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Lp AND OPERATOR NORM ESTIMATES

FOR THE COMPLEX TIME HEAT OPERATOR

ON HOMOGENEOUS TREES

ALBERTO G. SETTI

Abstract. Let X be a homogeneous tree of degree greater than or equal to
three. In this paper we study the complex time heat operator Hζ induced by
the natural Laplace operator on X. We prove comparable upper and lower
bounds for the Lp norms of its convolution kernel hζ and derive precise esti-
mates for the Lp–Lr operator norms of Hζ for ζ belonging to the half plane
Re ζ ≥ 0. In particular, when ζ is purely imaginary, our results yield a descrip-
tion of the mapping properties of the Schrödinger semigroup on X.

Let X be a homogeneous tree of degree q + 1, i.e., a connected graph with no
loops in which every vertex is adjacent to q + 1 other vertices. Unless explicitly
stated otherwise, we will assume that q ≥ 2. We will write x ∼ y if x and y are
adjacent. X carries a natural distance function d, d(x, y) being the number of edges
between the vertices x and y, and a natural measure, the counting measure, with
respect to which we form the Lebesgue spaces Lp(X).

On X there is also a natural Laplace operator defined by the formula

Lf(x) =
1

q + 1

∑
x∼y

[f(x)− f(y)] .

L is easily seen to be bounded on Lp(X) for every 1 ≤ p ≤ +∞, and self-adjoint on
L2(X), and therefore the heat operator Ht, which is spectrally defined on L2(X) by

Htf =

∫
σ2(L)

e−tλdPλf ∀t ∈ (0,+∞) ∀f ∈ L2(X),

where σ2(L) denotes the L2 spectrum of L, and Pλ its spectral resolution, is also
given by the series

Ht =

+∞∑
k=0

(−t)kLk
k!

and the series is absolutely convergent in the Lp(X) operator norm. Moreover one
can replace the positive real parameter t with the complex parameter ζ and obtain
a group of bounded operators on Lp(X).
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744 A. G. SETTI

A detailed study of the heat operator for t ≥ 0 was carried out in [CMS2], where
comparable upper and lower bounds for the Lp–Lr operator norms of Ht and for
the Lp norms of its convolution kernel ht were obtained. In this paper we consider
the analogous problem for the complex-time heat operator Hζ .

We describe the behaviour of the Lp(X) norms of the heat kernel hζ for all p in
[1,+∞], when ζ belongs to the half plane Re ζ ≥ 0 (actually our results are easily
seen to hold for ζ in the half plane Re ζ ≥ −η, for fixed η > 0). Our analysis allows
us in fact to obtain estimates for the norm of hζ in the Lorentz spaces Lp,r(X)
without extra effort, when p and r are such that 1 ≤ p < 2 and 1 ≤ r ≤ 2, or p > 2
and 1 ≤ r ≤ ∞. Using the detailed description of the space of bounded convolution
operators from Lp to Lr in terms of Lorentz spaces obtained in [CMS1], we are
then able to derive precise bounds for the Lp–Lr operator norms of Hζ for every
1 ≤ p ≤ r ≤ +∞, when Re ζ ≥ 0. In particular, by taking ζ to be purely imaginary,
our estimates describe the behaviour of the Lp and Lp–Lr operator norms of the
Schrödinger semigroup.

We note that the results in [CMS2] were obtained by means of techniques of
spherical Fourier analysis on X. In the complex-time setting the analysis becomes
considerably more complicated, essentially due to the fact that the convolution
kernel hζ is no longer positive. Techniques of spherical analysis can still be employed
to derive lower bounds, but upper bounds are not so easily obtained in this fashion.

To obviate this difficulty, we use a formula derived in [CMS2], which expresses
hζ in terms of the heat kernel hZ

ζ
on the group of integers Z. The latter has an

expression in terms of the modified Bessel function In(z). Using this, and suitable
approximation formulae for In(z), we are able to obtain the required upper bounds.

In this respect, our technique is similar to that used to estimate the heat kernel
on symmetric spaces of non-compact type, where one realises the heat kernel on
the symmetric spaces as the inverse Abel transform of the Euclidean heat kernel
(see e.g. [G]). Two differences are worth highlighting. On the one hand, our task is
simplified by the fact that in our case the infinitesimal generator of the heat operator
is bounded. Consequently we do not have to deal with local analysis, which is a
major task in the continuous case, and the heat semigroup is in fact a group. This
for example accounts for the Lp–Lr boundedness of the Schrödinger semigroup, a
fact that has no counterpart in the continuous setting. On the other hand, the heat
kernel on Z is not an elementary function, and a substantial problem we have to
overcome is the control of the error terms introduced when approximating hZ

ζ
by

its asymptotic expansion.
Indeed, these error terms turn out to be uniformly bounded only in fixed sectors

|arg ζ| ≤ θo < π/2 (see the Appendix below). Nevertheless, by a careful analysis,
we are actually able to deduce norm estimates for hζ that hold uniformly in fixed
half planes strictly contained in Re ζ ≥ 0. The extension to the full half plane
Re ζ ≥ 0 (and indeed to the half planes Re ζ ≥ −η with η ≥ 0 fixed) is then
achieved using the group property.

The kind of results we obtain is effectively illustrated by our main theorem. To
state it we need to introduce a little notation.

For p in [1,+∞], denote by p′ the conjugate index p/(p − 1), and let δ(p) =
1/p− 1/2. Let γ : C → C be the function defined by

γ(z) =
q1/2

q + 1
(qiz + q−iz) =

2q1/2

q + 1
cos(z log q).
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COMPLEX TIME HEAT OPERATOR 745

Note that the Lp spectrum σp(L) of L is the image under 1 − γ of the strip {z ∈
C : |Im z| ≤ |δ(p)|}, so that, if bp denotes the infimum of inf Re (σp(L)) , we have
bp = 1− γ(iδ(p)) (see, e.g., [FTN], Chapter 2).

Let |||Hζ |||p,r denote the Lp–Lr norm of Hζ , and, given two nonnegative functions

f and g, both defined on a set D, write f(ζ) ∼ g(ζ) in D if there exist positive
constants C1 and C2 such that C1f(ζ) ≤ g(ζ) ≤ C2f(ζ) for all ζ in D. Finally, let
Φp(ζ) be the equivalent norm on C defined by the formula

Φp(ζ) = γ(iδ(p))
(
(Re ζ)2 + tanh2(δ(p) log q)(Im ζ)2

)1/2
.

With this notation we have the following:

Theorem 1. Let (Hζ) be the heat operator defined above. Then the following hold:
(i) for all 1 ≤ p ≤ r ≤ +∞,

|||Hζ |||p,r ∼ 1 ∀ζ : |ζ| ≤ 1;

(ii) if p = r = 2, then

|||Hζ |||p,r = exp [−b2 Re ζ] ∀ζ : Re ζ ≥ 0;

(iii) if p = r 6= 2 is in [1,∞], then

|||Hζ |||p,r ∼ exp [−Re ζ + Φp(ζ)] ∀ζ : Re ζ ≥ 0;

(iv) if p and r are such that either 1 ≤ p < r = 2 or 2 = p < r ≤ ∞, then

|||Hζ |||p;r ∼ min
{
1,Re−3/4 ζ

}
exp [−b2 Re ζ] ∀ζ : Re ζ ≥ 0;

(v) if p and r are such that 1 ≤ p < r < 2, then

|||Hζ |||p;r ∼ |ζ|−1/2r′
exp [−Re ζ + Φr(ζ)] ∀ζ : |ζ| ≥ 1, Re ζ ≥ 0;

(vi) if p and r are such that 2 < p < r ≤ ∞, then

|||Hζ |||p;r ∼ |ζ|−1/2p
exp [−Re ζ + Φp(ζ)] ∀ζ : |ζ| ≥ 1, Re ζ ≥ 0;

(vii) if p and r are such that 1 ≤ p < 2 < r ≤ ∞, then

|||Hζ |||p;r ∼ |ζ|−3/2
exp [−b2 Re ζ] ∀ζ : |ζ| ≥ 1, Re ζ ≥ 0.

1. Preliminaries and notation

Let o be a reference point in X and write |x| for d(x, o). We say that a function
f on X is radial if it depends only on |x|. If E(X) is a function space on X, we will
denote by E(X)] the subspace of radial elements in E(X).

Let G be the group of automorphisms of (X, d), and Go the isotropy subgroup
of o. Then X may be identified with the coset space G/Go. By means of this iden-
tification functions on X can be identified with Go–right-invariant functions on G,
and radial functions correspond to Go–bi-invariant functions on G.

We endow the totally disconnected unimodular group G with the Haar measure
such that the open compact subgroup Go has unit mass. Then∑

x∈X

f(x) =

∫
G

f(g · o) dg, ∀f ∈ L1(X),

and this allows us to define the convolution of two functions on X as

f1 ∗ f2(g · o) =

∫
G

f1(h · o) f2(h−1g · o) dh ∀g ∈ G,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



746 A. G. SETTI

whenever the integral makes sense. We observe that, in case f2 is radial, we can
write

f1 ∗ f2(x) =

+∞∑
n=0

f2(xn)
∑

d(x,y)=n

f1(y),

where, for every n, xn is such that |xn| = n.
It follows that the Laplace operator can be expressed in terms of convolution by

the formula

Lf = f ∗ (δo − ν),

where δo is the Dirac measure at o, and ν is the normalised radial measure concen-
trated on the set S1 = {x ∈ X : |x| = 1}. More generally, every G–invariant (in the
sense that K(f ◦ g) = (Kf) ◦ g for every g in G) continuous operator from Lp(X) to
Lr(X) (weak-star continuous if r = +∞) is given by right convolution with a Go–bi-
invariant kernel k. We will denote by Cvrp(X) the space of such convolution kernels.
The norm of an element k in Cvrp is then defined as the norm of the corresponding

invariant operator. A simple duality argument shows that Cvrp(X) = Cvp
′

r′ (X) with
equality of norms, and the easy generalisation of a theorem of Hörmander [H] shows
that Cvrp(X) is the trivial space if p > r.

