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1 Introduction

There has been a great deal of recent work on approximation algorithms for fa-
cility location problems [9]. We consider the capacitated facility location problem
with hard capacities. We are given a set of facilities, F , and a set of clients D in a
common metric space. Each facility i has a facility opening cost fi and capacity
ui that specifies the maximum number of clients that may be assigned to this
facility. We want to open some facilities from the set F and assign each client to
an open facility so that at most ui clients are assigned to any open facility i. The
cost of assigning client j to facility i is given by their distance cij , and our goal
is to minimize the sum of the facility opening costs and the client assignment
costs.

The recent work on facility location problems has come in two varieties: LP-
based algorithms, and local search-based algorithms. For the problem described
above, no constant approximation algorithm based on LP is known, and in fact,
no LP relaxation is known for which the ratio between the optimal integer and
fractional values has been bounded by a constant. Surprisingly, constant perfor-
mance guarantees can still be proved based on local search, but these have the
disadvantage that on an instance by instance basis, one never knows anything
stronger than the guarantee itself (without resorting to solving an LP relaxation
anyway).

We present an algorithm that rounds the optimal fractional solution to a
natural LP relaxation by using this solution to guide the decomposition of the
input into a collection of single-demand-node capacitated facility location prob-
lems, which are then solved independently. In the special case that all facility
opening costs are equal, we show that our algorithm is a 5-approximation algo-
rithm, thereby also providing the first constant upper bound on the integrality
gap of this formulation in this important special case. One salient feature of our
algorithm is that it relies on a decomposition of the input into instances of the
single-demand capacitated facility location problem; in this way, the algorithm
� Research suported partially by a grant from Motorola and NSF grant CCR-9912422.
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mirrors the work of Aardal [1], who presents a computational polyhedral ap-
proach for this problem which uses the same core problem in the identification
of cutting planes.

There are several variants of the capacitated facility location problem, which
have rather different properties, especially in terms of the approximation al-
gorithms that are currently known. One distinction is between soft and hard
capacities: in the latter problem, each facility is either opened at some location
or not, whereas in the former, one may specify any integer number of facilities
to be opened at that location. Soft capacities make the problem easier; Shmoys,
Tardos, & Aardal [11] gave the first constant approximation algorithm for this
problem based on an LP-rounding technique; Jain & Vazirani [4] gave a general
technique for converting approximation algorithm results for the uncapacitated
problem into algorithms that can handle soft capacities. Korupolu, Plaxton, &
Rajaraman [5] gave the first constant approximation algorithm that handles hard
capacities, based on a local search procedure, but their approach worked only
if all capacities are equal. Chudak & Williamson [3] improved this performance
guarantee to 5.83 for the same uniform capacity case. Pál, Tardos, & Wexler [8]
gave the first constant performance guarantee for the case of non-uniform hard
capacities. This was recently improved by Mahdian & Pál [6] and Zhang, Chen,
& Ye [13] to yield a 5.83-approximation algorithm.

There is also a distinction between the case of unsplittable assignments and
splittable ones. That is, suppose that each client j has a certain demand dj to
be assigned to open facilities so that the total demand assigned to each facility
is at most its capacity: does each client need to have all of its demand served
by a unique facility? In the former case, the answer is yes, whereas in the latter,
the answer is no. All approximation algorithms for hard capacities have focused
on the splittable case. Note that once one has decided which facilities to open,
the optimal splittable assignment can be computed by solving a transportation
problem. A splittable assignment can be converted to an unsplittable one at the
cost of increasing the required capacity at each facility (using an approximation
algorithm for the generalized assignment problem [10]). Of course, if there are
integer capacities and all demands are 1, there is no distinction between the two
problems.

For hard capacities, it is easy to show that the natural LP formulations do not
have any constant integrality ratio; the simplest such example has two facility
locations, one essentially free, and one very expensive. In contrast, we focus on
the case in which all facility opening costs are equal. For ease of exposition,
we will focus on the case in which each demand is equal to 1. However, it is a
relatively straightforward exercise to extend the algorithm and its analysis to the
case of general demands. We will use the terms “assignment cost” and “service
cost” interchangeably.

