagating (a) in the eastward and westward direction, and (b) in the

southeastward and northwestward direction.
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(c= 221m/s) (Figure 3a) exhibits regions of evanescence (m2< 0) in the midtroposphere and to a lesser

extent in the upper mesosphere. The wave becomes evanescent in the midtroposphere because in this

region the wave is propagating into a zonal tail wind (Figure 1a) and its intrinsic phase speed approaches

about 200m/s, which exceeds about 0.54 of the local sound speed (cmax, the limiting speed for internal

gravity waves, Figure 1b). In contrast, the westward propagating wave (Figure 3a, c= 121m/s) is internally

propagating everywhere (m2> 0). The southeastward propagating wave (Figure 3b, c= 243m/s) also

exhibits regions of evanescence (m2< 0) in the midtroposphere and in the upper mesosphere, but these

regions are much broader in vertical extent due to the larger phase speed of this wave. Additionally, the

wave becomes marginally evanescent in the lower mesosphere near 52 km altitude. The northwestward

propagating gravity wave (Figure 3b, c=121m/s) remains internal everywhere. These results indicate that

upward propagation should be partially impeded for the eastward and southeastward propagating waves

due to limited regions of evanescence in the troposphere (associated with their intrinsic phase speeds

exceeding about 0.54 of the local sound speed, cmax), and in the mesosphere. The westward and

northwestward propagating waves do not experience evanescence and so their propagation to the lower

thermosphere should occur relatively easily.

Figure 4 shows the full-wave model-derived perturbation amplitudes for the temperature, T′, vertical velocity,

W′, and zonal velocity, V′ (Figure 4a), and the phases of the temperature perturbation (Figure 4b). The

temperature perturbation amplitudes for the eastward and westward propagating waves tend to grow

with increasing height up to 120 km altitude. Undulations in the amplitudes seen below this height are

mainly associated with partial reflections from regions of evanescence (for the eastward propagating

wave), although weaker undulations are also present for the westward propagating wave associated with

weak reflections from the base of the thermosphere. At thermospheric heights, the slower westward wave

experiences a larger viscous dissipation rate than does the faster eastward propagating wave. At these

heights the zonal wind is westward (Figure 1a), which accentuates this (through Doppler shifting) by

decreasing the intrinsic phase speed of the slower (westward) wave and increasing the intrinsic phase speed

of the faster (eastward) wave. The result is that the westward propagating wave has a shortened vertical

wavelength, which increases the velocity shears and the associated viscous dissipation rate. Consequently,

Figure 4. (a) Amplitudes of the temperature (upper x axis), zonal and vertical velocity perturbation (lower x axis), and

(b) phases of the temperature perturbation for the 32min waves propagating toward the east (λh = 424.32 km) and west

(λh = 232.32 km), respectively.
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although the westward propagating wave has a larger amplitude (80 K) than the eastward propagating wave

(35 K) near 130 km altitude, the eastward propagating wave continues to grow in amplitude as it propagates

upward into the higher thermosphere, and it achieves a maximum amplitude of about 200 K near 250 km

altitude. In contrast, the westward propagating wave experiences strong dissipation in the thermosphere

and its amplitude decreases substantially as it propagates further upward in the thermosphere.

The amplitudes of the zonal velocity perturbation (V′) for the eastward andwestward propagatingwaves are also

shown in Figure 4a. For thewestward propagating wave V′ has amaximumvalue of about 85m/s (centered near

130 km altitude in the E layer), larger than the value of about 50m/s for V′ due to the eastward propagation

in this region. For the same reasons as discussed in the previous paragraph, V′ continues to increase with

increasing height in the thermosphere up to 300 km altitude for the eastward propagating wave, achieving a

maximum value of about 260m/s, while V′ decreases rapidly with increasing height in the thermosphere for

the westward propagating wave. The amplitudes of the vertical velocity (W′) fluctuation for the eastward

and westward propagating waves are also shown in this figure. Their variations with altitude closely follow

those for the corresponding variations of V′, but they are typically an order of magnitude smaller than V′.