Now we summarise the main features of spherical analysis on X. Let τ denote
2π/ log q, and for every positive real number β let Sβ and Sβ be the strips {z ∈ C :
|Im z| < β} and {z ∈ C : |Im z| ≤ β}, respectively.

The spherical functions are defined to be the radial eigenfunctions of the Laplace
operator L satisfying the normalisation condition φ(o) = 1, and are given by

φz(x) =



(
1 +

q − 1

q + 1
|x|
)
q−|x|/2 ∀z ∈ τZ,(

1 +
q − 1

q + 1
|x|
)
q−|x|/2(−1)|x| ∀z ∈ τ/2 + τZ,

c(z) q(iz−1/2)|x| + c(−z) q(−iz−1/2)|x| ∀z 6∈ (τ/2)Z,

where c is the meromorphic function defined by the rule

c(z) =
q1/2

q + 1

q1/2+iz − q−1/2−iz

qiz − q−iz
∀z 6∈ (τ/2)Z.

We remark that our parametrisation of spherical functions is different from that
in [FTP] and [FTN]; our φz corresponds to their φ1/2+iz , and c is reparametrised
similarly.

The spherical Fourier transform f̃ of a function f ∈ L1(X)] is then defined by
the formula

f̃ (z) =
∑
x∈X

f(x)φz(x) ∀z ∈ S1/2.

By the symmetry properties of the spherical functions, f̃ is even and τ -periodic in
the strip S1/2.

Let dµ be the Plancherel measure defined on the torus T = R/τZ, usually iden-
tified with [−τ/2, τ/2), by the formula

dµ(s) = cG|c(s)|−2
ds,
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COMPLEX TIME HEAT OPERATOR 747

where cG =
q log q

4π(q + 1)
. Then the spherical Fourier transformation extends to an

isometry of L2(X)] onto L2(T, dµ(s)), and corresponding Plancherel and inversion
formulae hold:

‖f‖2 =

(∫ τ/2

τ/2

∣∣∣f̃ (s)
∣∣∣2 dµ(s)

)1/2

∀f ∈ L2(X)],

and

f(x) =

∫ τ/2

−τ/2
f̃ (s)φs(x) dµ(s) ∀x ∈ X ∀f ∈ L2(X)].

See, for instance, [FTN], Chapter 2. We also will need the following version of the
classical Hausdorff–Young inequality which was proved in [CMS1].

Theorem 2. Let 1 ≤ p < 2 and 1 ≤ r ≤ 2. If f is in Lp,r(X)], then f̃ may
be extended to an even, τ-periodic holomorphic function in the strip Sδ(p)), whose

boundary values f̃ (·+ iδ(p)) and f̃ (· − iδ(p)) are the Euclidean Fourier transforms

of functions in Lr(T). Moreover, the map z 7→ f̃ (z + ·) is continuous from Sδ(p)

into Lr
′
(T) and(∫ τ/2

−τ/2

∣∣∣f̃ (z + s)
∣∣∣r′ ds)1/r′

≤ C ‖f‖p,r ∀z ∈ Sδ(p).

We will use the “variable constant convention”, denoting by C a constant which
may vary from place to place and may depend on any factor quantified before its
occurrence, but not on factors quantified afterwards.

2. The complex-time heat kernel on X

Let Hζ be the complex-time heat operator of L, and hζ its convolution kernel,
so that

Hζf = f ∗ hζ ∀f ∈ X.

From the power series representation of Hζ

Hζ =

+∞∑
k=0

(−ζ)k
k!

Lk,

one readily sees that

hζ(x) =
+∞∑
k=0

(−ζ)k
k!

(δo − ν)(∗k) = e−ζ
+∞∑
k=0

ζk

k!
(ν)(∗k),

where ν(∗k) denotes the k-th convolution power of ν. Since ‖ν‖1 = 1 it follows easily
that

‖hζ‖1 ≤ e−Re ζ+|ζ|, ∀ζ ∈ C.
From this one deduces immediately that the series defining Hζ converges in the
Lp operator norm, and therefore, by the inclusion properties of Lp spaces, in the
Lp–Lr operator norm for every p and r such that p ≤ r. Moreover,

|||Hζ |||p,r ≤ ‖hζ‖1.
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748 A. G. SETTI

Note also that the L2 adjoint of Hζ is Hζ , so that

|||Hζ |||p,r = |||Hζ |||r′,p′ .
As already mentioned, if ζ = it, with t ∈ R, then the heat operator defined above

reduces to the Schrödinger semigroup, H it, which solves the Schrödinger equation

i
d

dt
H it = −LH it.

Thus the properties listed above, and the norm estimates that we are going to
establish, hold in particular for the latter semigroup. The Lp–Lr boundedness of
H it for 1 ≤ p ≤ r ≤ +∞ constitutes a significant difference from the case of
Schrödinger equation on spaces that are not compact and symmetric. We also note
that a direct derivation of the norm estimates for the Schrödinger semigroup would
be significantly more difficult.

Since the spherical Fourier transform of (δo−ν) is 1−γ(z), the spherical Fourier
transform of the heat kernel is

h̃ζ (z) = e−ζ[1−γ(z)],

whence, by spherical Fourier inversion,

hζ(x) =

∫ τ/2

−τ/2
exp [−ζ(1− γ(s))] φs(x) dµ(s) ∀x ∈ X.(1)

As mentioned in the introduction, upper bounds for hζ will be derived using a
formula that expresses hζ in terms of the heat kernel on the group of integers Z.
To avoid ambiguity, we will denote with a sub- or superscript Z objects defined on
Z. Thus LZ is the Laplacian on Z, which is defined by

LZf(d) = f(d)− f(d+ 1) + f(d− 1)

2
= f ∗Z (δ0 − νZ),

where δd is the Dirac measure at d, and νZ = (δ1 + δ−1)/2, h
Z
ζ

is the complex-time
heat kernel on Z, and so on.

Let F be the Fourier transformation defined on Z by the formula

FF (s) =

+∞∑
d=−∞

F (d)qi dz ∀F ∈ L1(Z), ∀s ∈ T,

with corresponding inversion formula

F (d) =
1

τ

∫ τ/2

−τ/2
FF (d)q−i ds ds.

The Fourier transform of the convolution kernel associated to LZ is [1−cos(s log q)];
hence that of hZ

ζ
is exp[−ζ(1 − cos(s log q))] and, by Fourier inversion,

hZ
ζ
(d) =

1

τ

∫ τ/2

−τ/2
exp [−ζ(1− cos(s log q))] e−isd ds

=
e−ζ

2π

∫ π

−π
exp [ζ cos s)] cos(sd) ds = e−ζI|d|(ζ),

(2)

where In(ζ) denotes the modified Bessel function of order n, and the last equality
follows from one of the integral representations of modified Bessel functions (see,
e.g, [W], formula (4), p. 181).
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In the following proposition we express hζ in terms of hZ
ζ
, and find a contour

integral representation of hζ which is closely related to one of the representations
of modified Bessel functions.

Proposition 3. The following hold:
(i)

hζ(x) =
2 e−b2ζ

γ(0) ζ
q−|x|/2

∞∑
k=0

q−k (|x|+ 2k + 1)hZ
γ(0)ζ

(|x|+ 2k + 1).

(ii) For every ζ with Re ζ > 0 and every x in X

hζ(x) =
1

2πi
q−|x|/2e−ζ

∫ ∞+iπ

∞−iπ
exp{γ(0)ζ coshw − |x|w} e2w − 1

e2w − q−1
dw,

where the integral is evaluated over a contour in the complex half plane Re w >
− 1

2 log q that originates from ∞− iπ and ends at ∞+ iπ.

Proof. (i) is obtained replacing the real parameter t with ζ in the proof of [CMS2],
Proposition 2.5, but, for completeness and the convenience of the reader, we outline
the argument.

Using the explicit expression of spherical functions, and the identity c(−s) =

c(s), we have

φs(x) dµ(s) = cG

(
c(−s)−1q(is−1/2)|x| + c(s)−1q(−is−1/2)|x|

)
,

for all x in X and s in [−τ/2, τ, /2). Since h̃ζ is even we may rewrite the inversion
formula (1) as follows:

hζ(x) = 2cG

∫ τ/2

−τ/2
exp [−ζ(1− γ(s))] q(−is−1/2)|x|c(s)−1ds,

and then, substituting the expression of c(s), changing variables, and simplifying,
we finally arrive at

hζ(x) =
1

2π
q−|x|/2e−ζ

∫ π

−π
exp {γ(0)ζ cos s− is |x|} 1− e−2is

1− q−1e−2is
ds.(3)

Expanding the denominator in the last integral and rearranging yields

hζ(x) = e−b2ζ q−|x|/2
∞∑
k=0

q−k
[
hZ
γ(0)ζ

(|x|+ 2k)− hZ
γ(0)ζ

(|x|+ 2k + 2)

]
,

whence (i) follows using the formula

hZ
ζ
(d) − hZ

ζ
(d+ 2) =

2(d+ 1)

ζ
hZ
ζ
(d+ 1),

which in turn is a consequence of (2) and of the recurrence formula Iν−1(z) −
Iν+1(z) = (2ν/z)Iν(z) satisfied by the modified Bessel functions (see, e.g., [W],
formula (1), p. 79).