Our Techniques. The outline of our algorithm is as follows. Given the optimal
LP solution and its dual, we view the optimal primal solution as a bipartite
graph in which the nodes correspond to facility locations and clients, and the



edges correspond to pairs (i, j) such that a positive fraction of the demand at
client j is assigned to facility i by the LP solution. We use this to construct a
partition of the demand and facilities into clusters: each cluster is “centered” at a
client, and the neighbors of this client contained in the cluster are opened (in the
fractional solution) in total at least 1/2. Each fractionally open facility location
will, ultimately, be assigned to some cluster (i.e., not every facility assigned to
this cluster need be a neighbor of the center), and each cluster will be expected
to serve all of the demand that its facilities serve in the fractional solution.
Each facility i that is fully opened in the fractional solution can immediately be
opened and serve all of its demand; we view the remaining demand as located at
the cluster center, and find a solution to the single-demand capacitated facility
location problem induced by this cluster to determine the other facilities to
open within this cluster. Piecing this together for each cluster, we then solve a
transportation problem to determine the corresponding assignment.

To analyze this procedure, we show that the LP solution can also be decom-
posed into feasible fractional solutions to the respective single-demand problems.
Our algorithm for the single-node subproblems computes a rounding of this frac-
tional solution, and it is important that we can bound the increase in cost in-
curred by this rounding. Furthermore, note that it will be important for the
analysis (and the effectiveness of the algorithm) that we ensure that in moving
demand to a cluster center, we are not moving it too much, since otherwise the
solution created for the single-node problem will be prohibitively expensive for
the true location of the demand.

One novel aspect of our analysis is that the performance guarantee analysis
comes in two parts: a part that is related to the fact that the assignment costs
are increased by this displacement of the demand, and a part that is due to the
aggregated effect of rounding the fractional solutions to the single-node problems.
One consequence of this is that our analysis is not the “client-by-client” analysis
that has become the dominant paradigm in the recent flurry of work in this
area. Finally, our analysis relies on both the primal and dual LPs to bound the
cost of the solution computed. In doing this, one significant difficulty is that the
terms in the dual objective that correspond to the upper bound for the hard
capacity have a -1 as their coefficient; however, we show that further structure
in the optimal primal-dual pair that results from the complementary slackness
conditions is sufficient to overcome this obstacle (in a way similar to that used
earlier in [12]).

Although our analysis applies only to the case in which the fixed costs are
equal, our algorithm is sufficiently general to handle arbitrary fixed costs. Fur-
thermore, we believe that our approach may prove to be a useful first step in
analyzing more sophisticated LP relaxations of the capacitated facility location
problem; in particular, we believe that the decomposition into single-node prob-
lems can be a provable effective approach in the more general case. Specifically,
we conjecture that the extended flow cover inequalities of Padberg, Van Roy, and
Wolsey [7] as adapted by Aardal [1] are sufficient to insure a constant integrality
gap; this raises the possibility of building on a recent result of Carr, Fleischer,



Leung, and Phillips [2] that showed an analogous result for the single-demand
node problem.

2 A Linear Program

We can formulate the capacitated facility location problem as an integer program
and relax the integrality constraints to get a linear program (LP). We use i to
index the facilities in F and j to index the clients in D.

min
∑

i

fiyi +
∑

j

∑
i

djcijxij (P)

s.t.
∑

i

xij ≥ 1 ∀j (1)

xij ≤ yi ∀i, j (2)∑
j

djxij ≤ uiyi ∀i (3)

yi ≤ 1 ∀i (4)
xij , yi ≥ 0 ∀i, j.

Variable yi indicates if facility i is open and xij indicates the fraction of
the demand of client j that is assigned to facility i. The first constraint states
that each client must be assigned to a facility. The second constraint says that
if client j is assigned to facility i then i must be open, and constraint (3) says
that at most ui amount of demand may be assigned to i. Finally (4) says that
a facility can only be opened once. A solution where the yi variables are 0 or 1
corresponds exactly to a solution to our problem. The dual program is,

max
∑

j

αj −
∑

i

zi (D)

s.t. αj ≤ djcij + βij + djγi ∀i, j (5)∑
j

βij ≤ fi + zi − uiγi ∀i (6)

αj , βij ,γi, zi ≥ 0 ∀i, j.