Note that for the eastward propagating wave, a maximum temperature amplitude is about 200 K near 250 km

altitude, approximately 21% of the mean (~950 K) at this altitude (see Figure 1b). The corresponding value

of the horizontal velocity fluctuation amplitude is about 260m/s. Although this amplitude is large, it is

below the threshold amplitude required for the onset of convective instability. The Orlanski and Bryan

[1969] criterion for the onset of convective instability is that U′> c where U′ is the horizontal wind

perturbation and c is the intrinsic horizontal phase speed. For this wave, its intrinsic phase speed is equal

to the extrinsic phase speed minus the zonal wind speed (c�
¯
V =221� (�90) =~311m/s at 300 km altitude,

Figure 1a), which is greater than the maximum value of U′ (~260m/s) at 300 km altitude. Because U′< c, the

wave is stable to convective instability.

The phase of the temperature perturbation for wave propagation toward the east and west is shown as a

function of height in Figure 4b. While the phase varies smoothly with height for the westward propagating

wave, the phase for the eastward propagating wave is seen to undergo an almost discontinuous change

in phase of π near 35 km altitude. It occurs slightly above the region of strong evanescence in the

troposphere and below a region of slightly weaker evanescence in the upper mesosphere (Figure 3a). For

the eastward propagating wave, weak standing wave behavior is noticeable in the phase variations below

about 90 km altitude associated with these two regions of evanescence. The standing wave signature is

also evident in the amplitude variations (weak nodes and antinodes) shown previously in Figure 4a.

The westward propagating wave is slower and therefore has a shorter vertical wavelength (λz) than the

eastward propagating wave. As noted previously, the shorter vertical wavelengths result in an increase in the

velocity shears and subsequently an increase in the viscous dissipation rate. Above about 120 km altitude,

the increase with increasing height of the Brunt-Väisälä period (Figure 1b) leads to an increase of the vertical

wavelength for both the eastward and westward propagating waves. The molecular viscosity and thermal

diffusivity affect wave amplitudes and phases, more so at great thermospheric heights where they become

extremely large (Figure A2). The rapid diffusion of heat and momentum causes a “smearing” of the wave

variations in the vertical, increasing the vertical wavelengths such that the waves are approaching

evanescence by 500 km altitude (as revealed by the constant phase at great heights seen in Figure 4b).

The altitude variations of the temperature, horizontal, and vertical velocity fluctuation amplitudes derived

from the full-wave model for the southeastward and northwestward propagating waves are shown

in Figure 5a. At greater heights, the northwestward propagating wave experiences greater viscous

dissipation than the southeastward propagating wave, with the result that the temperature perturbation

amplitudes are considerably smaller at great thermospheric heights for the northwestward propagating

wave. The horizontal velocity perturbation for the northwestward propagating wave has a maximum value

of about 140m/s at 150 km altitude, while that for the southeastward propagation is about half of this

value at the same altitude. However, the faster, southeastward propagating wave with its larger vertical

wavelength experiences less viscous dissipation than its northwestward propagating counterpart, and its

amplitude continues to grow to about 225m/s near 300 km altitude. The altitude variations of the vertical

velocity fluctuation closely mimic those of the horizontal velocity perturbation, but they are typically an

order of magnitude smaller than the latter.
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The phase variations of the temperature perturbation for the southeastward and northwestward propagating

waves derived from the full-wave model are shown in Figure 5b. The faster southeastward propagating wave

experiences strong evanescence in the middle troposphere and also in the upper mesosphere (Figure 3b),

leading to fairly strong standing wave behavior below about 90 km altitude and a strong, discontinuous

phase change of π near 20 km altitude. The northwestward propagating wave is slower (shorter λz) than the

southeastward propagating wave, and so it experiences a greater viscous damping at higher altitudes than

the faster southeastward propagating wave. Both waves are approaching evanescence by 500km altitude

(constant phase, Figure 5b).

