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We study the functional estimation of the space-dependent diffusion coef®cient in a one-dimensional

framework. The sample path is observed at discrete times. We study global Lp-loss errors

(1 < p ,�1) over Besov spaces Bsp1. We show that, under suitable conditions, the minimax rate of

convergence is the usual nÿs=(1�2s). Linking our model to nonparametric regression, we provide an

estimating procedure based on a linear wavelet method which is optimal in the minimax sense.
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1. Introduction

1.1. Motivation

In recent years, much effort has been devoted to statistical inference in diffusion processes

when only a discrete sampling of the trajectory is available. In particular, a growing interest

in the diffusion coef®cient has come from mathematical ®nance, where the diffusion

coef®cient represents volatility. Whereas parametric inference is quite well known when the

discretization step is small (Donhal 1987; Genon-Catalot and Jacod 1993; 1994; Jacod 1993)

only emerging results have been proposed for the functional estimation of the diffusion

coef®cient, when the parameter of interest is globally unknown, and subject only to a

functional constraint (usually a smoothness property).

A relatively simple situation consists in studying the time-dependent diffusion coef®cient

ó 2(:) in a model governed by a diffusion process X of the type

dXt � b(t, Xt) dt � ó (t) dWt, X 0 � x0, t 2 [0, 1], (1:1)

observed at times i=n, i � 0, . . . , n, where (Wt, 0 < t < 1) is a standard Wiener process and

x0 2 R. Genon-Catalot et al. (1992) proposed a nonparametric estimator of ó 2(t) based on

orthonormal wavelets and studied its asymptotic properties in L2 error. Soulier (1993)

proposed some extensions in Lp. Hoffmann (1997) computed the minimax rate of

convergence for both upper and lower bounds. The usual nÿs=(1�2s) rate holds. The

technicalities are close to nonparametric regression (see, for example, Korostelev and
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Tsybakov (1993)); by a change in probability argument, i.e. setting b � 0 in (1.1) the process

X is Gaussian with independent increments; therefore, standard nonparametric techniques

apply.

A more elaborate model, which will be studied in this paper, consists of a space-

dependent diffusion coef®cient model, where now

dXt � b(t, Xt) dt � ó (Xt) dWt, X0 � x0, t 2 [x0, 1]: (1:2)

The situation becomes substantially more dif®cult. The identi®ability domain (the interval

where ó can be estimated) is random, and the achievable accuracy of estimation (the

analogous of the design in a regression model) is given by the observed process

X (n) � (X i=n, i � 0, . . . , n) itself. The ®rst researcher to study this model was Florens-

Zmirou (1993), who proposed a consistent and asymptotically normal estimator. However, the

results obtained could not be linked to the smoothness of the parameter ó 2(x) and the

minimax properties of the model were left open.

The aim of this paper is to ®ll in this gap from the minimax theory point of view. We

de®ne a suitable minimax framework to work with (De®nition 2 below) by comparing the

model driven by (1.2) with a regression framework, with random design. We exhibit the

asymptotic minimax rate of convergence for a global Lp loss (1 < p ,�1) for an

unknown function ó lying in a Besov space. This choice of function spaces is motivated by

the fact that, in regression or density estimation, the case of Besov spaces is optimal

(Kerkyacharian and Picard 1993). Another interesting point is that wavelet bases offer

unconditional bases for Besov spaces. We propose a linear estimating procedure based on

wavelets which is optimal. The numerical properties offered by multiscale schemes (in

particular, wavelets on the interval (Cohen et al. 1994)) suggest fast practical imple-

mentation.

1.2. Outline

We investigate the functional estimation of the diffusion coef®cient ó 2(x) in the one-

dimensional model driven by the stochastic differential equation (1.2). The starting point x0 is

®xed and ó (x) and b(t, x) are unknown. The sample path (X t, 0 < t < 1) is discretely

observed at equidistant times i=n, i � 0, . . . , n.

