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The lowest order constrained variational (LOCV) method is reformulated to calculate
the equation of state of nuclear and neutron matter with a new charge-dependent Reid
potential (Reid93). The state-dependent correlation functions are calculated by performing
a full functional minimization for each JLSTMT -channel and the resulting Euler Lagrange
equations are solved up to J = 9. The correlation functions are compared with those coming
from LOCV calculation with the old Reid68 potential. It is shown that unlike ∆-Reid68
and AV18 interactions, the new Reid93 over binds nuclear matter at much larger saturation
density than Reid68. Finally, the results are being compared with similar calculations with
other potentials and many-body techniques.

§1. Introduction

In order to put microscopic nuclear many-body calculation to a reliable test,
one needs a perfect nucleon-nucleon potential such that the discrepancies in the
prediction cannot be blamed on a bad fit of NN data.1) In 1990’s, Nijmegen,2)

Argonne3) and Bonn4) groups made a quantitative analysis of the NN potentials.
Before, that the bestNN models fitNN data typically with a χ2 datum about 2. But
all of the new potentials such as Reid932) or AV18

3) have in common that they use the
about 45 parameters and fit the pruned 1992 Nijmegen data base2) with a χ2 datum
about 1. The Reid93 and Argonne AV18 potentials do not use meson-exchange for
intermediate and short range. The AV18 uses local functions of Woods-Saxon while
similar to the Reid685) potential, Reid93 applies local Yukawa functions. Both of the
above potentials are local and regularized either by exponential (AV18) or by dipole
(Reid93) form factors. Because of the well-known breaking of charge-independence
in the np and pp partial waves, these potentials have different format in each iso-
spin projection. So in order to perform nuclear many-body calculations with these
potentials one should treat explicitly this charge-dependence in the nuclear many-
body wave-functions.

In a series of papers the lowest order constrained variational (LOCV) method
was developed6),7) for calculating the properties of homogeneous nuclear fluids with
realistic nucleon-nucleon interactions.5),8) In 1997, this approach was further gener-
alized9) to include more sophisticated interactions such as the UV14,10) the AV14

11)

and the new argonne AV18
3) as well as the Reid685) and ∆-Reid688) potentials. For

a wide range of models our LOCV calculations agree well with the results of vari-
ational fermion hypernetted chain (VHC) calculations where these have performed

∗) Corresponding author.
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and for a number of central potentials, there is agreement with the essentially exact
numerical solutions obtained by Monte Carlo technique.6),7) Despite this agreement
for model problems, there has been some dispute about the convergence of LOCV
results in calculations, employing realistic nucleon-nucleon interactions which are
strongly spin-dependent and which, in particular, contain a sizeable tensor force.
This argument was tested, by calculating the energy of the three-body cluster con-
tribution in nuclear matter and the normalization integral 〈ψ | ψ〉 both at zero and
finite temperatures.12),13) It was shown that 〈ψ | ψ〉 is normalized (χ2 = 0)12)

within one percent (χ3)12) and the three-body cluster energy is less than 1 MeV for
kF ≤ 1.6 fm−1. These results are given in Table I.

Table I. The nuclear matter saturation properties.12)

Reid68 ∆-Reid68

E1 + E2 E1 + E2 + E3 E1 + E2 E1 + E2 + E3 Empirical

Density (fm−3) 0.28 0.21 0.25 0.2 0.17

Binding energy (MeV) 22.54 21.85 16.28 15.52 15.86

Compressibility (MeV) 340 298 300 277 200–300

χ2 0.0 0.0 0.0 0.0 —–

χ3 0.127 0.085 0.093 0.062 —–

Our LOCV calculation is a fully self-consistent technique with state-dependent
correlation functions (without any free parameter, except the NN potential) and
it is capable of dealing with the well-defined phenomenological potentials such as
the ∆-Reid68 (the modified Reid potential with an allowance of ∆(1234) degree of
freedom, see Refs. 7) and 8)) potential. The ∆ state, being the most important
configuration that modifies the nuclear force, might be the key to the understanding
of three-body forces.14) The results suggest that the LOCV method reasonably de-
scribes the nucleonic-matter properties at zero and finite temperatures.6),7),9),12),15)