In Figure 6, we show the variations with time and height of the vertical flux of wave horizontal momentum

(the so-called Reynold’s stress, defined as FM ¼ ρ0u
′w ′ , where the overbar denotes a horizontal average),

which are derived from the 2-D time-dependent model. Results are presented for the 32min wave packet

propagating toward the northwest (Figure 6a), east (Figure 6b), west (Figure 6c), and southeast (Figure 6d),

respectively. Note that in each case the lower boundary forcing is described by equation (1), but the

wave horizontal wavelength (or phase speed) is different. Analysis of the vertical flux of the horizontal

momentum carried by the waves is useful in simulation studies of the momentum forcing of the mean

state due to the dissipation of wave packets [e.g., Hickey et al., 2010b; Liu et al., 2013]. Additionally, radar

observations allow the momentum flux to be directly inferred from measured wind fluctuations and

from correlations between the horizontal and vertical velocities [e.g., Fritts and Yuan, 1989]. Note that

the energy flux has also previously been used to characterize the upward propagation of a gravity wave

packet [Yu and Hickey, 2007a, 2007c].

The overall upward momentum fluxes for wave propagation toward the northwest (Figure 6a) and west

(Figure 6c) are noticeably larger than those associated with wave propagation toward the southeast

(Figure 6d) and east (Figure 6b). In addition, a comparison of Figures 6a and 6c shows that the gravity

wave momentum fluxes associated with waves propagating toward the northwest are moderately larger

than those associated with waves propagating toward the west. Gravity waves propagating toward the

west and northwest both encounter head winds over a fairly broad region of the atmosphere centered

near 60 km altitude during their upward propagation (Figure 1a). In this region, they will be Doppler

shifted to higher frequencies, refracting the waves further upward, and increasing the upward momentum

Figure 5. (a) Amplitudes of the temperature (upper x axis), horizontal and vertical velocity perturbation (lower x axis), and

(b) phases of the temperature perturbation for the 32min waves propagating toward the southeast (λh = 466.56 km) and

northwest (λh = 232.32 km), respectively.
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fluxes (this is indicated in Figures 6a and 6c by the arrows appearing near 50 km altitude and a time of about

62min). The leading (faster) components of the disturbance reach 90 and 105 km altitude at about UT 06:38

and UT 06:52, respectively, as indicated by the intersecting dashed lines shown in Figures 6a and 6c. These

arrival times are in good agreement with those presented by Galvan et al. [2012], as shown in their

Figures 2d (for 06:38:45 UT) and 2e (for 06:52:15 UT). This agreement provides a plausible explanation for

the GPS-derived TEC observations, which showed that the most intense disturbances occurred in the

westward and northwestward directions from the epicenter at the times.

5. Discussion

We have modeled the 2011 Tohoku tsunami as a deformation of our model lower boundary described by a

modified Gaussian function with a maximum vertical displacement of 76 cm and traveling at a shallow-water

wave speed that is a function of the ocean depth. The shallow-water wave speeds that we assume (based on

DART data) are 121m/s for westward and northwestward propagation, 221m/s for eastward propagation,

and 243m/s for southeastward propagation. We have investigated the atmospheric gravity waves that

this would produce and their propagation characteristics in a windy and viscous atmosphere for different

directions of propagation. The faster eastward propagating gravity waves are able to propagate to F

region heights, while the slower westward propagating gravity waves are viscously damped and achieve

maximum amplitudes well below 200 km altitude. However, the westward propagating waves reach the

lower thermosphere earlier (within an hour) and with larger amplitudes than the eastward propagating

Figure 6. Time-height section of the vertical flux of the horizontal momentum (positive upward) for the 32min wave packet propagating toward the (a) northwest

(λh = 232.32 km), (b) east (λh = 424.32 km), (c) west (λh = 232.32 km), and (d) southeast (λh = 466.56 km), respectively.
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waves, mainly due to the fact that the eastward propagating waves encounter regions of evanescence

(or quasi-evanescence) throughout much of the lower and middle atmosphere.