Let us ®rst describe the heuristics upon which our procedure relies. An underlying idea is

that the diffusion coef®cient can be recovered through the quadratic variation of the process

X, which leads us to nonparametric regression (with random design), a paradigmatic

example of well-known statistical models. More precisely, put temporarily b � 0 in (1.2) for

simplicity and set

Yi=n � n(X (i�1)=n ÿ X i=n)2 � n

�(i�1)=n

i=n

ó 2(X s) ds� Ei=n, i � 0, . . . , nÿ 1: (1:3)

where
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Ei=n � n

�(i�1)=n

i=n

ó (Xs) dWs

 !2

ÿ n

�(i�1)=n

i=n

ó 2(Xs) ds:

The Ei=n are uncorrelated centred variables (in fact, martingale increments) which may be

viewed as noise terms when estimating n
� (i�1)=n

i=n
ó 2(Xs) ds from the observation Yi=n.

Provided that there is some smoothness condition on ó 2, the quantity ó 2(X i=n) can be

recovered from

n

�(i�1)=n

i=n

ó 2(X s) ds

up to a negligible error. In other words, we can translate our problem in a nonparametric

regression setting, i.e. try to estimate the whole function ó 2 from the observation of (X i=n,

Yi=n, 0 < i < nÿ 1) in the model

Yi=n ' ó 2(X i=n)� Ei=n, i � 0, . . . , nÿ 1: (1:4)

However, the model suggested by (1.3) differs from usual regression frameworks as

follows.

(1) The X i=n which play the role of the observation points in (1.4) are not independent

and identically distributed (i.i.d.) variables. Moreover, the domain which is asymptotically

covered by the observation points is random itself. In classical nonparametric regression

with random design, whenever global rates are studied (Stone 1982; Hall 1984; Korostelev

and Tsybakov 1993) the observation points are assumed to have a density f, bounded away

from zero in some compact interval, say D, where the estimation is to be performed. In our

case, the density f (x) at some point x 2 D is given by the local time of the process X at x

up to time 1, namely

Lx � lim
E!0

1

2E

�1

0

1jX sÿxj<E ds: (1:5)

In order to obtain global rates of convergence, we shall assume that the local time of X is

bounded from below on D (with x0 2 D) and therefore study the risk of an estimator

conditionally on the event `̀ Lx bounded away from zero on D''.

(2) A second major feature is that the noise variables Ei=n are not independent from the

design points X i=n nor i.i.d. To face this, we enhance the martingale structure of the Ei=n by

considering an increasing sequence T0 < T1 < � � � < Tk n
of stopping times of the discrete

time ®ltration F n
i � ó (X s, 0 < s < i=n), i � 0, . . . , n and we look for an estimator of the

form

ó̂ 2
n(x) �

Xk n

i�0

Gn,i(X Ti
, X Ti�1=n, x): (1:6)

Considering estimates of this form will enable us to get rid of the spatial inhomogeneity of

the observation points X i=n and still treat the noise terms as in classical regression by means

of a martingale version of the Rosenthal inequality (Hall and Heyde 1980). The precise form

of the Gn,i and kn will be given in Section 3. Further, we construct an estimator on the whole
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domain D by means of wavelets on the interval, as developed by Cohen et al. (1994), which

avoids the effects of boundaries.

Let us also mention that our model can be extended by a classical argument, derived

from the ItoÃ formula, to the more general equation

dX t � b(t, X t) dt � h(t)ó (X t) dWt, X0 � x0, t 2 [0, 1],

where h is a known function which is assumed to be smooth (see, for example, Genon-

Catalot et al. (1992)).

1.3. Contents

Section 2 describes the model and hypotheses. Section 3 presents the construction of the

estimator and the derived minimax results. We show that, for s . 2, the rate nÿs=(1�2s)

measured in some L p norm (1 < p ,1) is a minimax lower bound over Besov balls Bsp1
(see below) and that this rate is attained by our estimator for s . 1� 1=p. Sections 4 and 5

are devoted to the proofs. Some additional results and comments are given in Section 6.

Appendix 1 contains an auxiliary result on the rate of convergence in Lp of the empirical

local time and recalls some de®nitions about wavelets and Besov spaces.