Furthermore, our recent calculations at zero temperature with the UV14 and AV18

potentials9) show a good agreement with more sophisticated calculation such as
the variational fermion hypernetted chain method (VHC)9),16) (compare table 7 of
Ref. 9) (BM,1997) with table 6 of Ref. 16) (APR,1998)). On the other hand the
LOCV method considers constraint in the form of a normalization condition17) to
keep the higher-order terms as small as possible and it also assumes a particular
form for the long-range behavior of the correlation functions in order to perform an
exact functional minimization of the two-body energy with respect to the short-range
parts of correlation functions. The functional minimization procedure represents an
enormous computational simplification over the unconstrained methods, i.e. to pa-
rameterized the short-range behavior of the correlation functions, that attempt to
go beyond the lowest-order.16) This difference has been pointed out by Moroni et
al.,18) that the optimized two-body correlation functions obtained by solving numer-
ically the hypernetted chain Euler equations, have provided, improved energy upper
bounds with respect to parameterized two-body correlations functions. Finally as
already discussed, in the LOCV framework the higher-order terms at and beyond
nuclear matter saturation densities are reasonably small.12),13)
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The LOCV method has been also developed for calculating the various properties
of homogeneous nuclear fluids such as hot and frozen neutron, nuclear and β-stable
matter with realistic nucleon-nucleon interactions.9),13),15) In these works the liquid-
gas phase transition and corresponding critical temperature were found.

With respect to the above arguments, in this work we shall attempt to develop
LOCV method for the new Reid93 potential which has state and charge-dependence
with the operator parameterizations, SI

12 and L · S.
In recent years several many-body methods such as variational fermion hyper-

netted chain (VHC), the correlated basis function (CBF), the Brueckner-Bethe (BB)
and Brueckner-Hartree-Fock (BHF) approaches have been also applied to the new
and other potentials. We intend to discuss their results in this work as well.

There is also a lowest-order constrained variational method, which was originally
developed by Pandharipande.19) This method was used with some changes in the
constraint by Mittet and Ostaard.19) Both methods have been only applied to the
Reid68 potential (see Ref. 9) for discussion about the validity and criticism about
these approaches).

So the paper is planned as follows: A short description of the lowest order
constrained variational method for the state and charge-dependence potential and
evaluation of the energy for nuclear and neutron matter is given in §2. Section 3 is
devoted to results and discussion for binding energies of nuclear and neutron matter
and the properties of the two-body correlation functions. Finally, our summary and
conclusions are presented in §4.

§2. The LOCV formalism

In the LOCV method, we use an ideal Fermi gas type wave functions, φi, for
the single particle states and variational techniques, to find the wave function of
interacting system6),7),9)

ψ = FΦ, (1)

where (S(A) is a symmetrizing (anti-symmetrizing) operator)

F = S
∏
i>j

f(ij) (2)

and
Φ = A

∏
i

φi. (3)

The Jastrow correlation functions f(ij) are operators and they are written as:

f(ij ) =
∑
α,k

f (k)
α (ij )O(k)

α (ij ). (4)

In the above equation α = {S,L, J, T,MT } , k = 1 − 3 and

Ok=1−3
α = 1,

(
2
3

+
1
6
SI

12

)
,

(
1
3
− 1

6
SI

12

)
. (5)
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For spin-singlet channels with orbital angular momentum L = J , the spin-triplet
channels with L �= J±1 and 3P0 channel, etc. (non-tensor channels), k is superfluous
and set only to unity, while for L = J ± 1 channels (tensor channels) it takes values
of 2 and 3.

The choice of Ok
α (ignoring L · S operator in the correlation functions) has been

investigated in Ref. 7) and has been found that it is good approximation to ignore
the spin-orbit correlation.