We have calculated the vertical group speed using the full-wave model (and also using the dispersion

relation of Einaudi and Hines [1971]) and compared the travel times with those inferred from the 2-D

model results shown in Figure 6. For the westward propagating gravity wave of period 32min, the

largest value of the vertical group speed is about 28m/s and occurs near 64 km altitude in a region of

strong headwinds. Its average value between the sea surface and an altitude of 100 km is about 23m/s

(~65min to reach 90 km altitude). However, the short period components of the wave packet shown in

Figure 2 will have faster phase speeds and also faster group speeds. Hence, the faster (short period) part

of the packet will arrive first. For a period of 25min (where there is significant power), the largest value

of the vertical group speed for the westward propagating gravity wave is about 32m/s and occurs near

60 km altitude in a region of strong headwinds. Its average value between 0 and 100 km altitude

exceeds 32m/s (~47min to reach 90 km altitude). These group speeds lead to propagation times

(not shown here) that are consistent with the 2-D simulation results for the westward and northwestward

propagating waves presented in Figures 6c and 6a, respectively, which are also consistent with the

observations reported by Galvan et al. [2012].

It is also interesting to compare the vertical group speeds for the westward propagating waves with those for

the eastward propagating waves. For the 25min eastward propagating wave, the average vertical group

speed is 21m/s, while for the 32min wave it is far less than 20m/s. Hence, although the eastward

propagating wave has a higher extrinsic phase speed (221m/s) than the westward propagating wave

(121m/s), the winds profoundly affect their vertical group speeds (as well as on the refractive indexes for

these waves, as shown in Figure 3a) and cause the westward propagating wave to reach the lower

thermosphere far sooner than the eastward propagating wave. A similar reasoning also applies to the pair

of the waves propagating toward the northwest and southeast. This result is also borne out by the 2-D

model results and the observations of Galvan et al. [2012].

We note that our results have also shown that the eastward propagating waves will dominate in the middle

and upper thermosphere primarily due to the effects of molecular viscosity and thermal conductivity,

which preferentially damp the westward propagating waves. This should lead to an observable F region

ionospheric response to the gravity wave forcing [e.g., Occhipinti et al., 2008; Hickey et al., 2009], but the

propagation time to these altitudes should be almost two hours, which extends beyond the observations

reported by Galvan et al. [2012].

Our choice of tsunami parameters is intended to provide a plausible packet of atmospheric gravity waves

that propagate obliquely upward and outward from the epicenter, emanating from the ocean surface.

There are two major sides from the epicenter which is located on the North American Plate. One may

be on the directions toward the nearest coast line of Japan (toward the west and northwest); the other

could be the directions toward the Japan Trench in the deep ocean (toward the east and southeast).

Wave packets are allowed to travel with different shallow-water wave speeds (
ffiffiffiffiffiffi

gh
p

) depending on their

directions of propagation (and associated average ocean depths around the epicenter). The average ocean

depths toward the north and south are quite flat, significantly less than those toward the deep ocean, and

close to those toward the shallow coastal waters of Japan. Subject to the effects of the small meridional

wind (below 100 km altitude, Figure 1a), their associated wave packets are propagating freely and

obliquely upward (not shown here), but not appearing as intense and fast as their counterpart pairs of the

westward and northwestward waves due to their relatively small wave phase speeds.

More recently, Hickey et al. [2009, 2010a] included several important physical processes that would

significantly influence the ionospheric response to the 2004 Sumatra tsunami. In the paper, we have

chosen to address the damping associated with molecular viscosity and thermal conduction, and the

effects of background mean winds. We do not include composition effects in the thermosphere associated

with altitude variations of the mean molecular weight [Walterscheid and Hickey, 2001, 2012] but note that

these effects can be important for most gravity waves. These effects will be considered in future work, but

are not expected to alter the conclusions of our present work concentrating on the lower thermosphere

and E region ionosphere. The Coriolis force (owing to the rotation of the Earth) is neglected for the fairly

short gravity wave period (compared to the 24 h diurnal period) that is considered here.
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6. Conclusions