2. Statistical model

We consider the discrete observation X (n) � (X0, X 1=n, . . . , X1) de®ned through the

stochastic differential equation (1.2) de®ned in Section 1 and denote by Pó ,b the law on

the space of continuous functions under which the canonical process (X t, 0 < t < 1) is a

solution of (1.2). We consider a compact interval D. We denote by Bsp1(D) the Besov space

on the interval D (the restriction of the functions of the space Bsp1(R) to D) and by i:i sp1
the Besov norm over D (see, for example, Peetre (1976) and Appendix 1 below). For M . 0

we write Bsp1(D; M) for the ball of radius M of Bsp1(D), i.e.

Bsp1(D; M) � f f 2 Bsp1(D): i f i sp1 < Mg:
For s . 1� 1=p, 1 < p ,1 we make the following assumptions.

Assumption 1. ó is positive, non-vanishing, and ó 2 belongs to

Vsp(M) � f f 2 C 1(R): 0 , M0 < f (x) < M1, i f 9i1 < M2, f jD 2 Bsp1(D, M3)g
where M � (M0, . . . , M3) is a given (multivariate) constant.

Assumption 2. The drift b is continuous and belongs to the class H �H ( ~M) of functions of

uniform linear growth, i.e. such that

8(t, x) 2 [0, 1] 3 R: b2(t, x) < ~M2(1� x2)

where ~M is a given constant.
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Remarks.

(1) Assumptions 1 and 2 imply the existence and uniqueness of a strong solution for

(1.2) (Zvonkin 1974).

(2) The conditions s . 1� 1=p ensures that f is C 1 over D.

(3) Assumption 2 is a rather technical condition. Because of Assumption 1, it implies

that there exists ô. 0 such that

sup
0< t<1

Eó ,b[eôX 2
t ] ,1

(see, for example, Lipster and Shiryayev (1977, Theorem 4.7)). Actually, this condition

holds uniformly over Vsp(M) 3 H and allows one to consider the drift as a nuisance

parameter which does not interfer in the estimation problem (see the proof of Proposi-

tion 4).

We estimate ó 2 over D. Let Lx denote the local time of X at x up to time 1, as de®ned

by (1.5). Set LD � inf x2D Lx. Considering the arguments given in Section 1.2, we de®ne the

following criterion for the accuracy of estimation.

De®nition 1. For í. 0 the Lp risk of an estimator ó̂ 2
n under the constraint Vsp(M)

conditionally on the event (LD > í) is

Rn(ó̂ 2
n, Vsp(M), í) � sup

(ó 2,b)2Vsp(M)3H
Eó ,b

�
D

jó 2(x)ÿ ó̂ 2
n(x)j p dxjLD > í

� �
: (2:1)

3. Main results

3.1. Lower bounds

Proposition 1. Let F denote the set of all estimators constructed from the observation X (n).

Suppose that Assumptions 1 and 2 hold. For s . 2 and every p 2 [1, 1[ , there exists a

constant C1 � C1(s, p, M, í) such that

inf
ó̂ 2

n2F
Rn(ó̂ 2

n, Vsp(M), í) > C1 nÿsp=(1�2s):

Remarks.

(1) The classical rate for nonparametric models such as density estimation or regression

is a minimax lower bound.

(2) The method that we shall employ in the proof requires the smoothness condition

s . 2, which is more restrictive than the initial assumption s . 1� 1=p for p . 1.
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3.2. Upper bounds

We begin this section by recalling some classical facts about the use of wavelets in

nonparametric regression. We then give the construction of our estimator and a bound for the

risk of De®nition 1.

3.2.1. Preliminary results

Consider the model given by

Yi � f (xi)� Ei, i � 0, . . . , n, (3:1)

where f is a smooth function de®ned on the interval D (for instance f belongs to some

Besov ball V of the space Bsp1(D), with s . 1, p 2 [1, 1[) and Ei �iid N (0, 1) is a standard

Gaussian noise. The xi are equally spaced on D. Without loss of generality, we may assume

that D � [0, 1], hence xi � i=n.