In general, each of the correlation functions f (1)
α , f

(2)
α and f (3)

α is required to heal
to the modified Pauli function fMT

P (r),

fMT
P (r) =

[
1 − 1

2
(l(kF r))2

]− 1
2

n-n and p-p channels (MT = 1,−1),

= 1 n-p channels (MT = 0), (6)

with
l(x) =

3
x3

(sinx− x cosx), (7)

where kF = ((6π2

ν )ρ)
1
3 and ν = 4 and 2 for nuclear and neutron matter respectively.

The many-body energy term E [f ] is calculated by constructing a cluster expan-
sion for the expectation value of our Hamiltonian:

H =
A∑

i=1

p2
i

2m
+

1
2

A∑
i�=j

V (ij), (8)

where

V (12) =
∑
i,α

V i
α(12)Oi

α|α > 〈α|, (9)

Oi=1−3
α = 1, SI

12,L · S, (10)
Vα(12)i=1−3 = V c

α(12), V T
α (12), V LS

α (12), (11)

and V c
α(12), V T

α (12) and V LS
α (12) are the central tensor and spin-orbit channel-parts

of Reid93 interaction.2) Then, we keep only the first two terms in a cluster expansion
of the energy functional:

E [f ] =
1
A

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉 = E1 + E2 + E3 + · · · . (12)

The one body term E1 is independent of the f and is simply the Fermi-gas kinetic
energy, E1 = 3

5
~
2k2

F
2m , while the two-body energy term is defined as,

E2 = (2A)−1
∑
ij

〈ij |V|ij 〉a , (13)

where

V(12) = − �
2

2m
[f(12), [∇2

12, f(12)]] + f(12)V (12)f(12) (14)



Lowest order constrained variational calculation 25

and the two-body antisymmetrized matrix element 〈ij |V|ij 〉a are taken with respect
to the single-particle functions composing Φ, i.e. plane-waves. By inserting a com-
plete set of two-particle state twice in Eq. (13) and performing some algebra we can
rewrite the two-body term as follows:

E2 = Ecentral + Etensor, (15)

where

Ecentral =
1

2π5ρ

∑
α,mτ1mτ2

|〈mτ1mτ2 |T,mτ1 +mτ2〉|2(2J + 1)
1
2
{1 − (−1)L+S+T}

×
∫ ∞

0
dr

�
2

2m

{
f (1)′

2

α +
2m
�2
V c

αf
(1)2

α

}
a(1)2

α,mτ1 ,mτ2
(r), (16)

Etensor =
1

2π5ρ

∑
α,mτ1mτ2

|〈mτ1mτ2 |T,mτ1 +mτ2〉|2(2J + 1)
1
2
{1 − (−1)J+T }

×
∫ ∞

0
dr

�
2

2m

[{
f (2)′

2

α +
2m
�2

(V c
α + 2V T

α − V LS
α )f (2)2

α

}
a(2)2

α,mτ1 ,mτ2
(r)

+
{
f (3)′

2

α +
2m
�2

(V c
α − 4V T

α − 2V LS
α )f (3)2

α

}
a(3)2

α,mτ1 ,mτ2
(r)

+
{
r−2(f (2)

α − f (3)
α )2 +

2m
�2
V LS

α f (2)
α f (3)

α

}
b2α,mτ1 ,mτ2

(r)
]

(17)

and (i and j stand for protons or neutrons)

a
(1)2

α,i,j(r, ρ) = r2Iα
i,j;J(r, ρ), (18)

a
(2)2

α,i,j(r, ρ) = r2(2J + 1)−1[(J + 1)Iα
ij;J−1(r, ρ) + JIα

ij;J+1(r, ρ)], (19)

a
(3)2

α,i,j(r, ρ) = r2(2J + 1)−1[JIα
ij;J−1(r, ρ) + (J + 1)Iα

ij;J+1(r, ρ)], (20)

b2α,i,j(r, ρ) = r2(2J + 1)−1[2J(J + 1)(Iα
ij;J−1(r, ρ) − Iα

ij;J+1(r, ρ))], (21)