Intuitively αj is the budget that j is willing to spend to get itself assigned
to an open facility. Constraint (5) says that a part of this is used to pay for
the assignment cost djcij and the rest is used to (partially) pay for the facility
opening cost.

For convenience, in what follows, we consider unit demands, i.e., dj = 1 for
all j. The primal constraint (3) and the dual constraint (5) then simplify to,∑

j xij ≤ uiyi, and αj ≤ cij + βij + γi, and the objective function of the primal
program (P) is min

∑
i fiyi +

∑
j,i cijxij . All our results continue to hold in

the presence of arbitrary demands dj if the demand of a client is allowed to be
assigned to multiple facilities.



3 Rounding the LP

In this section we give a 5-approximation algorithm for capacitated facility loca-
tion when all facility costs are equal. We will round the optimal solution to (P) to
an integer solution losing a factor of at most 5, thus obtaining a 5-approximation
algorithm.

3.1 The Single-Demand-Node Capacitated Facility Location
Problem

The special case of capacitated facility location where we have just one client or
demand node (called SNCFL) plays an important role in our rounding algorithm.
This is also known as the single-node fixed-charge problem [7] or the single-node
capacitated flow problem. The linear program (P) simplifies to the following.

min
∑

i

fivi +
∑

i

ciwi (SN-P)

s.t.
∑

i

wi ≥ D

wi ≤ uivi ∀i (7)
vi ≤ 1 ∀i (8)

wi, vi ≥ 0 ∀i.

Here D is the total demand that has to be assigned, fi ≥ 0 is the fixed cost of
facility i, and ci ≥ 0 is the per unit cost of sending flow, or distance, to facility i.
Variable wi is the total demand (or flow) assigned to facility i, and vi indicates
if facility i is open. We show that a simple greedy algorithm returns an optimal
solution to (SN-P) that has the property that at most one facility is fractionally
open, i.e., there is at most one i such that 0 < vi < 1. We will exploit this fact
in our rounding scheme.

Given any feasible solution (w, v) we can set v̂i = wi

ui
and obtain a feasible

solution (w, v̂) of no greater cost. So we can eliminate the vi variables from
(SN-P), changing the objective function to min

∑
i

(
fi

ui
+ ci

)
wi, and replacing

constraints (7), (8) by wi ≤ ui for each i. Clearly, this is equivalent to the earlier
formulation. It is easy to see now that the following greedy algorithm delivers an
optimal solution: start with wi = vi = 0 for all i. Consider facilities in increasing
order of fi

ui
+ci value and assign to facility i a demand equal to ui or the residual

demand left, whichever is smaller, i.e., set wi = min(ui, demand left), vi = wi

ui
,

until all D units of demand have been assigned. We get the following lemma.

Lemma 3.1. The greedy algorithm that assigns demand to facilities in increas-
ing order of fi

ui
+ ci delivers an optimal solution to (SN-P). Furthermore, there

is at most one facility i in the optimal solution such that 0 < vi < 1.



3.2 The Algorithm

We now describe the full rounding procedure. Let (x, y) and (α, β, γ, z) be the
optimal solutions to (P) and (D) respectively, and OPT be the common optimal
value. We may assume without loss of generality that

∑
i xij = 1 for every client

j. We first give an overview of the algorithm.
Our algorithm runs in two phases. In the first phase, we partition the facilities

i such that yi > 0 into clusters each of which will be “centered” around a client
that we will call the cluster center. We denote the cluster centered around client
k by Nk. The cluster Nk consists of its center k, the set of facilities assigned to it,
and the fractional demand served by the these facilities, i.e.,

∑
i∈Nk

∑
j xij . The

clustering phase maintains two properties that will be essential for the analysis.
It ensures that, (1) each cluster contains a fractional facility weight of at least
1
2 , i.e.,