To prove (ii) we perform the change of variables u = eis in (3) to obtain

hζ(x) =
1

2πi
q−|x|/2e−ζ

∫
C
eγ(0)ζ(u+u−1)/2u−(|x|+1) u2 − 1

u2 − q−1
du,

where C is the unit circle centered at the origin. Since the integrand is singular
at u = 0, ±q−1/2 and analytic elsewhere, by Cauchy’s theorem the contour of
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750 A. G. SETTI

integration can be deformed to any curve that goes around the points 0, ±q−1/2

once. Keeping into account the fast decay of the integrand as Re u → −∞ in the
strip |Im u| ≤ C with C constant, we can in fact deform the contour to a curve
that starts from ∞ with argument −π, encloses the points 0,±q−1/2 and ends at
∞ with argument +π. Performing the further change of variables u = ew yields
(ii).

Note that since
∣∣∣hZ

ζ
(d)
∣∣∣ ≤ min

{
1, C Re−1/2 ζ

}
for every ζ with Re ζ ≥ 0, the

series in (i) is absolutely convergent in Re ζ ≥ 0 and we have the trivial bound

|hζ(x)| ≤ Cmin
{
1, |ζ|−1

Re−1/2 ζe−b2 Re ζ
}
.

We also remark that by applying the saddle point or the steepest descent method
to the contour integral in (ii), one could, at least in principle, obtain the asymptotic
expansion of hζ(x) for |x| large, and upper and lower pointwise bounds for |hζ(x)| .
Either method involves a careful choice of a contour of integration passing through
the critical points of the argument of the exponential. This step is fairly easy if
ζ = t is assumed to be real, and indeed in this case one can recover the results
of [CMS2], Proposition 2.5, without too much effort. On the other hand, the task
of finding suitable integration contours is not entirely trivial when ζ is complex,
especially if ζ is not confined to lie in a fixed sector, and the problem of obtaining
uniform estimates for the resulting integral might be quite difficult. Alternatively,
the asymptotic behavior of modified Bessel functions, and therefore of hζ , may
also be obtained by means of differential equation techniques, which provide more
manageable expressions for the error terms (see [O]). A discussion of the results
that can be obtained using this approach is contained in the Appendix, where
we also derive explicit upper bounds for the error terms (see Theorem A4). The
pointwise upper estimates for hZ

ζ
(d) that can be deduced from Theorem A4 and

Proposition 3 (i) above may then be used to obtain norm estimates for hζ , as
shown in the following corollary, where the norm ‖hζ‖p,r of hζ in the Lorentz space

Lp,r(X) is estimated in terms of suitable weighted Lr(N) norms of hZ
γ(0)ζ

.

Corollary 4. For every p and r in [1,+∞), there exists a constant C such that,
for every ζ 6= 0,

‖hζ‖p,r ≤ C
e−b2 Re ζ

|ζ|

(
+∞∑
d=0

drqrδ(p)d
∣∣∣hZ

γ(0)ζ
(d)
∣∣∣r)1/r

.

If p ≤ 2 log q/ log 2, there exists a constant C ′ such that the reverse inequality also
holds.

Proof. We recall that if {o = x0, x1, . . . } is a geodesic emanating from o, so that
|xd| = d for every d, then the map

f 7→
(

+∞∑
d=0

qdr/p |f(xd)|r
)1/r
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defines an equivalent norm on the space Lp,r(X)] (see [P]). Accordingly, by (i)
above we have

‖hζ‖p,r ∼
e−b2 Re ζ

|ζ|

(
+∞∑
d=0

qdr/p

∣∣∣∣∣
+∞∑
k=0

(d+ 2k + 1)q−(d+2k+1)/2hZ
γ(0)ζ

(d+ 2k + 1)

∣∣∣∣∣
r)1/r

=
e−b2 Re ζ

|ζ|

(
+∞∑
d=0

∣∣∣∣∣
+∞∑
k=0

(d+ 2k + 1)q−(2k+1)/pqδ(p)(d+2k+1)hZ
γ(0)ζ

(d+ 2k + 1)

∣∣∣∣∣
r)1/r

.

Denote by I the quantity in brackets on the right hand side of the formula above.
By Minkowski’s inequality

I ≤
+∞∑
k=0

q−(2k+1)/p

(
+∞∑
d=0

(d+ 2k + 1)rqrδ(p)(d+2k+1)
∣∣∣hZ

γ(0)ζ
(d+ 2k + 1)

∣∣∣r)1/r

≤
+∞∑
k=0

q−(2k+1)/p

(
+∞∑
d=0

drqrδ(p)d
∣∣∣hZ

γ(0)ζ
(d)
∣∣∣r)1/r

,

and the required upper estimate follows.
To prove the lower estimate, we break the inner series in the formula for I in

the sum of its first term and the series for k ≥ 1, we apply Minkowski inequality to
estimate the Lr(N) norm of the sum of these two terms by the difference of their
norms, and again use the Minkowski inequality to estimate from above the norm
of the second term. Thus we arrive at

I ≥ q−1/p

(
+∞∑
d=0

drqrδ(p)(d)
∣∣∣hZ

γ(0)ζ
(d)
∣∣∣r)1/r {

1−
+∞∑
k=1

q2k/p

}
.

The lower estimate now follows from the fact that the quantity in braces is equal
to (q2/p − 2)/(q2/p − 1).

3. Norm estimates for the heat kernel: Lower bounds

In this section we prove lower estimates for the Lp norm of hζ , postponing to
the following section a discussion of the corresponding upper estimates. For the
proof of Theorem 1 we will only use lower bounds for the Lp(X) norms of the heat
kernel, but since without any extra effort our techniques yield bounds for the norm
‖hζ‖p,r of hζ in the Lorentz space Lp,r(X) for p and r belonging to a large range of

values, we state our result in this more general form.

Theorem 5. Let hζ be the complex-time heat kernel. Then the following hold uni-
formly in Re ζ ≥ 0:

(i) If p = 2,

‖hζ‖p ∼ min
{
1,Re−3/4 ζ

}
exp[−b2 Re ζ].

(ii) If p is in [1, 2) and r is in [1, 2], then

‖hζ‖p,r ≥ Cmin
{
1, |ζ|−1/2r′

}
exp [−Re ζ + Φp(ζ)] .
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(iii) If p = +∞, then,

‖hζ‖p ≥ Cmin
{

1, |ζ|−3/2
}

exp [−b2 Re ζ] .

(iv) If 2 < p < +∞, and 1 ≤ r ≤ +∞ then

‖hζ‖p,r ≥ Cmin
{

1, |ζ|−3/2
}

exp [−b2 Re ζ] .

Proof. If p = 2, by Plancherel theorem

‖hζ‖2
2 =

∫ τ/2

−τ/2
exp (−2 Re ζ[1− γ(s)]) dµ(s) = ‖hRe ζ‖22,

and (i) follows immediately from the result in the real-time case ([CMS2], Lemma
2.1 (i)).

To prove (ii), note first of all that ‖hζ‖p,r is continuous and strictly positive for

every ζ. Indeed, the continuity is obvious and the second assertion follows easily
from the inequality ‖hζ‖p,r ≥ ‖hζ‖∞, from the fact that the latter is strictly positive

for ζ real positive, and from the group property. Therefore it suffices to prove that
(ii) holds for |ζ| ≥ 1.

Next use Theorem 2 to get

‖hζ‖p,r ≥ C

(∫ τ/2

−τ/2

∣∣∣h̃ζ (s+ iδ(p))
∣∣∣r′ ds)1/r′

= C e−Re ζbp

(∫ τ/2

−τ/2
e−r

′ Re(ζ[γ(iδ(p))−γ(s+iδ(p))]) ds

)1/r′

,

(4)

and we are reduced to estimating the last integral. A straightforward computation
shows that

γ(iδ(p))− γ(s+ iδ(p))

=
2q1/2

q + 1
cosh(δ(p) log q)

(
1− cos(s log q) + i tanh(δ(p) log q) sin(s log q)

)
= γ(iδ(p))

[
1− cos(s log q) + i tanh(δ(p) log q) sin(s log q)

]
,

and therefore

Re
(
ζ[γ(iδ(p))− γ(s+ iδ(p))]

)
= γ(iδ(p))

(
[1− cos(s log q)] Re ζ − tanh(δ(p) log q) sin(s log q) Im ζ

)
.

When we insert this and change variables, the integral to be estimated becomes

1

log q

∫ π

−π
e−r

′ϕζ(s) ds,

where we have set

ϕζ(s) = γ(iδ(p))
(
Re ζ[1− cos s]− tanh(δ(p) log q) Im ζ sin s

)
.