Iα
ij;J(x, ρ) =

∫
d�qJ 2

J (xq)Pij(q), (22)

with

Pij(q) =
2
3
π

[
ki

F
3 + kj

F

3 − 3
2
(ki

F
2 + kj

F

2
)q − 3

15
(ki

F
2 − kj

F

2
)2q−1 + q3

]
(23)

for 1
2 |ki

F − kj
F |〈q〈|ki

F + kj
F | and

Pij(q) =
4
3
πmin(ki

F
3
, kj

F

3
) (24)

for q〈1
2 |ki

F − kj
F | and

Pij(q) = 0 (25)

for q > 1
2 |ki

F + kj
F |. JJ(x) are the familiar Bessel functions.
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As we pointed out before, we impose the normalization condition:17)

ρ

∫
(G(r) − 1)d�r = −1, (26)

where G(r) is the two-body radial distribution function. This condition also plays
the role of smallness parameter in the cluster expansion.1)

The channel break down of the above normalization constraint9) has the follow-
ing form:

1
π5ρ

∑
α,k

(2J + 1)
1
2
[1 − (−1)(L+S+T )]|〈mτ1mτ2 |T,mτ1 +mτ2〉|2

×
∫ ∞

0
dr[f (k)2

α (r) − fMT
p

2
(r)]a(k)2

α,mτ1 ,mτ2
(r) = −1. (27)

Minimizing the two-body energy E2 subject to the constraint of Eq. (27), we find the
following sets of uncoupled,

g
(1)′′
α,i,j − [a(1)′′

α,i,j/a
(1)
α,i,j +m�

−2(V c
α + λ)]g(1)

α,i,j = 0 (28)

and coupled,

g
(2)′′
α,i,j − [a(2)′′

α,i,j/a
(2)
α,i,j +m�

−2(V c
α + 2V T

α − V LS
α + λ) + r−2b2α,i,j/a

(2)2

α,i,j ]g
(2)
α,i,j

+
(
r−2 − 1

2
m�

−2V LS
α

)
b2α,i,j{a(2)

α,i,ja
(3)
α,i,j}−1g

(3)
α,i,j = 0, (29)

g
(3)′′
α,i,j − [a(3)′′

α,i,j/a
(3)
α,i,j +m�

−2(V c
α − 4V T

α − 2V LS
α + λ) + r−2b2α,i,j/a

(3)2

α,i,j ]g
(3)
α,i,j

+
(
r−2 − 1

2
m�

−2V LS
α

)
b2α,i,j{a(2)

α,i,ja
(3)
α,i,j}−1g

(2)
α,i,j = 0. (30)

Euler-Lagrange differential equations, where

g
(k)
α,i,j = a

(k)
α,i,jf

(k)
α . (31)

The Lagrange multiplier λ have been introduced to satisfy the normalization condi-
tion. The constraint is incorporated by solving the above E-L equations only out to
certain distances, until the logarithmic derivative of correlation functions matches
those of fMT

p (r) and then we set the correlation functions equal to fMT
p (r). So as

we pointed out before there is no free parameter in our LOCV formalism, i.e. the
healing distance is determined directly by the constraint and the initial conditions.

§3. Nuclear and neutron matter results

The results of our LOCV calculations for nuclear matter are presented in Fig. 1.
Reid93 (J < 3) is a calculation without the J ≥ 3 channels of Reid93 interaction.
Reid68 (+J > 2) is the LOCV results with assumption of one pion exchange part of
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Fig. 1. The LOCV prediction of nuclear mat-

ter saturation curves for Reid93 interaction

and other potentials discussed in the text.

Reid93 (J < 3) is the same calculation

but by switching off the J > 2 channels

in Reid93.