∑
i∈Nk

yi ≥ 1
2 , and (2) if some facility in cluster Nk fractionally serves

a client j, then the center k is not “too far” away from j (we make this precise
in the analysis). To maintain the second property we require a somewhat more
involved clustering procedure than the one in [11]. In the second phase of the
algorithm we decide which facilities will be (fully) opened in each cluster. We
consider each cluster separately, and open enough facilities in Nk to serve the
fractional demand associated with the cluster. This is done in two steps. First,
we open every facility in Nk with yi = 1. Next, we set up an instance of SNCFL.
The instance consists of all the remaining facilities, and the entire demand served
by these facilities, Dk =

∑
i∈Nk:yi<1

∑
j xij , considered as concentrated at the

center k. Now we use the greedy algorithm above to obtain an optimal solu-
tion to this instance with the property that at most one facility is fractionally
open. Since the facility costs are all equal and each cluster has enough facility
weight, we can fully open this facility and charge this against the cost that the
LP incurs in opening facilities from Nk. Piecing together the solutions for the
different clusters gives a solution to the capacitated facility location instance, in
which every facility is either fully open or closed. Now we compute the min-cost
assignment of clients to open facilities by solving a transportation problem.

We now describe the algorithm in detail. Let F = {i : yi > 0} be the
(partially) opened facilities in (x, y), and Fj = {i : xij > 0} be the facilities in
F that fractionally serve client j.

1. Clustering. This is done in two steps.
C1. At any stage, let C be the set of the current cluster centers, which

is initially empty. We use Nk to denote a cluster centered around client
k ∈ C. For each client j /∈ C, we maintain a set Bj of unclustered facilities
that are closer to it than to any cluster center, i.e., Bj = {i ∈ Fj : i /∈⋃

k∈C Nk and cij ≤ mink∈C cik}. (This definition of Bj is crucial in our
analysis that shows that if client j is fractionally served by Nk, then
k is not “too far” from j.) We also have a set S containing all clients
that could be chosen as cluster centers. These are all clients j /∈ C that
send at least half of their demand to facilities in Bj , i.e., S = {j /∈ C :∑

i∈Bj
xij ≥ 1

2}. Of course, initially S = D, since C = ∅.



While S is not empty, we repeatedly pick j ∈ S with smallest αj value
and form the cluster Nj = Bj around it. We update the sets C and S
accordingly. (Note that for any cluster Nk, we have that

∑
i∈Nk

yi ≥∑
i∈Nk

xik ≥ 1
2 .)

C2. After the previous step, there could still be facilities that are not as-
signed to any cluster. We now assign these facilities in U = F −⋃

k∈C Nk

to clusters. We assign i ∈ U to the cluster whose center is nearest to it,
i.e., we set Nj = Nj∪{i} where j = argmink∈Ccik. In addition, we assign
to the cluster all of the fractional demand served by facility i. (After this
step, the clusters Nj , j ∈ C partition the set of facilities F .)

2. Reducing to the single-node instances. For each cluster Nk, we first
open each facility i in Nk with yi = 1. We now create an instance of SNCFL
on the remaining set of facilities, by considering the total demand assigned
to these facilities as being concentrated at the cluster center k. So our set of
facilities is Lk = {i ∈ Nk : yi < 1}, each ci is the distance cik, and the total
demand is Dk =

∑
i∈Lk

∑
j xij . We use the greedy algorithm of Section 3.1

to find an optimal solution (w(k), v(k)) to this linear program. Let O∗
k be

the value of this solution. We call the facility i such that 0 < w
(k)
i < 1 (if

such a facility exists) the extra facility in cluster Nk. We fully open all the
facilities in Lk with w

(k)
i > 0 (including the extra facility). Note that the

facilities opened (including each i such that yi = 1) have enough capacity to
satisfy all the demand

∑
i∈Nk

∑
j xij . Piecing together the solutions for all

the clusters, we get a solution where all the y variables are assigned values
in {0, 1}.

3. Assigning clients. We compute a minimum cost assignment of clients to
open facilities by solving the corresponding transportation problem.