One readily verifies that ϕζ attains its minimum at

sζ = tan−1

(
Im ζ

Re ζ
tanh(δ(p) log q)

)
,
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and that

ϕζ(sζ) = γ(iδ(p))Re ζ − Φp(ζ) and ϕ′′ζ (sζ) = Φp(ζ).

Moreover, since ϕ′′′ζ (s) = −ϕ′ζ(s) for every s,

ϕ′′ζ (s) ≤ Φp(ζ) ∀s ∈ [−π,+π],

so that expanding φζ(s) around sζ yields

ϕζ(s)− ϕζ(sζ) =
1

2
ϕ′′ζ (s)(s− sζ)

2 (s between sζ and s)

≤ 1

2
Φp(ζ)(s − sζ)

2,

for every s in [−π, π]. Thus,∫ π

−π
e−r

′ϕζ(s) ds ≥ e−r
′(γ(iδ(p))Re ζ−Φp(ζ))

∫ π

−π
e−r

′Φp(ζ)(s−sζ)2/2 ds

≥ e−r
′(γ(iδ(p))Re ζ−Φp(ζ))

Φ
1/2
p (ζ)

∫ Φ1/2
p (ζ)π

0

e−r
′u2/2 du

≥ C
e−r

′(γ(iδ(p))Re ζ−Φp(ζ))

Φ
1/2
p (ζ)

,

for all ζ such that |ζ| ≥ 1. (ii) follows on substituting the last inequality in (4)
above and using

tanh(δ(p) log q) |ζ| ≤ Φp(ζ) ≤ |ζ| .
We now prove (iii). We claim that it suffices to prove that

‖hζ‖∞ ≥ C |ζ|−3/2
exp [−b2 Re ζ] ∀ζ : Re ζ ≥ a,

for some fixed a > 0. For then, by the group property and Young’s inequality for
convolution, it follows that, for 0 ≤ Re ζ ≤ a,

‖hζ‖∞ ≥ ‖h a‖−1
1 ‖h ζ+a‖∞ ≥ C‖h a‖−1

1 |ζ + a|−3/2 exp [−b2(Re ζ + a)] ,

and the required inequality follows.
Next, since ‖hζ‖∞ ≥ |hζ(o)| , it suffices to estimate the latter quantity for ζ such

that Re ζ ≥ a.
Since φz(o) = 1 for every z, and c(−s) = c(s), by spherical Fourier inversion

hζ(o) = cG

∫ τ/2

−τ/2
e−ζ[1−γ(s)] |c(s)|−2

ds

= 2 cGe
−ζb2

∫ τ/2

0

e−ζγ(0)[1−cos(s log q)] |c(s)|−2
ds

Using the identity

|c(s)|−2 =
(q + 1)2 sin2(s log q)

(q + 1)2 sin2(s log q) + (q − 1)2 cos2(s log q)

and performing the change of variable v = 1− cos(s log q), we rewrite

hζ(o) =
q(q + 1)

2π
e−ζb2

∫ 2

0

e−ζγ(0)vv1/2ψ(v) dv,
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where ψ is the function defined by

ψ(v) =
(2− v)1/2

(q + 1)2v(2 − v) + (q − 1)2(1− v)2
.

Since the denominator in the formula above vanishes only for v = 1± (q+ 1)/2
√
q,

the function v1/2ψ(v) is analytic in C \ {v : v ≤ 0, or v ≥ 2}, the square root
taking its principal determination. Therefore, if we denote by I(ζ) the integral
above, by Cauchy’s theorem we can write

I(ζ) = I1(ζ) + I2(ζ),

where I1(ζ) is the integral over the segment in the complex plane [0, 2ζ/ |ζ|], and

I2(ζ) is the integral along the arc of circle of radius 2 and center 0 joining 2ζ/ |ζ|
to 2.

We begin by estimating

I1(ζ) =

∫ 2ζ/|ζ|

0

e−γ(0)ζvv1/2ψ(v) dv

=

(
ζ

|ζ|
)3/2 ∫ 2

0

e−γ(0)|ζ|ss1/2ψ(sζ/ |ζ|) ds.

Since ψ(v) is bounded in D = {v : |v| ≤ 2,Re v ≥ 0}, and tends to
√

2/(q − 1)2 as
v → 0, an application of Laplace method (see [O], Chapter 3, §7, pp. 80-84) shows
that the integral on the right hand side is equal to

√
2 Γ(3/2)

γ(0)3/2(q − 1)2
|ζ|−3/2 (1 + o(1))

uniformly as |ζ| tends to +∞ in Re ζ ≥ 0.
It follows that there exists M1 > 0 such that, for every ζ with |ζ| ≥ M1 and

Re ζ ≥ 0,

|I1(ζ)| ≥ 1

2

√
2Γ(3/2)

γ(0)3/2(q − 1)2
|ζ|−3/2.

We now estimate I2(ζ). To fix notation we assume that arg ζ belongs to [0, π/2),
the argument being completely similar if −π/2 < arg ζ ≤ 0. Putting v = 2eiθ, we
rewrite

I2(ζ) = 23/2 i

∫ 0

− arg ζ

e−2γ(0) ζ exp(iθ) e3iθ/2ψ(2eiθ)dθ,

so that

|I2(ζ)| ≤ 23/2e−2γ(0)Re ζ

∫ 0

− arg ζ

e−2γ(0)|ζ| [cos(arg ζ+θ)−cos(arg ζ)]
∣∣ψ(2eiθ)

∣∣ dθ.
Assume first that arg ζ ≥ π/4. Since cos(arg ζ+θ)−cos(arg ζ) = − sin(arg ζ) sin θ+

o(θ) and
∣∣ψ(2eiθ)

∣∣ =
√

2|θ|1/2/(q − 1)2 + o(
√|θ|) as θ → 0−, using the Laplace

method one shows that as |ζ| tends to infinity the integral above is asymptotic to

Γ(3/2)

√
2

(q − 1)2
(2 γ(0) sin(arg ζ) |ζ|)−3/2
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uniformly in π/4 ≤ arg ζ < π/2. Therefore,

|I2(ζ)| ≤
√

2Γ(3/2)

γ(0)3/2(q − 1)2
|ζ|−3/2

(sin(arg ζ))−3/2e−2 γ(0)Re ζ (1 + o(1)) ,

where |o(1)| tends to zero uniformly as ζ →∞ in the sector π/4 ≤ arg ζ ≤ π/2. It
follows that there exist M2 > 0 and a > 0 such that

|I2(ζ)| ≤ 1

4

√
2Γ(3/2)

γ(0)3/2(q − 1)2
|ζ|−3/2

.(5)

On the other hand, it is easily seen that

|I2(ζ)| ≤ 2π sup
D
|ψ(v)| e−

√
2γ(0)|ζ|

in the sector 0 ≤ arg ζ ≤ π/4. We may therefore conclude that there exist M3 and
a such that (5) holds for every ζ such that |ζ| ≥M3 and Re ζ ≥ a.

Combining the results obtained above shows that there exist M and a such that
for every ζ with |ζ| ≥M and Re ζ ≥ a,

|I(ζ)| ≥ |I1(ζ)| − |I2(ζ)| ≥ 1

4

√
2Γ(3/2)

γ(0)3/2(q − 1)2
|ζ|−3/2

,

and (iii) follows.
The proof of (iv) is now a simple consequence of (iii) and of the inclusion prop-

erties of the Lorentz spaces Lp,r(X).

4. Norm estimates for the heat kernel: Upper bounds

In the real time case considered in [CMS2], §3, upper estimates for the Lp norms
(1 ≤ p ≤ 2) of the heat kernel were obtained by means of spherical analysis tech-
niques, most notably by an application of the Plancherel formula if p = 2, and of
[CMS1], Theorem 1.2 if 1 ≤ p < 2.

The extension to the case where the parameter ζ is complex presents no difficulty
if p = 2 (see Theorem 5 (i)), but fails if 1 ≤ p < 2, essentially because in this case
hζ is no longer positive.

Instead, we will obtain our upper bounds by a direct method, which in fact
allows us to derive sharp upper bounds for the Lp,r(X) norms of hζ for p 6= 2 and
1 ≤ r < +∞, and whose key ingredients are Corollary 4 and the pointwise upper

estimates for
∣∣∣hZ

ζ
(d)
∣∣∣ which can be derived from Theorem A4.

We begin by collecting the latter in the following lemma. Fractional powers are
assumed throughout to take their principal value when their argument is positive,
and to be continuous elsewhere.

Lemma 6. For every d ≥ 1 and ζ with Re ζ > 0 we have∣∣∣hZ
ζ
(d)
∣∣∣ ≤ (1 + r̃2(d, ζ))

√
2

√
π |d2 + ζ2|1/4

× exp

{
−Re ζ + Re

(
(d2 + ζ2)1/2

)
+ d log

∣∣∣∣ ζ

d+ (d2 + ζ2)1/2

∣∣∣∣} ,
and the following upper bounds for the error term r̃2(d, ζ) hold: for every θo in
(0, π/2) and ε > 0, there exists a constant C such that for every d ≥ 1 and ζ with
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Re ζ ≥ η > 0,

r̃2(d, ζ) ≤



C if |arg ζ| ≤ θo or |ζ| ≤ (1− ε)d,

eCd
1/2/η3/2

if (1− ε)d ≤ |ζ| ≤ (1 + ε)d,

eC/η if (1 + ε)d ≤ |ζ| .