Let (Vj, j 2 Z) be a multiresolution analysis of L2(D), generated by a smooth, compactly

supported orthonormal scaling function j (see Appendix 1 for a precise de®nition of Vj and

j) with correction on the boundaries of D (Cohen et al. 1994). We assume that the length

support of j is an integer N0 and we denote by j l
k, jr

k , k � 0, . . . , N0 ÿ 1 the left and

right edge scaling functions on the boundary of D respectively. Set also j jk �
2 j=2j(2 jxÿ k) and j#

jk(x) � j#
k (2 jx), for # � l, r.

The linear wavelet estimator of f on D is constructed as follows.

(1) We ®rst choose an integer J such that 2J > 2N0. According to the Cohen±

Daubechies±Vial algorithm, we approximate f by P
[0,1]
j f for j > J, where

P
[0,1]
j f (x) �

XN0ÿ1

k�0

á l
jkj

l
jk(x)�

X
k2s j

á jkj jk(x)�
XN0ÿ1

k�0

ár
jkj

r
jk(x):

The set of indices sj de®nes the interior functions on D: k 2 sj if and only if suppj jk � D.

We take 2J > 2N0 so that the left and right edge functions j l
jk and jr

jk do not interact.

(2) We then estimate the wavelets coef®cients á jk , ái
jk , i � l, r, for j > J, where

á jk �
�

D

f (x)j jk(x) dx, á#
jk �

�
D

f (x)j#
jk(x) dx:

A standard procedure consists in estimating á jk by its empirical wavelet coef®cient

á̂ jk � 1

n

X
i

Yij jk

i

n

� �
(3:2)

and proceed analogously for á#
jk, # � l, r.

The asymptotic results are obtained when letting j and n tend to 1. Choosing j � jn

such that 2 j n � n1=(1�2s) (an � bn means that there exist two positive constants A and B

independent of n such that Aan < bn < Ban) the wavelet estimator
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f̂ n(x) �
XN0ÿ1

k�0

á̂ l
j n kj

l
j n k(x)�

X
k2s j

á̂ jnkj jnk(x)�
XN0ÿ1

k�0

á̂r
j n kj

r
j n k(x)

is optimal in the minimax sense:

sup
f 2V

E

�
D

j f̂ (x)ÿ f n(x)j p dx

� �
< Cnÿsp=(1�2s) (3:3)

for some constant C � C(V , j).

Suppose that the xi are no longer equispaced on D. There is no reason why f̂ n should

converge to f in any sense. Of course, one may wish to alter the procedure in (3.2) by

considering the empirical wavelet coef®cient along the design generated by the xi, namely

á̂ jk �
X

i

Yij jk(xi)(xi�1 ÿ xi): (3:4)

Such an estimator will still have good minimax properties provided that some accurate

control on supi(xi�1 ÿ xi) is ensured, merely supi(xi�1 ÿ xi) � O(nÿ1). If such a condition is

out of reach, say for technical reasons (and this will be the case for diffusion processes) one

may remark that, if f (xi)ÿ f (i=n) is small, or equivalently (as f is smooth) if xi is close to

i=n, the estimator given by (3.2) will still enjoy good convergence properties. More precisely,

one can check that, if

sup
i<n

����xi ÿ i

n

���� < Knÿs=(1�2s) (3:5)

for an absolute constant K, (3.3) still holds. This means that we do not need to bound the

distance between two successive observation points if we have insight into the number of

points located asymptotically around any given level. Hence, under condition (3.5), we can

simply take the estimate

á̂ jk � 1

n

X
i

Yij jk

i

n

� �
although the considered data are non-equally spaced. Further data on irregular samplings

following this approach has been used for instance by Hoffmann (1997).

3.2.2. Construction of an estimator for the diffusion coef®cient

3.2.2.1. Preliminaries. We shall henceforth assume that D � [0, 1]. The general case is

obtained by dilating and translating the unit interval, the dif®culty being merely notational.

Let us be given í 2 ]0, 1[ and choose a threshold hn . 0. We divide D into bhÿ1
n c

identical boxes of size hn, denoted by Cë, ë � 1, . . . , bhÿ1
n c. The convergence of the

empirical sampling measure to the local time, namely

1

nhn

Xn

i�0

1jX i=nÿxj<hn=2 ! Lx
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if hn ! 0 and nhn !1 will ensure that on the event (LD > í), bnhníc observation points

X i=n will lie (at least) in each Cë with high probability.