We have used two numerical models describing the propagation of atmospheric gravity waves that would likely

be generated by the 2011 Tohoku tsunami in order to investigate the effects of ocean depth on these waves and

on their propagation characteristics. We find that because the ocean depth lying to the east of the source of the

tsunami (the earthquake epicenter) is deeper than that lying to the west, the eastward propagating gravity waves

will be faster than the westward propagating gravity waves. In spite of this, we have found that the westward

propagating gravity waves propagate faster and with larger amplitudes upward to the lower thermosphere in

comparison to the eastward propagating waves. Our result that the initially observed gravity waves have a

predominant westward direction of propagation is supported by the recent ionospheric observations of Galvan

et al. [2012]. We also note that the plausible suggestion of Galvan et al. [2012] that the westward propagating

atmospheric disturbance would be enhanced due to the amplification of the tsunami as it travels into

shallower seas would augment the effects that we have described here. Although not the main subject of this

study, we also find that the eastward propagating gravity waves would dominate in the middle thermosphere,

but the propagation time to those altitudes would be a few hours after the tsunami onset.

Because gravity waves propagating toward the west or northwest are propagating against the mean flow, they

will have a greater vertical group velocity and, therefore, reach the lower thermosphere sooner than eastward

propagating waves. Hence, observations of this region should first see the westward (and northwestward)

propagating disturbance. This modeling result is reconciled by the GPS TEC observations of Galvan et al.

[2012] who, using the GEONET, showed that the initial atmospheric response was for the northwestward

propagating waves.

Appendix A

A1. Two-Dimensional Time-Dependent Model

The neutral atmosphere is treated as a well-mixed, single-constituent gas. A dynamics model with highly

coupled Navier-Stokes equations is used to describe 2-D, nonlinear, time-dependent, and nonhydrostatic

plane wave motions. Lateral boundaries of the model are periodic over a horizontal wavelength to

simulate a horizontally infinite domain. As a consequence of the mechanism of the ocean-atmosphere

coupling, the variation of the vertical velocity induced by the vertical displacement of the ocean surface

serves as a lower boundary forcing in a nonisothermal, viscous atmosphere and in the presence of

background winds. The prescribed forcing by the 2011 Tohoku tsunami (discussed in section 3) is in

association with the geographic information shown in Figure A1. The tsunamigenic gravity wave

propagation can be described using the Navier-Stokes equations for flow without rotation.

A time-splitting technique is applied to the finite difference equations that are derived from the Navier-

Stokes equations. The time integration for these highly coupled nonlinear equations is performed using an

explicit second order Lax-Wendroff scheme and an implicit iterative Newton-Raphson scheme. A thorough

explanation of the model configuration, such as the discretization schemes and computational algorithms,

is beyond the scope of our present introduction but can be found in the works of Yu et al. [2009]. A similar

numerical approach has also been used by Walterscheid and Schubert [1990]. The model has previously

been used to elucidate the temporal evolution of the wave vertical energy flux [Yu and Hickey, 2007a,

2007c] and thermospheric thermal ducting [Yu and Hickey, 2007b].

ρ
Dv

Dt
þ ∇p� ρg � ∇ � ρυ∇ vð Þ � ∇ � ρηe∇ vð Þ þ ρKR v ¼ ρ

D2Z

Dt2

� �

; (A1)

ρcv
DT

Dt
þ p∇ �v � ∇ � λm∇Tð Þ �

cpT

θ
∇ � ρκe∇θð Þ þ cvρKNT ¼ 0: (A2)

With the exception for the equation of state for an ideal gas, the definition of potential temperature, and the

equation for conservation of mass (all not shown), we provide the momentum (A1) and energy (A2)

equations here in order to analyze the viscosity and thermal conduction due to eddy and molecular

processes. The operator D/Dt= ∂/∂t+ v �∇ is the substantial derivative, where v (x, z, t) is the total velocity

vector (mean plus perturbation); Z (0, ξ) is the displacement vector on the ocean surface and is a function
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of the vertical coordinate, ξ (x, 0, t), which is a function of the horizontal position (x) and time (t) (and defined

in equation (1) of the main text); ρ is the atmospheric neutral density; p is the atmospheric pressure; T is the

atmospheric temperature; θ is the potential temperature; g is the acceleration due to gravity; υ is the

molecular viscosity; ηe is the eddy momentum diffusivity; cv and cp are the specific heats at constant

volume and constant pressure, respectively; λm is the molecular thermal conductivity; κe is the eddy

thermal diffusivity; and KR and KN are Rayleigh friction and Newtonian cooling coefficients, respectively.