Proof. Recalling that

hZ
ζ
(d) = e−ζId(ζ),

the proof is an immediate consequence of Theorem A4 in the Appendix: taking
absolute values in (11) we obtain the main term. Since 1/3

√
5 + 1/6 < 1/3, and

d ≥ 1, the error term r1(d) in (11) is bounded in absolute value by 1/2 and therefore

|1 + r1(d)|−1 ≤ 2. It is straightforward to check that the error term r̃2(d, ζ) =
|r2(d, ζ)| satisfies the stated estimates in Re ζ ≥ η.

We may therefore estimate

‖hζ‖p,r ≤ C
e−b2 Re ζ

|ζ|

( ∞∑
d=0

drqrdδ(p)
∣∣∣hZ

γ(0)ζ
(d)
∣∣∣r)1/r

≤ C
e−Re ζ

|ζ|

( ∞∑
d=0

(1 + r̃2(d, ζ))
r dr

|d2 + γ2(0)ζ2|r/4
erϕp,ζ(d)

)1/r

,

(6)

where r̃2(d, ζ) satisfies the upper estimates stated in Lemma 6 and we have set

ϕp,ζ(s) = sδ(p) log q + Re
(
(s2 + γ2(0)ζ2)1/2

)
+ s log

∣∣∣∣ γ(0)ζ

s+ (s2 + γ2(0)ζ2)1/2

∣∣∣∣ .
Upper bounds for ‖hζ‖p,r can therefore be obtained by estimating the series on the

right hand side of (6).
We state in the following lemma a number of properties of the function ϕp,ζ that

will be used in obtaining the required upper estimates.

Lemma 7. The following hold:
(i) If 1 ≤ p < 2, then the maximum value of ϕp,ζ(s) on [0,+∞) is Φp(ζ), which

is attained at

s =
q1/p − q1/p

′

q + 1

|ζ|2
[Re2 ζ + tanh2(δ(p) log q) Im2 ζ]1/2

.

(ii) If p > 2, then ϕp,ζ(s) ≤ δ(p)s+ γ(0)Re ζ for all s in [0,+∞).
(iii) If |arg ζ| ≤ π/4, then

ϕ′′p,ζ(s) ≤ − 1

2 max{s, γ(0) |ζ|} ∀s ≥ 0.

(iv) If |arg ζ| ≥ π/4, then

ϕ′′p,ζ(s) ≤ −


Re ζ

γ(0) |ζ|2 if 0 ≤ s ≤ γ(0)[Im2 ζ − Re2 ζ]1/2,

1

2 max{s, γ(0) |ζ|} if γ(0)[Im2 ζ − Re2 ζ]1/2 ≤ s.
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Proof. Note first that straightforward computations yield

ϕ′p,ζ(s) = δ(p) log q + log

∣∣∣∣ γ(0)ζ

s+ (s2 + γ2(0)ζ2)1/2

∣∣∣∣ ,
ϕ′′p,ζ(s) = −Re

(
(s2 + γ2(0)ζ2)−1/2

)
= −

Re
(
(s2 + γ2(0)ζ

2
)1/2

)
|s2 + γ2(0)ζ2| .

It follows in particular that ϕ′′p,ζ(s) < 0 for every s ≥ 0.

Assume first that 1 ≤ p < 2. Since ϕ′p,ζ(s) is equal to δ(p) log q > 0 for s = 0,

tends to −∞ as s tends to +∞, and ϕ′′p,ζ(s) ≤ 0 for every s, it follows that ϕp,ζ
has a unique maximum in [0,∞) attained at the point s solution of the equation
ϕ′p,ζ(s) = 0. Using the formula

z1/2 =
1√
2

(|z|+ Re z)
1/2

+
i√
2
sgn(Im z) (|z| − Re z)

1/2
,(7)

valid if |arg z| < π, elementary, although somewhat lengthy, algebraic manipulations
show that the equation is satisfied if s has the expression given in the statement,
and that ϕp,ζ(s) = Φp(ζ), therefore proving (i).

Assume now that p > 2. Since ϕ′′p,ζ(s) ≤ 0, we have ϕ′p,ζ(s) ≤ ϕ′p,ζ(0) = δ(p) log q,

and we obtain (ii) by integrating between 0 and s.
To prove (iii) we use (7) to write

ϕ′′p,ζ(s) = − 1√
2

[
∣∣s2 + γ2(0)ζ2

∣∣+ Re (s2 + γ2(0)ζ2)]1/2

|s2 + γ2(0)ζ2| .

Since |arg ζ| ≤ π/4, Re (s2 + γ2(0)ζ2) = s2 + γ2(0)[Re2 ζ − Im2 ζ] > 0, and we may
estimate

ϕ′′p,ζ(s) ≤ − 1√
2 |s2 + γ2(0)ζ2|1/2

≤ − 1

2 max(s, γ(0) |ζ|) .

The same estimate clearly holds if |arg ζ| ≥ π/4 and s2 ≥ γ2(0)[Im2 ζ − Re2 ζ].
Assume therefore that s2 ≤ γ2(0)[Im2 ζ − Re2 ζ], so that Re (s2 + γ2(0)ζ2) ranges
in the interval [−γ2(0)(Im2 ζ − Re2 ζ), 0]. Since the function

ψa(t) =
1

2

(t2 + a2)1/2 + t

t2 + a2

is increasing for t ≤ 0, and

ϕ′′p,ζ(s) = − [ψa (Re (s2 + γ2(0)ζ2)
)]1/2

,

for a = 2γ2(0)Re ζ Im ζ, we have

ϕ′′p,ζ(s) ≤ − [ψa (−γ2(0)[Im2 ζ − Re2 ζ]
)]1/2

= − Re ζ

γ(0) |ζ|2 ,

as required to conclude the proof of (iv).

We are now ready to prove the upper bounds for the Lp,r(X) norms of the heat
kernel. We remark that for p and r belonging to the range considered in Theorem 5,
our upper bounds are comparable with the lower bounds obtained therein. We also
recall that comparable upper and lower estimates for ‖hζ‖p when p = 2 are already

contained in Theorem 5 (i).
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Theorem 8. The following hold:
(i) If 1 ≤ p < 2 and 1 ≤ r < +∞, then

‖hζ‖p,r ≤ Cmin
{
1, |ζ|−1/2r′

}
exp (−Re ζ + Φp(ζ)) ∀ζ : Re ζ ≥ 0;

(ii) If p > 2 and 1 ≤ r ≤ +∞, then

‖hζ‖p,r ≤ Cmin
{

1, |ζ|−3/2
}

exp (−b2 Re ζ) ∀ζ : Re ζ ≥ 0.

Proof. As a preliminary step, we note that it is enough to prove that the stated
estimates hold in the half plane Re ζ ≥ 1. The argument is similar to the one used
in Proposition 5 (iii).

First of all, interpolating between ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 and ‖f ∗ g‖p ≤ ‖f‖p‖g‖1,
one finds that ‖f ∗ g‖p,r ≤ ‖f‖p,r‖g‖1 for all p in (1,+∞) and r in [1,+∞].

Since hζ = h ζ+1 ∗ h−1 by the group property, and h−1 belongs to L1(X), we
have

‖hζ‖p,r ≤ ‖h ζ+1‖p,r‖h−1‖1.

Thus, assuming for instance that (i) holds in Re ζ ≥ 1, we conclude that the right
hand side of the above inequality is bounded above by

C‖h−1‖1 |ζ + 1|−1/2r′
exp [−Re ζ + 1 + Φp(ζ + 1)] .

Since Φp(ζ) defines an equivalent norm on C, by the triangle inequality

|Φp(ζ + 1)− Φp(ζ)| ≤ Φp(1),

and our claim follows. The argument is even easier in the case of (ii).
It follows from this and formula (6) that it suffices to estimate the series

Sp,r(ζ) =

∞∑
d=0

(1 + r̃2(d, ζ))
r dr

|d2 + γ2(0)ζ2|r/4
erϕp,ζ(d)

for ζ in Re ζ ≥ 1.
Assume first that 1 ≤ p < 2. We need to show that there exists a constant C

such that for every ζ with Re ζ ≥ 1

Sp,r(ζ) ≤ C |ζ|r/2+1/2
erΦp(ζ).(8)

From the expression of s in Lemma 7 (i) we deduce that

q1/p − q1/p
′

q + 1
|ζ| ≤ s ≤ γ(iδ(p)) |ζ| ,

and that there exists θo ∈ (π/4, π/2) such that for every z with θo ≤ |arg ζ| < π/2

γ(0) + γ(iδ(p))

2
|ζ| ≤ s ≤ γ(iδ(p)) |ζ| .

We consider first the case where |arg ζ| ≤ θo. Then, by virtue of the error es-
timates in Lemma 6, r̃2(d, ζ) is uniformly bounded above by a constant which
depends only upon θo. To estimate ϕp,ζ(s) from above we use the identity

ϕp,ζ(s)− Φp(ζ) =

∫ s

s

(s− v)ϕ′′p,ζ(v) dv.
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In the present setting the estimates in Lemma 7 (iii) and (iv) yield

ϕ′′p,ζ(v) ≤ − cos(θo)

2 max{v, γ(0) |ζ|} , ∀v ≥ 0,

and we may conclude that there exists a constant C0 > 0, depending only on θo,
such that

ϕp,ζ(d)− Φp(ζ) ≤ −C0


|ζ|−1 (d− s)2 if d ≤ s,

[d log(d/s)− (d− s)] if d ≥ s.

