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Abstract

A NEW multigrid relaxation scheme is developed for the
steady-state solution of the Euler and Navier-Stokes equa-

tions. The lower-upper Symmetric-Gauss-Seidel method (LU-
SGS) does not require flux splitting for approximate Newton
iteration. The present method, which is vectorizable and uncon-
ditionally stable, needs only scalar diagonal inversions. Appli-
cation to transonic flow shows that the new method is efficient
and robust.

Contents
Recently, several implicit schemes have been developed suc-

cessfully in conjunction with a multigrid method for steady-
state solution of the unsteady Euler equations.1'2 Although the
alternating direction implicit scheme could be improved to
achieve the expected efficiency of the multigrid method in two
dimensions,1 its inherent limitations in three dimensions sug-
gest alternative approaches.2 An alternative implicit scheme
that is stable in any number of space dimensions is based on LU
factorization. The LU implicit scheme proved to be robust in
calculations over a wide range of Mach numbers.3'4

The Newton iteration method has been investigated to solve
the steady Euler or Navier-Stokes equations. Because of the
rapid growth of the operation count with the number of mesh
cells, the system was solved indirectly. In this paper, an efficient
multigrid relaxation scheme is developed for approximate
Newton iteration. The new LU-SGS method permits scalar
diagonal inversions, whereas the conventional line (or plane in
three dimensions) Gauss-Seidel method requires block matrix
inversions. The use of scalar diagonal inversions offers the po-
tential for order-of-magnitude speedups when large systems of
partial differential equations must be solved. It is desirable that
the matrix be diagonally dominant to assure the convergence of
a relaxation method. The new method achieves this without the
flux splitting. Flux splittings substantially increase the compu-
tational work per cycle. Unlike the conventional Gauss-Seidel
method, the present method in three dimensions does not need
additional relaxation or factorization on a plane of sweep.

The Navier-Stokes equations represent gas flow in thermody-
namic equilibrium. Let x, y, and t, be Cartesian coordinates
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and time, F and G convective flux vectors, and Fv and Gv the
flux vectors for the viscous terms. Then, for a two-dimensional
flow, these equations can be written as

3W dF 8<j=dF\L 8GV

dt dx dy dx dy (1)

where Wis the vector of dependent variables.5

Using a finite-volume method for space discretization
allows one to handle arbitrary geometries and helps to avoid
problems with the metric singularities that are usually associ-
ated with finite-difference methods. Finite-volume methods do
not require special treatment on a composite grid.6 Using a
central-difference scheme when calculating flows with disconti-
nuities typically produces flowfield oscillations in the neighbor-
hood of shock waves where the pressure gradients are severe. To
suppress the tendency for spurious odd and even point oscilla-
tions and to prevent nonphysical overshoots near shock waves,
we augment the semidiscrete finite-volume method by adaptive
numerical dissipation, which gives upwind bias.5 For more
accurate capturing of oblique shock waves in hypersonic flows,
a total variation diminishing (TVD) scheme can be used.7

Let A and B be the Jacobian matrices of the convective flux
vectors, Dx and Dy central-difference operators that approxi-
mate d/dx and d/dy, and <5 Jfthe correction. Then the linearized
implicit scheme for the Euler equations can be written as

DyG) = 0 (2)

where /is the identity matrix. The unfactored implicit scheme,
Eq. (2), produces a large block-banded matrix that can be
inverted only by performing a great many computations. In
addition, a large amount of storage is required. If J3 — 1, the
scheme reduces to a Newton iteration in the limit A/ —> <x>:

(DXA (DXF + DyG) = 0 (3)

The LU-SGS method for approximate Newton iteration can be
derived as5

(D-A
X\DX

+A- + D+B-
= - (DXF + DyG) (4)

where D~ and D~ are backward-difference operators, and Dx
and Dy are forward-difference operators; A +, A ~, B +, and
B ~ are constructed so that the eigenvalues of " + " matrices are
nonnegative and those of " — " matrices are nonpositive:

A + = V2 (A + rAI),

B+ = Vi (B 4- rBI),

-rAI)

(5)
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Fig. 1 Velocity vectors for viscous laminar flow.