3.3 Analysis

The performance guarantee of our algorithm will follow from the fact that the
decomposition constructed by the algorithm of the original problem instance
into single-node subproblems, one for each cluster, satisfies the following two
nice properties. First, in Lemma 3.5, we show that the total cost of the optimal
solutions for each of these single-node instances is not too large compared to
OPT . We prove this by showing that the LP solution induces a feasible solution
to (SN-P) for the SNCFL instance of each cluster and that the total cost of these
feasible solutions is bounded. Second, in Lemma 3.7, we show that the optimal
solutions to each of these single-node instances obtained by our greedy algorithm
in Section 3.1, can be mapped back to yield a solution to the original problem
in which every facility is either opened fully, or not opened at all, while losing
a small additive term. Piecing together these partial solutions, we construct a
solution to the capacitated facility location problem. The cost of this solution
is bounded by aggregating the bounds obtained for each partial solution. We
note that this bound is not based on a “client-by-client” analysis, but rather on
bounding the cost generated by the overall cluster.



Observe that there are two sources for the extra cost involved in mapping the
solutions to the single-node instances. We might need to open one fractionally
open facility in the optimal fractional solution to (SN-P). This is bounded in
Lemma 3.6, and this is the only place in the entire proof which uses the as-
sumption that the fixed costs are all equal. In addition, we need to transfer all
of the fractional demand that was assumed to be concentrated at the center of
the cluster, back to its original location. To bound the extra assignment cost
involved, we rely on the important fact that if a client j is fractionally served
by some facility i ∈ Nk, then the distance cjk is bounded. Since the triangle
inequality implies that cjk ≤ cij + cik, we focus on bounding the distance cik.
This is done in Lemmas 3.3 and 3.4. In Lemma 3.8, we provide a bound on the
facility cost and assignment cost involved in opening the facilities with yi = 1,
which, by relying on complementary slackness, overcomes the difficulties posed
by the −zi term in the dual objective function.

We then combine these bounds to prove our main theorem, Theorem 3.9,
which states that the resulting feasible solution for the capacitated facility loca-
tion problem is of cost at most 5 · OPT .

We first prove the following lemma that states a necessary condition for a
facility i to be assigned to cluster Nk.

Lemma 3.2. Let i be a facility assigned to cluster Nk in step C1 or C2. Let
C′ be the set of cluster centers just after this assignment. Then, k is the cluster
center closest to i among all cluster centers in C′; that is, cik = mink′∈C′ cik′ .

Proof. Since k ∈ C′, clearly we have that cik ≥ mink′∈C′ cik′ . If i is assigned in
step C1, then it must be included when the cluster centered at k is first formed;
that is, i ∈ Bk and the lemma holds by the definition of Bk. Otherwise, if i is
assigned in step C2, then C′ is the set of all cluster centers, in which case it is
again true by definition. �	

For a client j, consider the point when j was removed from the set S in
step C1, either because a cluster was created around it, or because the weight of
the facilities in Bj decreased below 1

2 when some other cluster was created. Let
Aj = Fj \ Bj be the set of facilities not in Bj at that point. Recall that there
are two reasons for removing a facility i from the set Bj : it was assigned to some
cluster Nk, or there was some cluster center k′ ∈ C, such that cik′ < cij . We
define i∗(j) as the facility in Aj nearest to j. Also, observe that once j /∈ C ∪ S,
then we have that

∑
i∈Aj

xij > 1
2 .

Lemma 3.3. Consider any client j and any facility i ∈ Aj. If i is assigned to
cluster Nk, then cik ≤ αj.