Reid68 in J ≥ 3 channels (see Ref. 6) for
its detail) of the Reid68 potential. Our
previous calculations with AV18, UV14

and ∆-Reid68 potentials are also given
for comparison.9) It is seen that like
Reid68, Reid93 over binds nuclear mat-
ter. Its saturation energy is about −32.7
MeV at ρ = 0.48 fm−3. It is interesting
that E(ρ) for Reid93 (J < 3) and old
Reid68 (obviously for J < 3) are very
similar. They only show some differ-
ences at very high densities. This is ex-
pected, since Reid68 is more “singular”
near the origin, than that of Reid93.2)

On the other hand, there is much dif-
ferences between the E(ρ) of Reid68
(+J > 2) and Reid93. This shows
that the simple naive approximation of
OPE interaction in J ≥ 3 channels is
not enough and the higher partial waves
should be treated in the same footing as
the low partial waves (i.e. fitting the
phase-shift in J ≥ 3 partial waves ex-
plicitly). It also shows that different
channels should be treated separately
both in the interactions and correlation
functions. We will come back to this point later on.

We have also performed a LOCV calculation by using the Reid68 (Day) poten-
tial.5) This potential has been defined up to J = 5 partial waves. It is seen that we
get a similar result to those of Reid93.

In Table II we present the difference between the LOCV calculation for nuclear
matter with Reid93, Reid68, Reid68 (Day), UV14 and AV18 up to J = 9 (J = 5 for
Reid68 (Day)) and J = 2. It is seen that the higher partial waves are much more
negative in Reid93 and Reid68 (Day) than the other interactions. This again shows
the importance of channel-dependent calculations (note that UV14 and AV18 depend
only explicitly on (S,T)-channels).

Table II. The difference between the LOCV nuclear matter energies with J ≤ 9 and J ≤ 2 for

various potentials.

ρ (fm−3) Reid93 Reid68 Reid68 (Day) UV14 AV18

0.1 −1.41 −0.81 −1.22 1.9 0.74

0.2 −3.42 2.55 −2.99 2.23 1.72

0.3 −6.25 4.61 −5.42 2.05 2.77

0.4 −9.27 6.35 −7.52 1.2 3.73
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Table III. Comparison of channel breakdown of energy for Reid93, Reid68 (Day) and Reid68 in-

teractions at ρ = 0.3 fm−3.

Reid93 Reid68 Reid68 (Day)

channel MT = −1 MT = 0 MT = 1
P

MT

1S0 −7.67 −7.95 −7.67 −23.29 −23.89 −23.12

3P0 −1.82 −1.71 −1.82 −5.35 −5.35 −5.38

1P1 − 8.26 − 8.26 4.84 4.54

3P1 6.25 6.08 6.25 18.58 19.64 18.84

3S1 − −25.67 − −25.67 −23.62 −23.77

3D1 − 2.40 − 2.40 2.63 2.53

1D2 −1.97 −1.94 −1.97 −5.88 −5.65 −5.67

3D2 − −8.19 − −8.19 −8.94 −8.94

3P2 −4.92 −4.86 −4.92 −14.7 −14.51 −14.18

3F2 −0.47 −0.42 −0.47 −1.36 −1.33 −1.34

2 < J < 5 0.59 −7.43 0.59 −6.25 − −5.42

5 < J < 9 −0.11 −0.43 −0.11 −0.65 − −
Total −10.12 −4.86 −10.12 −62.12 −56.18 −61.92

Fig. 2. Comparison of 1S0 and 3S1 channels

contributions to the nuclear matter binding

energy for Reid93. LOCV (full curves) and

BHF20) (dashed curves).