Fig. 2 Mach number contours for viscous turbulent flow.

where

r > rB > max( I \B I) (6)

Here, rA and rB represent eigenvalues of Jacobian matrices. If
we take " + " and " — " matrices as given in Eq. (5), a diagonal
entry in any factor becomes

+ -A' -B- = (rA+rB)I (7)

Hence, the present numerical method eliminates the need for
block diagonal inversions without using a diagonalization
procedure. For the simplicity of programming, an approximate
form of Eq. (4) may be written as

(D-A + -A- -B-)(DX
+A- + D+B-

(8)

which can be inverted in two steps. Although Eq. (8) is not
completely consistent with Eq. (4), extensive numerical experi-
ments confirm that both forms work very well in practice. For
the Navier-Stokes equations, F and G are replaced by F — Fv
and G - Gv in Eq. (8)

(DXA + + D~B + -A- ~B-)(DX
+A- +D+B-

+ A++B+)5W = -(yA+yB)((Dx(F-Fv)

+ Dy(G — Gv) + numerical dissipation] (9)

Since one-sided difference schemes are naturally dissipative, no
implicit smoothing is required on the left side. Only numerical
dissipation terms are explicitly added to the residual on the right
side. The LU family of algorithms are vectorizable along / +
j = const lines on a vector computer.

The underlying idea of a multigrid method is to transfer some
of the task of tracking the evolution of the system to a sequence
of successively coarser meshes. This has two advantages. First,
the computational effort per cycle is reduced on a coarser mesh.
Second, the use of larger control volumes on the coarser grids
tracks the evolution on a larger scale, with the consequence that
global equilibrium can be more rapidly attained. The cells of the
fine mesh can be amalgamated into larger cells, which form a
coarser mesh. Then, in each coarse mesh cell the conservation
laws are represented by summing the flux balances of its fine
mesh cells; consequently, the evolution on the coarse mesh is
driven by the disequilibrium of the fine-mesh equations. The
multigrid method used here is the cell-centered method that was
used for the implicit schemes.2

The first test case was for inviscid transonic flow past the
NACA 0012 airfoil at 1.25 deg angle of attack. The freestream
Mach number was 0.8. Nonreflecting boundary conditions
were used to absorb the waves impinging on the farfield
boundary. Five-level V-cycle multigrid calculations were per-
formed on a 128 x 32 C-mesh without grid sequencing. Uni-
form flow was given as the initial condition. The convergence
rate of the present method is about 30% faster than that of the
LU implicit scheme. Moreover, the computational work per
cycle for the new method is about 30% less than that for the LU
implicit scheme, since the present method does not need block
diagonal inversion. The overall CPU time is reduced by a factor
of 2. The next case was for viscous laminar flow past the NACA
0012 airfoil at Mach 0.5, Reynolds number 5000, and 0 deg
angle of attack. The adiabatic wall boundary condition was
used at the body surface. Calculations were performed on a
stretched 192 x 48 C-mesh. The enthalpy damping technique
was not used for the viscous flow calculations. Figure 1 shows
velocity vectors. The last case was for viscous turbulent flow
past the RAE 2822 airfoil at Mach 0.73, Reynolds number 6.5
x 106, and 2.79 deg angle of attack. The Reynolds-averaged
Navier-Stokes equations were solved using a Baldwin-Lomax
turbulence model. Transition was fixed at 3% chord. Mach
number contours are shown in Fig. 2 (the dashed line denotes
the sonic line).

The LU-SGS method was combined with a flux-limited TVD
scheme.7'8 It was also applied to chemically reacting nonequi-
librium flows in scramjet combustors.9
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