We keep in the bnhníc ®rst observation points X i=n hitting each box Cë and apply the

empirical wavelet transform to the considered (X i=n, Yi=n), with

Yi=n � n(X (i�1)=n ÿ X i=n)2 ' ó 2(X i=n)� Ei=n: (3:6)

The error of location due to the non-equally spaced design generated by the subsampled X i=n

is controlled by the threshold hn (recall 3.5). The admissible i=n lie in a random set.

3.2.2.2. The algorithm. De®ne

Në
i �

X
j<i

1x j=n2Cë

 !
^ bnhníc (3:7)

as the Cë counter stopped when exactly bnhníc observation points lie in Cë. Set

T1 � 0, and for i > 2: Ti � inf
j

n
. Tiÿ1:

X
ë

(N ë
j ÿ Në

Tiÿ1
) > 1

( )
^ 1: (3:8)

The Ti, i � 1, . . . , bníc are increasing (F n
i )-stopping times which correspond to the times

when the boxes are ®lled up to bnhníc points each. The major point of interest is that (recall

(1.3)) the process
P

j<iET j
remains a (F n

Ti�1
) martingale.

We extract from X (n) the subsampling (X T1
, . . . , X Tbníc ) and apply the empirical wavelet

transform to the (X Ti
, YTi

) suggested by (3.2) on the regular grid (i=bníc, i � 0, . . . , bníc),
with

YTi
� n(X Ti�1=n ÿ X Ti

)2, i � 1, . . . , bníc: (3:9)

A last technical dif®culty is that the X i=n do not appear of course in an increasing order. We

cannot link (X Ti
, YTi

) to bi=níc directly. For a given box Cë, the points on the regular design

are the

(ëÿ 1)hn � l

bníc , l � 1, . . . , bnhníc:

We set ëTi
for the index of the box Cë in which X Ti

falls. For a given (X Ti
, YnTi

), the

corresponding point on the regular grid will be de®ned as

xTi
� (ëTi

ÿ 1)hn � lTi

bníc , (3:10)

where lTi
� #fX T j

2 CëTi
, j < ig.

Note that this choice of sampling points xTi
on the uniform grid at courser level 1=í

provides us with (F n
Ti

)-measurable xTi
.

De®nition 2. The wavelet coef®cient estimator at level í is
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á̂ jk � 1

bníc
Xbníc
i�1

YTi
j jk(xTi

): (3:11)

We de®ne the edge wavelet coef®cients estimate analogously. The estimator of ó 2 on D is

then

ó̂ 2
n(x) �

XN0ÿ1

k�0

á̂ l
jkj

l
jk(x)�

X
k2s j

á̂ jkj jk(x)�
XN0ÿ1

k�0

á̂r
jkj

r
jk(x):

We may now state our result on upper bounds. For technical convenience, we work with

the wavelet estimator at level í=2.

Proposition 2. Let p 2 [1, 1[. Suppose that Assumptions 1 and 2 hold. Let ó̂ 2
n be the

estimator given by De®nition 2 at level í=2. If 2 j n � n1=(1�2s) and hn � nÿs=(1�2s), then there

exists C2 � C2(j, s, p, M, ~M , í) such that

Rn(ó̂ 2
n, Vsp(M), í) < C2 nÿsp=(1�2s):

Corollary 1. The minimax rate of convergence for the minimax risk de®ned by (2.1) over

Besov balls for s . 2 and p 2 [1, �1[ is the classical nÿsp=(1�2s) and is attained by our

estimator.

4. Lower bounds; proof of Proposition 1

4.1. Sketch of the proof

We follow a classical method in nonparametric estimation, restricting ourselves to a

hypercube of Vsp(M). We refer to Korostelev and Tsybakov (1993) for general results on

proving lower bounds and to Kerkyacharian and Picard (1992; 1993) for the speci®c use of

wavelets and Besov spaces in this context. We outline the dif®culties encountered when

considering the case of diffusion processes. Let Pí denote the probability measure

conditioned on the event (LD > í) and let Eí denote the corresponding expectation. Note that

Rn(ó̂ 2
n, Vsp(M), í) > sup

ó 22C jn,b�0

Eífió̂ 2 ÿ ó 2 i p

pg,

where C j n
is some parametric set included in Vsp(M) of size 2 j n , with jn increasing as

n!1. We shall henceforth consider the model without drift.