The channel contributions to energy
for Reid93, Reid68 and Reid68 (Day)
interactions at ρ = 0.3 fm−3 are pre-
sented in Table III. As we stated before
(also see Fig. 1), for J ≤ 2 the contri-
bution of each channel is approximately
the same for both interactions. These
results show that the old Reid68 poten-
tial has been quite well fitted for J ≤ 2
channels and the other channels (J ≥ 3)
plus the three-body force or ∆ excita-
tions of nucleons may improve the N -N
interaction. On the other hand, there
is not much difference between the en-
ergies of various iso-spin projection in
different channels regarding Reid93 in-
teraction.

Figure 2 shows the density de-
pendence of 1S0 and 3S1 channels for
Reid93 interaction. The results of BHF
calculations20) are also presented for
comparison. In general BHF gives less
binding than LOCV. Both calculations
have the same density dependence up
to ρ = 0.25 fm−3. Especially BHF 3S1

channel starts to saturate at high densities, i.e. 0.4 fm−3, which is well known in
BHF calculation. As they have pointed out,20) their results are reliable below nuclear
matter density.
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The saturation properties of nuclear matter predicted by various techniques and
N -N interactions are given in Table IV. As we pointed out before, we get very
close results to that of VHC. The BHF calculation shows less binding for most of
the interactions except that of Reid93. It seems that only UV14 + TNI interaction
gets proof from different many-body techniques as a true N -N interaction, since
it gives result close to the empirical prediction. However TNI has been adjusted

Table IV. Nuclear matter saturation properties calculated with different many-body techniques

and interactions.

Potential Method Author ρ0 (fm−3) E0(ρ0) (MeV)

AV18 LOCV BM9) 0.31 −18.46

AV18 BHF EHMMP20) 0.24 −16.09

AV18 VHC APR16) 0.29 −18.6

AV14 LOCV BM9) 0.29 −15.99

AV14 VHC WFF16) 0.32 −15.6

AV14 BB DW21) 0.28 −17.8

AV14 BHF BBB22) 0.26 −18.26

UV14 LOCV BM9) 0.36 −20.81

UV14 VHC CP16) 0.35 −20.0

UV14 VHC WFF16) 0.33 −17.1

UV14 + TNI LOCV BM9) 0.17 −17.33

UV14 + TNI VHC WFF16) 0.16 −16.6

UV14 + TNI CBF FFP23) 0.16 −18.3

∆-Reid68 LOCV MI7) 0.25 −16.28

∆-Reid68 LOCV+E3 MI12) 0.2 −15.52

Reid68 LOCV OBI6) 0.29 −22.54

Reid68 LOCV MO19) 0.23 −14.58

Reid-V12 LOCV BM9) 0.29 −19.89

Reid-V12 VHC LP16) 0.28 −17.0

Reid-V8 LOCV BM9) 0.29 −18.19

Reid-V8 VHC LP16) 0.37 −21.37

BJ-II-V8 LOCV BM9) 0.22 −12.87

BJ-II-V8 VHC LP16) 0.18 −8.98

Reid93 BHF EHMMP20) 0.24 −15.36

Reid93 LOCV This work 0.48 −32.07

Empirical − − 0.17 −15.68

Table V. LOCV calculation up to various J values for Reid93 and Reid68 (Day) interactions at

ρ = 0.3 fm−3.

Reid93 Reid68 (Day)

E(J ≤ 2) −22.65 −22.62

E(J ≤ 3) −26.29 −26.82

E(J ≤ 4) −30.21 −29.85

E(J ≤ 5) −28.48 −27.72

E(J ≤ 6) −29.25 −
E(J ≤ 7) −28.77 −
E(J ≤ 8) −28.85 −
E(J ≤ 9) −28.72 −
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to reproduce the saturation curve. This shows that one should take into account
the three-body forces or ∆ degrees of freedom (also see the LOCV result with ∆-
Reid68 interaction) in the N -N potential in order to get results close to the empirical
saturation properties.

In order to see the effect of potentials up to various partial waves, we have
perform LOCV calculations for Reid93 and Reid68 (Day) potentials with maximum
J values between 2 and 9. The results are presented in Table V. It is seen that the
LOCV calculations in larger J values give more binding energy respect to smaller J
values.