Proof. If k = j, (j could be a cluster center), then we are done since Aj ⊆ Fj

and xij > 0 implies that cij ≤ αj (by complementary slackness). Otherwise,
consider the point when j was removed from S in step C1, and let C′ be the set
of cluster centers just after j is removed. Note that j could belong to C′ if it is
a cluster center. Since i /∈ Bj at this point, either i ∈ Nk′ for some k′ ∈ C′ or



we have that cij > mink′∈C′−{j} cik′ . In the former case, it must be that k′ = k,
since the clusters are disjoint. Also, cik ≤ αk, since Nk ⊆ Fk, and αk ≤ αj , since
k was picked before j from S (recall the order in which we consider clients in S).
In the latter case, consider the set of cluster centers C′′ just after i is assigned
to Nk (either in step C1 or step C2), and so k ∈ C′′. It must be that C′′ ⊇ C′,
since i was removed from Bj before it was assigned to Nk, and by Lemma 3.2,
cik = mink′∈C′′ cik′ . Hence, cik ≤ mink′∈C′−{j} cik′ < cij ≤ αj since Aj ⊆ Fj . �	
Lemma 3.4. Consider any client j and a facility i ∈ Fj \Aj. Let i be assigned
to cluster Nk. If j ∈ C, then cik ≤ cij; otherwise, cik ≤ cij + ci∗(j)j + αj.

Proof. If j is a cluster center, then when it was removed from S, we have con-
structed the cluster Nj equal to the current set Bj , which is precisely Fj \ Aj .
So i is assigned to Nj , that is, k = j, and hence the bound holds.

Suppose j /∈ C. Consider the point just before the facility i∗(j) is removed
from the set Bj in step C1, and let C′ be the set of cluster centers at this point.
By the definition of the set Aj , j is still a candidate cluster center at this point.
Let k′ ∈ C′ be the cluster center due to which i∗(j) was removed from Bj , and so
either i∗(j) ∈ Nk′ ⊆ Fk′ or ci∗(j)k′ < ci∗(j)j . In each case, we have ci∗(j)k′ ≤ αj ,
since the choice of k′ implies that αk′ ≤ αj . Now consider the set of cluster
centers C′′ just after i is assigned to Nk. Since i /∈ Aj , i∗(j) was removed from
Bj before this point. So we have C′′ ⊇ C′. Using Lemma 3.2,

cik = min
k′′∈C′′

cik′′ ≤ cik′ ≤ cij + ci∗(j)j + ci∗(j)k′ ≤ cij + ci∗(j)j + αj .

�	
Consider now any cluster Nk. Recall that Lk = {i ∈ Nk : yi < 1}, (w(k), v(k))

is the optimal solution to (SN-P) found by the greedy algorithm for the single-
node instance corresponding to this cluster, and O∗

k is the value of this solution.
Let k(i) ∈ C denote the cluster to which facility i is assigned, and so i ∈ Nk(i).

Lemma 3.5. The optimal value O∗
k ≤ ∑

i∈Lk
fiyi +

∑
j,i∈Lk

cikxij , and hence,∑
k∈C O∗

k ≤ ∑
i:yi<1 fiyi +

∑
j,i:yi<1 cik(i)xij .

Proof. The second bound follows from the first since the clusters Nk are disjoint.
We will upper bound O∗

k by exhibiting a feasible solution (ŵ, v̂) of cost at most
the claimed value. Set v̂i = yi, and ŵi =

∑
j xij for all i ∈ Lk. Note that

∑
i ŵi =∑

i∈Lk

∑
j xij = Dk. The facility cost of this solution is at most

∑
i∈Lk

fiv̂i =∑
i∈Lk

fiyi. The service cost is
∑

i∈Lk
ciŵi =

∑
j,i∈Lk

cikxij . Combining this
with the bound on facility cost proves the lemma. �	
Lemma 3.6. The cost of opening the (at most one) extra facility in cluster Nk

is at most 2
∑

i∈Nk
fiyi.

Proof. We have
∑

i∈Nk
yi ≥

∑
i∈Nk

xik ≥ 1
2 since Nk was created in step C1 and

is centered around k, and no facility is removed from Nk in step C2. We open
at most one extra facility from Nk. Since all facilities have the same cost f , the
cost of opening this facility is f ≤ f ·2 ∑

i∈Nk
yi = 2

∑
i∈Nk

fiyi. This is the only
place where we use the fact that the facility costs are all equal. �	



Let ŷ be the 0-1 vector indicating which facilities are open, i.e., ŷi = 1 if i
is open, and 0 otherwise. We let ŷ(k) denote the portion of ŷ consisting of the
facilities in Lk, i.e., ŷ(k) =

(
ŷ
(k)
i

)
i∈Lk

and ŷ
(k)
i = 1 if i ∈ Lk is open, and 0

otherwise.