Moreover,∣∣d2 + γ2(0)ζ2
∣∣2 = (d2 − γ2(0) |ζ|2)2 + 4γ2(0)d2 Re2 ζ ≥ 4γ2(0)d2 |ζ|2 cos2 θo.

It follows that

Sp,r(ζ) = erΦp(ζ)
+∞∑
d=1

dr

|d2 + γ2(0)ζ2|r/4
exp (r[ϕp,ζ (d)− Φp(ζ)])

≤ C1
erΦp(ζ)

|ζ|r/4
(Σ1(ζ) + Σ2(ζ)) ,

where

Σ1(ζ) =

[s]∑
d=1

d3r/4e−rC0(d−s)2/|ζ|,

and

Σ2(ζ) =

+∞∑
d=[s]+1

d3r/4e−rC0[d log(d/s)−(d−s)],

[s] denoting the integer part of s.

Since s ≤ γ(iδ(p)) |ζ| and s 7→ e−rCo(s−s)2/|ζ| is increasing in [0, s], we may write

Σ1(ζ) ≤ C2 |ζ|3r/4
(∫ s

0

e−rCo(s−s)2/|ζ| ds+ 1

)
,

and then the change of variables v = (s− s)/ |ζ|1/2 shows that the integral on the

right hand side is bounded above by C3 |ζ|1/2, where C3 does not depend on ζ.
Thus we conclude that

Σ1(ζ) ≤ C4 |ζ|3r/4+1/2

with C4 independent of ζ in the sector |arg ζ| ≤ θo.
To estimate Σ2(ζ) we proceed in a similar way. Since by assumption Re ζ ≥ 1,

s ≥ C5 |ζ| ≥ C5. By elementary calculus, for every C′0 satisfying 0 < C′0 < C0

s3r/4e−C0[s log(s/s)−(s−s)] ≤ Cs3r/4e−rC
′
0[s log(s/s)−(s−s)],

where

C = sup
s≥s

{(s
s

)3r/4

e−(C0−C′0)s[(s/s) log(s/s)−(s/s−1)]

}
≤ sup

u≥1

{
u3r/4e−r(C0−C′0)[u log u−u+1]

}
< +∞.
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Therefore

Σ2(ζ) ≤ C6s
3r/4

+∞∑
d=[|s|]+1

e−rC
′
0s[(d/s) log(d/s)−d/s+1]

≤ C6s
3r/4

(∫ +∞

s

e−rC
′
0s[(s/s) log(s/s)−s/s+1]ds+ 1

)
.

Changing variables, we may write the integral on the right hand side as

s

∫ +∞

1

e−rC
′
0s[log u−u+1]du ≤ C7s

1/2,

where the last inequality follows from an application of the Laplace method. It
follows that

Σ2(ζ) ≤ C8 |ζ|3r/4+1/2

and therefore that

Sp,r(ζ) ≤ C9 |ζ|r/2+1/2
erΦp(ζ)

with C9 independent of ζ in the sector |arg ζ| ≤ θo.
We next consider the case where θo ≤ |arg ζ| < π/2. In this case r̃2(d, ζ) is

no longer uniformly bounded, and we need to proceed with greater care. Since
γ(0) < γ(iδ(p)), our choice of θo implies that we now have

0 ≤ γ(0)[Im2 ζ − Re2 ζ]1/2 ≤ γ(0) |ζ| ≤ γ(0) + γ(iδ(p))

2
|ζ| ≤ s ≤ γ(iδ(p)) |ζ| .

To estimate Sp,r(ζ), choose ε > 0 and write

Sp,r(ζ) = S1(ζ) + S2(ζ) + S3(ζ),

where

S1(ζ) = erΦp(ζ)
∑

d≤(1−ε)γ(0)|ζ|
(1 + r̃2(d, ζ))

r dr

|d2 + γ2(0)ζ2|r/4
er[ϕp,ζ(d)−Φp(ζ)],

in S2(ζ) the sum is over the range (1 − ε)γ(0) |ζ| < d ≤ [3γ(0) + γ(iδ(p))] |ζ| /4,
and S3(ζ) is the series for d > [3γ(0) + γ(iδ(p))] |ζ| /4.

Arguing as in the previous case, and using Lemma 7 (iv), we see that

ϕp,ζ(d)− Φp(ζ) ≤ −C0


[d log(d/s)− (d− s)] if d ≥ s,

|ζ|−1
(d− s)2 if 3γ(0)+γ(iδ(p))|ζ|

4 ≤ d ≤ s.

Since ϕ′p,ζ(s) > 0 in [0, s), it also follows that

ϕp,ζ(d)− Φp(ζ) ≤ ϕp,ζ ([3γ(0) + γ(iδ(p))] |ζ| /4)− Φp(ζ) ≤ C10 |ζ|
for all d ≤ (3γ(0) + γ(iδ(p)) |ζ| /4.

We consider first S3(ζ). In this case γ(0)|ζ|
d ≤ 4γ(0)

3γ(0)+γ(iδ(p)) < 1, and, by the

error estimates in Lemma 6, r̃2(d, ζ) is bounded above by a constant. Also,∣∣d2 + γ2(0)ζ2
∣∣ ≥ d− γ2(0) |ζ|2 ≥ γ(iδ(p))− γ(0)

4
d |ζ| .
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Thus we can repeat the argument used in the case where |arg ζ| ≤ θo to conclude
that

S3(ζ) ≤ C11e
rΦp(ζ) |ζ|1/2r+1/2 ∀ζ : Re ζ ≥ 1.

We consider next S1(ζ). Here γ(0)|ζ|
d ≥ (1 − ε)−1 > 1. Hence, again by Lemma

6, there is a constant C12 such that

r̃2(d, ζ) ≤ C12 ∀ζ : Re ζ ≥ 1, ∀d : d ≤ (1 − ε)γ(0) |ζ| ,
and ∣∣d2 + γ2(0)ζ2

∣∣ ≥ γ2(0) |z|2 − d2 ≥ ε

1− ε
γ2(0) |ζ|2 .

Thus

S1(ζ) ≤ C13e
rΦp(ζ)

∑
d≤(1−ε)γ(0)|ζ|

|ζ|r/2 e−C10r|ζ| ∀ζ : Re ζ ≥ 1,

and the right hand side is exponentially decreasing in |ζ| .
S2(ζ) is the most critical term, for here γ(0) |ζ| /d ranges in an interval containing

1, and therefore, for Re ζ ≥ 1, the error term r̃2(d, ζ) is bounded above by eC14d
1/2

.
Since the difference ϕp,ζ(s) − Φp(ζ) is bounded above by −C10 |ζ| with C10 > 0
independent of ζ in the range under consideration, and∣∣d2 + γ2(0)ζ2

∣∣2 =
(
s2 − γ2(0) |ζ|2

)2

+ 4γ2(0)s2 Re2 ζ ≥ C15 |ζ|2 Re2 ζ,

we have

S2(ζ) ≤ C16e
rΦp(ζ)

∑
(1−ε)γ(0)|ζ|<d

≤(3γ(0)+γ(iδ(p)))|ζ|/4

dr

|ζ|r/4
e−r[C10|ζ|+C14d

1/2]

for all ζ in Re ζ ≥ 1, and the sum on the right hand side is bounded above by

C17 |ζ|3r/4+1
e−r|ζ|[C10−C14|ζ|−1/2],

which is exponentially decreasing in |ζ| . Combining the above estimates, we con-
clude that there exists a constant C18, independent of ζ in Re ζ ≥ 1, such that
when θo ≤ |arg ζ| < π/2,

Sp,r(ζ) ≤ C18

∣∣∣ζr/2+1/2
∣∣∣ erΦp(ζ),

as required to complete the proof of (i).
The proof of (ii) is considerably easier, and we only outline the argument. By the

inclusion properties of the Lorentz spaces Lp,r(X) it suffices to show that for every
p in (2,+∞), ‖hζ‖p,1 satisfies the stated estimate in the half plane Re ζ ≥ 1, or,

equivalently, that there exists a constant C19 such that for every ζ with Re ζ ≥ 1,

Sp,1(ζ) ≤ C19 |ζ|−1/2
eγ(0)Re ζ .

By Lemma 7 (ii), we may estimate

Sp,1(ζ) ≤ eγ(0)Re ζ
∑
d≥1

(1 + r̃2(d, ζ))
d

|d2 + γ2(0)ζ2|1/4
edδ(p) = eγ(0)Re ζ (Σ1 + Σ2) ,

where Σ1 is the sum over the d’s less than or equal to γ(0) |ζ| /2 and Σ2 is the tail
of the series.
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Consider first Σ1. Since Re ζ ≥ 1, and d ≤ γ(0) |ζ| /2, the error term r̃2(d, ζ) is
uniformly bounded. Also, the absolute value at the denominator is bounded from

below by a multiple of |ζ|1/4. Proceeding as in (i), one shows that

Σ1 ≤ C20 |ζ|−1/2 ∀ζ : Re ζ ≥ 1.

Consider next Σ2. Since Re ζ ≥ 1, in this range of d’s the error term grows

at most like eC14d
1/2

. On the other hand, δ(p) < 0, so that the factor edδ(p) is
exponentially decreasing in d, and the term in the denominator is bounded from

below by a multiple of |ζ|1/4 . Therefore Σ2 is exponentially decreasing in |ζ|, and
(ii) follows.