In Fig. 3 our two-body kinetic and potential (−VPotential) energies are plotted
against density for different interactions, i.e. Reid68, Reid68 (Day), Reid93, UV14

and AV18. For most of the interactions the result of LOCV calculation varies between
15 to 20 MeV. Only the Reid93 and Reid68 (Day) results have large differences
from the other interactions. The results of APR16) calculations with AV18 are also
presented for comparison. Circles (triangles (squares)) are their two-body kinetic
(minus two-body potential (many-body)) energies. Their results are very similar to
ours. Their potential energies are the same as ours and our kinetic energies are equal

Fig. 3. The LOCV calculations with different

potentials for the two-body kinetic (full

curves) and potential (dotted curves) en-

ergies. Triangles (circles (squares)) are the

APR16) two-body potential (two-body ki-

netic (many-body)) energies with AV18 in-

teraction.

Fig. 4. The np correlation functions for the

coupled J < 3 channels. Full curve

(Reid93) and dotted curve (Reid68).
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to the sum of their two-body kinetic and many-body energies.
The np coupled correlation functions (CCF) for J ≤ 2 channels at ρ = 0.3 fm−3

are plotted in Fig. 4. Dotted curves are the Reid68 results (obviously it is averaged
over iso-spin projections). It is seen that only 3P2-3F2 channel has different correla-
tion range with respect to Reid68 one. Other np CF’s for coupled channels (J ≥ 3)
are presented in Fig. 5. Their behaviors are very different from J ≤ 2 CCF’s. But
on average, as the J increases their correlation ranges become shorter. They reflect
exactly the structure of N -N interactions.2) For comparison, in Fig. 6 we have plot-
ted the CCF’s of nn or pp for J ≥ 3 channels. Their structures are not too different
from the corresponding CCF’s of np channels.

Figure 7 shows the np CF’s of uncoupled channels for J ≤ 2. The Reid68 results
are also given for comparison. There are large differences, especially between the 1P1

CF’s of Reid93 and Reid68. This is expected since in Reid93, the r−1 singularities
have been completely removed in these channels. The J ≥ 3 np uncoupled CF’s are
presented in Fig. 8. Similar to J ≥ 3 CCF’s, they have different structure from the
J ≤ 3 CF’s. Only the 1F3 CF’s has correlation range as long as J ≤ 2 CF’s. As we
will mention later on the J = 3 channel in Reid93 potential has different behavior
from other channels (i.e. it is more attractive). Figure 9 shows nn or pp uncoupled
CF’s for J ≤ 2 channels which can be compared with the corresponding CF’s for
np channels presented in Fig. 7. There is not much difference between them, which
indicates that the charge dependence of N -N interaction is not as important as the

Fig. 5. As Fig. 4 but for J > 2. Fig. 6. As Fig. 4 but for any J and nn or pp

channels .
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Fig. 7. As Fig. 4 but for uncoupled channels. Fig. 8. As Fig. 5 but for uncoupled channels.

higher partial waves (J ≥ 3). The pp or nn uncoupled CF’s with J ≥ 3 are also
plotted in Fig. 10. The same conclusions, as above, can be made for them as well.

In Fig. 11, we present the results of our LOCV calculations for pure neutron
matter (PNM) with Reid93 interaction. The similar calculations but with other
potentials are also given for comparison. The mark styles are the results of different
many-body techniques with the interactions we have considered here. Similar to
our nuclear matter calculations, we find much difference between the results of PNM
with Reid93 and Reid68 interactions. It seems that in general, the LOCV calculation
with Reid93 shows completely different density dependence from other interactions.
Again, like nuclear matter, LOCV and BHF results with Reid93 are not close. They
also show different behavior respect to other N -N potentials as well. At least in
Ref. 20), a very simple model has been used for the BHF calculation and as it has been
pointed out in this reference, the calculation is not very accurate for ρ ≥ 0.17 fm−2.
There is not any VHC calculation available with Reid93. But PNM results of LOCV
and VHC are very close for other potentials (especially for AV18).