Lemma 3.7. The solution
(
w(k), v(k)

)
for cluster Nk yields an assignment x̂(k) =(

x̂
(k)
ij

)
i∈Lk,j∈D such that,

(i) (x̂(k), ŷ(k)) obeys constraints (2)–(4) for all i ∈ Lk,

(ii) x̂ satisfies
∑

i∈Lk
xij fraction of the demand of each client j, that is,∑

i∈Lk
x̂ij =

∑
i∈Lk

xij for all j and,

(iii) the cost
∑

i∈Lk
fiŷ

(k)
i +

∑
j,i∈Lk

cij x̂
(k)
ij is at most O∗

k + 2
∑

i∈Nk
fiyi +∑

j,i∈Lk
cijxij +

∑
j,i∈Lk

cikxij.

Proof. We have O∗
k =

∑
i∈Lk

(
fiv

(k)
i +ciw

(k)
i

)
. Constraints (4) are clearly satisfied

for i ∈ Lk, since ŷ(k) is a {0, 1}-vector. The facility cost
∑

i∈Lk
fiŷ

(k)
i is at most∑

i∈Lk
fiv

(k)
i + 2

∑
i∈Nk

fiyi since every facility other than the extra facility is
either fully open or not open in the solution (w(k), v(k)) and the cost of opening
the extra facility is at most 2

∑
i∈Nk

fiyi by Lemma 3.6.

We set the variables x̂
(k)
ij for i ∈ Lk so that the service cost

∑
j,i∈Lk

cij x̂
(k)
ij

can be bounded by
∑

i∈Lk
ciw

(k)
i +

∑
j,i∈Lk

(cij +cik)xij . Combining this with the
above bound on the facility cost, proves the lemma. The service cost of the single-
node solution is the cost of transporting the entire demand Dk =

∑
j,i∈Lk

xij

from the facilities in Lk to the center k, and now we want to move the demand,∑
i∈Lk

xij , of client j from k back to j. Doing this for every client j incurs an
additional cost of

∑
j

∑
i∈Lk

cjkxij ≤ ∑
j,i∈Lk

(cij + cik)xij . More precisely, we

set x̂
(k)
ij , i ∈ Lk arbitrarily so that, (1)

∑
i∈Lk

x̂
(k)
ij =

∑
i∈Lk

xij for every client j,

and (2)
∑

j x̂
(k)
ij = w

(k)
i for every facility i ∈ Lk. This satisfies constraints (2),(3)

— if x̂
(k)
ij > 0 then w

(k)
i > 0, so ŷ

(k)
i = 1, and

∑
j x̂

(k)
ij = w

(k)
i ≤ ui = uiŷ

(k)
i . The

service cost is,
∑

j,i∈Lk

cij x̂
(k)
ij ≤

∑
i∈Lk,j

cikx̂
(k)
ij +

∑
j,i∈Lk

cjkx̂
(k)
ij ≤

∑
i∈Lk

ciw
(k)
i +

∑
j,i∈Lk

(cij + cik)xij .

�	

Lemma 3.8. The cost of opening facilities i with yi = 1, and for each such i, of
sending xij units of flow from j to i for every client j, is at most

∑
j,i:yi=1 αjxij−∑

i zi.

Proof. This follows from complementary slackness. Each facility i with zi > 0
has yi = 1. For any such facility we have,



∑
j

αjxij =
∑

j

cijxij +
∑

j

βijxij +
∑

j

γixij

(
xij > 0 ⇒ αj = cij + βij + γi

)

=
∑

j

cijxij +
∑

j

βijyi + uiγiyi

(
βij > 0 ⇒ xij = yi,
γi > 0 ⇒ ∑

j xij = uiyi

)

=
∑

j

cijxij + fi + zi.

(
yi > 0 ⇒ ∑

j βij + uiγi

= fi + zi

)

Summing over all i with yi = 1 proves the lemma. �	
Putting the various pieces together, we get the following theorem.