5. Proof of Theorem 1

The proof of Theorem 1 follows the lines of that of [CMS2], Theorem 2.2, and
uses the norm estimates of Theorems 5 and 8, and the description of the space of
bounded convolution operators given in [CMS1], Theorem 2.4.

Proof of Theorem 1. (i) is an immediate consequence of the chain of inequalities

‖hζ‖∞ = |||Hζ |||1,∞ ≤ |||Hζ |||p,r ≤ |||Hζ |||p,p ≤ ‖hζ‖p, ∀1 ≤ p ≤ r ≤ ∞,

which in turn follows from the fact that the embedding of Lp(X) into Lr(X) is norm
non-increasing.

To prove (ii) we use the fact that since Hζ is G-invariant, its norm on L2(X) co-
incides with the norm of its restriction to the subspace of L2(X)] of radial functions
in L2(X). By Plancherel’s theorem the latter is equal to

sup
[−τ/2,τ/2]

∣∣∣h̃ζ (s)
∣∣∣ = sup

[−τ/2,τ/2]

∣∣∣e−ζ(1−γ(s))
∣∣∣ = e−b2 Re ζ .

Assume now that 1 ≤ p = r < 2. By Pytlik’s theorem (see [P], or [CMS1], Theo-
rem 2.4), and Theorem 8 (i),

|||Hζ |||p,p ≤ ‖hζ‖p,1 ≤ C exp [−Re ζ + Φp(ζ)] .

On the other hand, by the group property, ‖h 2ζ‖p ≤ ‖Hζhζ‖p ≤ |||Hζ |||p,p‖hζ‖p,
whence

|||Hζ |||p,p ≥ ‖h 2ζ‖p‖hζ‖−1
p

and the corresponding lower estimate follows from Theorem 5 (ii) and Theorem 8(i).
The case where 2 < p = r ≤ ∞ follows from duality from the case just considered,
and the proof of (iii) is completed.

Consider now the case where 1 ≤ p < r = 2. By the Kunze–Stein property (see
[N], or [CMS1], §2), and Theorem 5 (i)

|||Hζ |||p,2 ≤ C‖hζ‖2 ≤ Cmin
{

1,Re−3/4
}
e−b2 Re ζ .

On the other hand,

‖hζ‖2 = ‖Hζδo‖2 ≤ |||Hζ |||p,2‖δo‖p
and applying Theorem 5 (i) again yields the reverse inequality. The case where
p = 2 < 2 ≤ ∞ is obtained by duality from the previous case.
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To prove (v) we use again the Kunze–Stein property and Theorem 8 (ii) to
estimate

|||Hζ |||p,r ≤ C‖hζ‖r ≤ Cmin{1, |ζ|−1/2r′} exp[−Re ζ + Φr(ζ)],

while the reverse inequality follows from ‖hζ‖r = ‖Hζδo‖r ≤ |||Hζ |||p,r‖δo‖p and

Theorem 5 (ii).
The case where 2 ≤ p < r ≤ +∞ follows by duality from (v).
Finally, assume that 1 ≤ p < 2 < r ≤ +∞. According to Theorem 2.4 in [CMS1],

if r 6= p′, then we have the equality

Cvrp(X) = Lmin(p′,r)(X)]

with equivalence of norms, while if r = p′ then the we have inclusion

Lp
′,p′/2(X)] ⊆ Cvp

′
p (X) ⊆ Lp

′
(X)],

and corresponding norm inequalities hold. (vii) then follows at once from Theo-
rem 5 (ii) and Theorem 8 (ii).

6. Appendix

This Appendix is devoted to a discussion of the uniform approximation of mod-
ified Bessel functions and to the proof of the bounds for the error terms used in the
proof of Lemma 6.

Let

ξ(z) = (1 + z2)1/2 + log

(
z

1 + (1 + z2)1/2

)
,

and set

p(z) = (1 + z2)−1/2 and U1(p) = (3p− 5p3)/24.

Given a function f and a piecewise C1 regular path ω(t) (to ≤ t ≤ t1) contained
in the domain of f , denote by Vω(f) the total variation of f along ω defined by∫ t1
to
|f(ω(t))ω′(t)| dt.

An application of the theory of approximation of solutions of differential equa-
tions shows that (see [O], Chapter 10, §7), for ν > 0 and |arg z| < π/2, we have

Iν(νz) =
1

1 + η(ν,+∞)

eνξ(z)

(2πν)1/2(1 + z2)1/4
(1 + η(ν, z)) ,(9)

where the fractional powers take their principal values for z positive and are con-
tinuous elsewhere, and the error term η(ν, z) is bounded by

|η(ν, z)| ≤ 2

{
2Vωz(U1)

ν

} Vωz(U1)

ν
,

where ωz is any path joining 0 with z in the half plane Re z > 0 satisfying the
following conditions: a) ωz consists of a finite chain of C2 regular arcs, b) ωz
coincides with the real z-axis in a neighborhood of 0, and c) Re ξ(ωz(t)) is non-
decreasing. Paths satisfying the above conditions are referred to as ξ-progressive
in Olver’s terminology.

Explicit upper bounds for the error term depend on the choice of suitable ξ-
progressive paths. This requires a preliminary study of the map z 7→ ξ(z) for
Re z > 0. It is readily seen that:
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(i) ξ(z) = ξ(z), so that ξ(z) is real iff z is real and positive, and the points
z = 0,+∞ correspond to ξ = −∞,+∞, respectively;

(ii) ξ(z) = log(z/2) + 1 + o(1) as |z| → 0, and ξ(z) = z + o(1) as |z| → +∞;
(iii) ξ(it) = (1 − t2)1/2 + log(t/[1 + (1 − t2)1/2]) + iπ/2 if 0 < t < 1, and

ξ(it) = i{(t2 − 1)1/2 + arctan[t/(t2 − 1)1/2]} if 1 < t < +∞;
(iv) ξ(z) is asymptotic to 3−123/2e−iπ/4(z − i)3/2 as z → i;
(v) dξ/dz = (1 + z2)1/2/z vanishes only for z = ±i;
(vi) For every θ ∈ (−π/2, π/2), Re ξ(z) is non-decreasing along the ray z = teiθ.
It follows that the half plane Re z > 0 is mapped conformally onto the region ∆

consisting of the union of the half plane Re ξ > 0 and the strip |Im ξ| < π/2 (cf.
[O], p. 375).

Suitable variational paths in the z plane can be constructed as the image under
the inverse map ξ 7→ z of the paths in the ξ plane obtained by traveling from
ξ(z) parallel to the imaginary axis until the real axis is reached, and then moving
along the real axis to −∞ = ξ(0). Alternatively, one could use the path in the
z-plane obtained by traveling from z along the ray through z until the circle |z| = ε
is reached, and then proceeding to z = 0 along a path of the form previously
described.

We note that, by the symmetry of the problem, it suffices to estimate Vωz(U1)
when z lies in Im z ≥ 0.

The following lemmata play a crucial role in obtaining upper estimates for the
error terms in formula (9).

Lemma A1. For ξ in ∆ with Im ξ > 0 denote by lξ the vertical line segment
joining ξ with the real axis, and let δξ be the distance of lξ from iπ/2. Let ω be the
image in the z-plane of lξ. Then there exists a constant C such that

Vω(U1) ≤ C(1 + δ−1
ξ ).

Proof. Dropping for ease of notation the suffix ξ, we parametrise l by l(s) = Re ξ+
is, 0 ≤ s ≤ Im ξ, and write

Vω(U1) =

∫ Im ξ

0

∣∣∣∣dU1

dp
(p(z(l(s))))

∣∣∣∣ ∣∣∣∣dpdz (z(l(s)))

∣∣∣∣ ∣∣∣∣dzdξ (l(s))

∣∣∣∣ ds,(10)

where

dU1

dp
(p) =

1− 5p2

8
,

dp

dz
(z) =

−z
(1 + z2)3/2

and
dz

dξ
(ξ) =

z

(1 + z2)1/2

∣∣∣∣
z=z(ξ)

.

It is not hard to check that |z(ξ)| is bounded if |ξ| is bounded, and that |z(ξ)− i|
is bounded away from zero if |ξ − iπ/2| is bounded away from zero. Moreover, it
follows from the asymptotic formulae in (ii) above that z(ξ) = ξ+ o(1) as |ξ| tends
to +∞ in Re ξ ≥ 0, and |z(ξ)| = 2eRe ξ−1(1 + o(1)) as Re ξ tends to −∞ in ∆.
Therefore dU1/dp|p=p(z(ξ), dp/dz|z=z(ξ) and dz/dξ are uniformly bounded if ξ stays
away from iπ/2, and ∣∣∣∣dpdz

∣∣∣∣ (z(ξ)), ∣∣∣∣dzdξ
∣∣∣∣ (ξ) � 2eRe ξ−1

as Re ξ → −∞, and ∣∣∣∣dpdz
∣∣∣∣ (z(ξ)) � 1,

∣∣∣∣dzdξ
∣∣∣∣ (ξ) � |ξ|−2
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as |ξ| → +∞ in Re ξ > 0. We may conclude from this that Vω(U1) is uniformly
bounded if δ is bounded away from zero, and, in fact, tends to zero as δ tends to
+∞.