Finally in order to see why in general Reid93 gives more binding than other
interactions, such as AV18, in Fig. 12 we have compared the central and tensor parts
of Reid93, Reid68 and AV18 interactions in J = 2 and J = 3 channels, because we
found from Table V that the main difference between the LOCV results with these
interactions comes from J = 3 channel. It is seen from this figure that the potentials
are roughly the same in J = 2 channels especially for r larger than 0.3 fm, but in
J = 3 channel Reid93 and Reid68 (Day) are attractive where as AV18 is repulsive.
So we expect that we get more binding with the Reid potentials respect to AV18
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Fig. 9. As Fig. 8 but for nn or pp channels

with J ≤ 2.

Fig. 10. As Fig. 8 but for nn or pp channels

with J ≥ 3.

interaction.

§4. Summary and conclusions

We have developed the LOCV formalism for the new Reid93 potential which is
charge-dependent and has been fitted very accurately to the partial wave phase shift
up to J = 9. It is important that we could solve the corresponding E-L (coupled and
uncoupled) differential equations with appropriate constraint up to J = 9 states.
It was found that the nuclear and neutron matter results are very different from
those have been previously obtained using the same techniques but with different
potentials. It was shown that while the J ≥ 3 partial waves have a large effect on
our results, the charge-dependent properties of Reid93 do not change the nuclear
and neutron matter energies significantly in different channels.

Our results for Reid93 are very different from those of BHF calculations. This
difference is in the same direction respect to the same calculations but with other
N -N interactions. On the other hand, it is encouraging that the LOCV and VHC
predict very close results for nuclear and neutron matter. Although it can be argued
that it is not known how large is the higher order terms that LOCV ignores in the
cluster expansion. As we explained before, our state-averaged calculation shows that
the many-body terms are very small beyond the nuclear matter density. However,
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Fig. 11. The results of pure neutron matter calculations for various many-body techniques and

N -N interactions. Full curves are the LOCV results with different potentials.

this dependence is under investigation,24) since we believe that the explicit treatment
of state-dependent correlation functions is very important. VHC also implies a state-
averaged approximation (for example with this approximation the contribution of
L · S terms in the diagonal matrix elements becomes zero). Beside this, as we
stated before, rather than solving Euler-Lagrange differential equation, VHC uses
the parameterized correlation functions. In VHC the neglecting higher-order terms
estimated to be as much as 1 to 4 MeV (the normalization constraint is uncertain
within 10%) and the accuracy of spin-orbit correlations is difficult to estimate.16) So
we would like to repeat this remark that the LOCV method is in good agreement
with other variational calculations which claim that they include many-body cluster
contributions. Therefore we believe LOCV method, especially because of its great
simplicity, will be useful tool in the study of the other properties of nuclear matter,
finite nuclei, Helium liquid, etc.

We have tested several N -N interactions during last two decades. It seems that
none of the nucleon-nucleon potentials can produce satisfactory results. Of course,
new potentials such as the Reid93, AV18, etc. are more reliable than old interactions
since they fit the N -N data more accurately. But still there are several points that
should be considered to get a reliable N -N interactions.1) We can summarized these
effects as follows: (1) relativistic effect, (2) medium effect, (3) many-body forces,
(4) uncertainty in the precise values of πNN coupling, (5) contradiction in the np
scattering length, (6) incomplete understanding of charge-dependence especially in
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Fig. 12. The comparison of central (a,b) and tensor (c,d) parts of Reid93, Reid68 (Day) and AV18

interactions in MeV.

1S0 channel, (7) nonlocality, (8) position of multi-meson exchange diagram, and (9)
the theoretical understanding of N -N interaction, starting from the quark-gluon
picture.

Finally, we hope we could develop the LOCV formalism to perform nuclear
matter calculations with the non-local N -N potentials.
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