A2. Viscosity Effects

The molecular diffusion coefficients used in the momentum (A1) and energy (A2) equations are basically

taken from the book written by Rees [1989]. In a dissipative atmosphere, we apply molecular processes

involving molecular kinematic viscosity υ (units in m2 s�1), which can be numerically expressed as follows

[Hickey and Yu, 2005]

υ ¼
N2½ ��3:43þ O2½ ��4:03þ O½ ��3:90

ρ0� N2½ � þ O2½ � þ O½ �ð Þ
� T0ð Þ0:69�10�7: (A3)

Brackets [] in the equation denote the number density for the major or minor species. The term ρ0 is the

atmospheric mean density; T0 is the atmospheric mean temperature. They are both functions of altitude.

Another molecular process is due to the molecular thermal conductivity, λm, that can be numerically

expressed as follows [Hickey and Yu, 2005]

λm ¼
N2½ �� 56:0þ O2½ ��56:0þ O½ ��75:90

N2½ � þ O2½ � þ O½ �ð Þ
� T0ð Þ0:69�10�5; (A4)

and it is plotted in Figure A2 as λm/ρcv (units in m2 s�1).

Figure A1. Map showing the location of the epicenter (38.322°N, 142.369°E) of the earthquake (M 8.9) responsible for the

2011 Tohoku tsunami.
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The nominal eddy diffusion coefficients

are generally based on a profile due to

Strobel [1989] and have large values in

the mesopause region. The eddy momen-

tum diffusivity maximizes with a value of

100m2 s�1 at 90 km altitude. This maxi-

mum value for the eddy diffusivity is

comparable to values derived from radar

inferences of the turbulent energy dissipa-

tion rates [Hocking, 1987]. Similar values

have also been derived from 2 years

of continuous radar measurements near

Adelaide, Australia [Hocking, 1988]. A small

value of eddy diffusivity (0.1m2 s�1) is

used for the lower atmosphere below

50 km altitude. Eddy diffusion processes

involve the eddy momentum diffusivity

that is numerically expressed as follows

[Hickey and Yu, 2005]

ηe ¼ 100sech 2:6� z kmð Þ � 90:0ð Þ=20ð Þ

þ 0:1: (A5)

Another eddy diffusion process is due to

the eddy thermal diffusivity κe= ηe/3 (units

in m2 s�1), where we have considered a

Prandtl number of 3.

The altitude variations of the viscosity

and thermal conductivity are plotted in

Figure A2. The viscosity comprises the

molecular kinematic viscosity, υ, plus the

eddy momentum diffusivity, ηe (υ+ ηe,

units in m2 s�1). Although the thermal diffusivity includes the molecular thermal conductivity (λm) and the

eddy thermal diffusivity (κe), for clarity we do not include the latter in this figure (κe exhibits a similar variation

with altitude as ηe). The momentum diffusivity profile has an eddy diffusion component that maximizes at

90 km altitude with a value of 100m2/s. At greater heights, the molecular viscosity dominates over the eddy

diffusivity (likewise, the molecular thermal conductivity dominates over the eddy thermal diffusivity at

these heights). The molecular viscosity and thermal conductivity (scaled by a factor of ρcv) both increase

smoothly with increasing altitude to values of about 108 and 2.6 × 108m2/s, respectively, by 500 km altitude.

The significant increase in the molecular diffusion with increasing altitude means that acoustic-gravity waves

are more severely dissipated at higher thermospheric altitudes.
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