Assume now that δ ≤ δo, where δo is so small that the asymptotic relation (iv)

above implies that the equality |z − i| = 32/32−1 |ξ − iπ/2|2/3 (1 + o(1)) holds with
0 ≤ |o(1)| ≤ 1/2 inside the circle Cδo = {ξ : |ξ − iπ/2| = δo}.

By what we observed above, the contribution to the integral in (10) of the parts
of l lying outside Cδo is uniformly bounded by a constant Co depending only on
δo. Hence we need only estimate the contribution to the integral over the part of l

lying inside Cδo and since there |z − i| ≥ C1 |ξ − iπ/2|2/3 while 1 ≤ |z + i| ≤ 2, the

integrand in (10) is bounded above by C2 |l(s)− iπ/2|−2
with C2 independent of

0 ≤ δ ≤ δo.
Thus, letting so < s1 denote the values of the parameter for which l(s) intersects

the circles Cδo and Cδ, respectively, we may estimate

Vω(U1) ≤ Co + C2

∫ s1

so

|l(s)− iπ/2|−2
ds.

A simple application of the law of cosines shows that

|l(s)− iπ/2|2 = |(l(s1)− iπ/2) + i(s− s1)|2 ≥ δ2 + (s− s2)
2,

so that the integral on the right hand side is bounded by∫ s2

so

(δ2 + (s− s1)
2)−1ds ≤

∫ +∞

0

(δ2 + s2)−1ds = π/2δ,

as required to finish the proof of the lemma.

Lemma A2. Maintaining the notation of Lemma A1, given ξ in ∆ such that
Im ξ ≥ 0, denote by lξ the vertical line segment joining ξ with the real ξ axis,
and let δξ be the distance of lξ from iπ/2. Then the following hold:

(i) For every θo in [0, π/2) there exists δo such that for every z with 0 ≤ arg z ≤
θo, δξ(z) ≥ δo.

(ii) For every θo in (0, π/2) and ε > 0 there exist positive constants C and δ1
such that for every z with θo ≤ arg z < π/2

δξ(z) ≥



δ1 if |z| ≤ 1− ε,

C (Re z)3/2 if 1− ε ≤ |z| ≤ 1 + ε,

C Re z if 1 + ε ≤ |z| .

Proof. To prove (i), note that since z 7→ ξ(z) maps {z : Re z > 0} conformally
onto ∆, the region {z : 0 ≤ arg z ≤ θo} is mapped conformally onto the region Do

lying above the real ξ axis and below the image under ξ of the ray zo(t) = teiθo ,
0 < t < +∞. Since Re (ξ(zo(t))) is increasing with t, the segment lξ(z) is entirely
contained in Do, and therefore its distance from iπ/2 is greater than or equal to
the distance δo of ξ(zo(t)) from iπ/2.

We now prove (ii). Assume first that |ζ| ≤ 1− ε. Then ξ(z) belongs to the region
D1 lying to the left of the image under z 7→ ξ of the circle of radius 1−ε centered at
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0. If the latter is parametrised by z1(t) = (1− ε)ei(π/2−t), 0 ≤ t ≤ π/2, the equality

d

dt
ξ(z1(t)) = −i(1 + z1(t)

2)1/2

shows that Re (ξ(z1(t))) is increasing with t, and Im (ξ(z1(t))) is decreasing. It
follows as in (i) that lξ(z) is entirely contained in D1, and therefore that its distance
from iπ/2 is greater than or equal to the distance δ1 of ξ(z1(t)) from iπ/2.

Next assume that 1 − ε ≤ |z| ≤ 1 + ε. Without loss of generality we may
assume that θo is close enough to π/2 and ε > 0 so small that that for every
z satisfying θo ≤ arg z < π/2 and 1 − ε ≤ |z| ≤ 1 + ε we have ξ(z) − iπ/2 =
3−123/2e−iπ/4(z − i)3/2(1 + o(1)), with |o(1)| ≤ 10−1.

Arguing as in (i), we may infer that the segment lξ(z) is entirely contained in the
subregion of ∆ lying below the image under ξ of the ray tei arg z, 0 < t < +∞, and
therefore that the distance of iπ/2 from lξ(z) is greater than or equal to its distance

from the curve ξ(tei arg z). On the other hand, the function t 7→ ∣∣tei arg z − i
∣∣ attains

its minimum cos(arg z) at t = sin(arg z), so that the curve ξ(tei arg z) lies outside
the image of the circle of radius cos(arg z) centered at i. The required conclusion
follows on noting that, by the asymptotic relation quoted above,∣∣ξ(tei arg z)− iπ/2

∣∣ ≥ 3−123/2 cos3/2(arg z)(1− 10−1) = C cos3/2(arg z) ∀t > 0.

Finally assume that |z| ≥ 1 + ε. We consider the image under ξ of the circle
t 7→ |z| ei(π/2−t). Since Re

(
ξ(|z| ei(π/2−t))) is zero for t = 0, and is equal to Re (ξ(z))

for t = π/2− arg z, we can write

Re (ξ(z)) =

∫ π/2−arg z

0

d

dt
Re
(
ξ(|z| ei(π/2−t)

)
dt

=

∫ π/2−arg z

0

Im
(
(1 + |z|2 e2i(π/2−t))1/2

)
dt.

By formula (7) in Section 3, the integrand on the right hand side is equal to

2−1/2
{∣∣∣1 + |z|2 e2i(π/2−t)

∣∣∣− Re
(
1 + |z|2 e2i(π/2−t))

)}1/2

,

and a straightforward computation shows that this is bounded from below by

(|z|2 cos(2t)− 1)1/2 ≥ 2−1/2 |z| (1− (1 + ε)−2
)1/2

in the range 0 ≤ t ≤ 1
2arccos

(
(1+ε)2+1
2(1+ε)2

)
= tε.

Thus we can estimate

Re (ξ(z)) ≥ |z| (1− (1 + ε)−2
)1/2

min{π/2− arg z, π/2− tε},
and the required conclusion follows.

After this preparation we are ready to prove the upper bounds for the error
terms in formula (9).

Proposition A3. The following hold:
(i) |η(ν,+∞)| ≤ (Co/ν)e

Co/ν , where Co = 1/3
√

5 + 1/6.
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(ii) For every θo in [0, π/2) and ε > 0 there exist positive constants C1, C2, C3

such that

|η(ν, z)| ≤



C1

ν
eC1/ν if |arg z| ≤θo or |z| ≤1− ε;

C2(1 + Re−3/2 z)

ν
eC2(1+Re−3/2 z)/ν if 1− ε ≤ |z| ≤ 1 + ε;

C3(1 + Re−1 z)

ν
eC3(1+Re−1 z)/ν if 1 + ε ≤ |z| .

Proof. We recall that

|η(ν, z)| ≤ 2Vωz(U1)

ν
e2Vωz (U1)/ν ,

where ωz is any ξ-progressive path joining 0 with z.
To estimate the error term we compute the total variation Vωz(U1) along the ξ-

progressive path ωz whose image in the ξ plane is given by real line (−∞,Re (ξ(z))]
followed by the vertical segment lξ(z) = [Re (ξ(z)) + i0, ξ(z)].

Assume first that z = +∞. Then ω+∞(t) traces the positive real z axis, and
therefore p(ω+∞(t)) = (1 + ω+∞(t)2)1/2 ranges over the interval [0, 1]. By a change
of variables, we can rewrite

Vω+∞(U1) =

∫ 1

0

∣∣1− 5p2
∣∣

8
dp =

1

6
√

5
+

1

12
,

and (i) follows.
To prove (ii), note that the variation of U1 along the part of ωz corresponding to

the line (−∞,Re (ξ(z))] is bounded from above by Vω+∞(U1). On the other hand,
by Lemma A1 and Lemma A2, given θo > 0 and ε > 0 there exist constants C′i,
i = 1, 2, 3, such that the variation of U1 along the part of ωz corresponding to lξ(z)
is bounded above by

C′1 if |arg z| ≤ θo or |z| ≤ 1− ε,

C ′2/Re3/2 z if θo ≤ |arg z| < π/2 and 1− ε ≤ |z| ≤ 1 + ε,

C′3/Re z if θo ≤ |arg z| < π/2 and 1 + ε ≤ |z| ,

from which (ii) follows at once.

Setting z = ζ/ν allows us to translate the results so far obtained for Iν(νz) into
the following description of the asymptotic behaviour of Iν(ζ):

Theorem A4. For every ν ≥ 0 and every ζ with Re ζ > 0 we have

Iν(ζ) =
1 + r2(ν, ζ)

1 + r1(ν)

1√
2π(ν2 + ζ2)1/4

e
(ν2+ζ2)1/2+ν log( ζ

ν+(ν2+ζ2)1/2
)
,(11)

where

|r1(ν)| ≤ Co/ν e
Co/ν ,
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with Co = 1/3
√

5 + 1/6, and for every θo in (0, π/2) and ε > 0 there exists a
constant C > 0 such that

|r2(ν, ζ)| ≤



Cν−1 if |arg ζ| ≤ θo or
|ζ|
ν
≤ (1− ε),

C(ν−1 + ν1/2 Re−3/2 ζ)eC(ν−1+ν1/2 Re−3/2 ζ) if (1− ε) ≤ |ζ|
ν
≤ (1 + ε),

C(ν−1 + Re−1 ζ)eC(ν−1+Re−1 ζ) if
|ζ|
ν
≥ (1 + ε).
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