Theorem 3.9. The cost of the solution returned is at most 5 · OPT.

Proof. To bound the total cost, it suffices to give a fractional assignment (x̂ij)
such that (x̂, ŷ) is a feasible solution to (P) and has cost at most 5 · OPT . We
construct the fractional assignment as follows. First we set x̂ij = xij for every
facility i with yi = 1 = ŷi. This satisfies constraints (2)–(4) for i such that yi = 1.
By the previous lemma we have,

∑
i:yi=1

fiŷi +
∑

j,i:yi=1

cij x̂ij =
∑

j,i:yi=1

αjxij −
∑

i

zi. (9)

Now for each cluster Nk, we set x̂ij = x̂
(k)
ij for i ∈ Lk where (x̂(k), ŷ(k)) is the

partial solution for cluster Nk given by Lemma 3.7. All other x̂ij variables are 0.
Applying parts (i) and (ii) of Lemma 3.7 for all k ∈ C, we get that (x̂, ŷ) satisfies
(2)–(4) for every i such that yi < 1, and

∑
i:yi<1 x̂ij =

∑
i:yi<1 xij for every

client j Hence, (x̂, ŷ) satisfies constraints (2)–(4) and
∑

i x̂ij =
∑

i:yi=1 xij +∑
i:yi<1 xij = 1, showing that (x̂, ŷ) is a feasible solution to (P). Since the

clusters Nk are disjoint, from part (iii) of Lemma 3.7, we have,
∑

i:yi<1

fiŷi +
∑

j,i:yi<1

cij x̂ij ≤
∑
k∈C

O∗
k + 2

∑
i

fiyi +
∑

j,i:yi<1

cijxij +
∑

j,i:yi<1

cik(i)xij

≤ 3
∑

i

fiyi +
∑

j,i:yi<1

cijxij + 2
∑

j,i:yi<1

cik(i)xij .

where the last inequality follows from Lemma 3.5. For any client j and facility i ∈
Fj , if i ∈ Aj , then we have cik(i) ≤ αj by Lemma 3.3; otherwise, by Lemma 3.4,
cik(i) ≤ cij ≤ cij + αj for j ∈ C, and cik(i) ≤ cij + ci∗(j)j + αj for j /∈ C. Plugging
this in the above expression we get,
∑

i:yi<1

fiŷi +
∑

j,i:yi<1

cij x̂ij ≤ 3
∑

i

fiyi +
∑

j,i:yi<1

cijxij + 2
∑

j,i:yi<1

αjxij

+ 2
∑

j

∑
i:yi<1
i/∈Aj

cijxij +
∑
j /∈C

2ci∗(j)j

∑
i:yi<1
i/∈Aj

xij .



For j /∈ C,
∑

i/∈Aj
xij < 1

2 . So 2ci∗(j)j

(∑
i:yi<1,i/∈Aj

xij

)
is at most,

ci∗(j)j = min
i∈Aj

cij ≤
∑

i∈Aj
cijxij∑

i∈Aj
xij

< 2
∑
i∈Aj

cijxij .

This implies that,
∑

i:yi<1

fiŷi +
∑

j,i:yi<1

cij x̂ij ≤ 3
∑

i

fiyi +
∑

j,i:yi<1

cijxij + 2
∑

j,i:yi<1

αjxij

+ 2
∑

j

∑
i:yi<1
i/∈Aj

cijxij + 2
∑
j /∈C

∑
i∈Aj

cijxij

≤ 2
∑

j,i:yi<1

αjxij + 3
(∑

i

fiyi +
∑
j,i

cijxij

)
. (10)

Finally, combining (9) and (10), we obtain that

Total Cost ≤
( ∑

j,i:yi=1

αjxij −
∑

i

zi

)
+ 2

∑
j,i:yi<1

αjxij + 3
(∑

i

fiyi +
∑
j,i

cijxij

)

≤ 2
( ∑

j,i:yi=1

αjxij −
∑

i

zi +
∑

j,i:yi<1

αjxij

)
+ 3 · OPT = 5 · OPT .

�	
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