4.1.1. Constructing a hypercube of Vsp(M)

For technical convenience, we suppose that M0 , 1 , M1 without loss of generality. Let ø be

a wavelet (Meyer 1990) of regularity r . s, with compact support included in [ÿA, A], where

A is a ®xed integer. We set
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C jn
(ãn) � ó 2

E (x) � 1� ãn

X
k2K jn

Ekø jnk(x), Ek � �1, k � 1, . . . , 2 j n

( )
,

where ãn is a positive number which measures the size of oscillations of the cube. We de®ne

K jn
� fA� 2kA, k � 0, . . . , 2 j n ÿ 1g and ø jnk � 2 j n=2ø(2 j n xÿ k) so that ø jnk and ø j n k9

have disjoint supports for k 6� k9. Thus we disturb an original function identically equal to 1

by adding ãnø jnk , for k � 1, . . . , 2 j n.

We look for conditions in order to have C jn
(ãn) � Vsp(M). From the de®nition of Besov

spaces in terms of wavelet sequences (see Appendix 1), this is satis®ed if

ãn <
M1

2
2ÿ j n(s�1=2) and ãn <

1ÿ M0

iøi1
2ÿ j n=2: (4:1)

4.1.2. Bounds on the minimax risk

The crucial point is to ®nd a condition on (the order of magnitude of) ãn in order to bound

the likelihood ratio induced by two generic points of C jn
(ãn). More precisely, let P� (or Pÿ)

denote the law of a sample of observation, derived from a model with a diffusion coef®cient

ó 2
� � 1� ãn

P
k9 6�kEk9ø j n k9 � ãnø jnk (or ó 2

ÿ � 1� ãn

P
k9 6�kEk9ø j n k9 ÿ ãnø jnk), for some

®xed k 2 K jn
and Ek9, k9 6� k. Let Ë(ó�, óÿ, X (n)) denote the likelihood ratio

(dP�=dPÿ)(X (n)). If we prove that there exist positive ë and p0, independent of n such

that for suf®ciently large n

Pí
ÿ(Ë(ó�, óÿ, X (n)) . eÿë) > p0 . 0, (4:2)

then (Korostelev and Tsybakov 1993) we can derive the following bound:

inf
ó̂ 2

n2F
Rn(ó̂ 2

n, Vsp(M), í) > 2 j n p=2ã p
n iøi p

p eÿë
p0

2
: (4:3)

The conditions on jn and ãn exhibited in (4.1) and (4.2) will therefore provide a lower bound.

4.1.3. Control of the likelihood ratio

For ä. 0, let ~Ë denote the likelihood ratio associated with the Markov process of transition

semigroup

~pä(x, dy) � 1

(2ðä)1=2

1

ó (x)
exp ÿ 1

2ä

(yÿ x)2

ó 2(x)

 !
dy: (4:4)

In our time equispaced design we take ä � 1=n. We ®rst prove an intermediate result for
~Ë(ó�, óÿ, X (n)), when the observation X (n) is taken under Pÿ and j, ã are ®xed

(independent of n).

Lemma 1. Assume that j and ã are ®xed. The following expansion holds:

log ~Ë(ó�, óÿ, X (n)) � n1=2ãU n, j ÿ 1
2
nã2Vn, j � n3=2ã3 Rn, j(ã), (4:5)
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where Un, j converges in distribution under Pÿ � Póÿ ,0 to Uj as n goes to �1, Uj is a

centred mixed normal variable, with conditional variance Vj � 2
� 1

0
ø2

jk(X s) ds, Vn, j

converges in Pÿ-probability to Vj and Rn, j ! 0 in Pÿ measure (uniformly in ã) as n goes

to in®nity.

Remark. This result is not surprising if one recalls that model (1.2) is parametrically local

asymptotic mixed normality (Donhal 1987; Genon-Catalot and Jacod 1993) since, for ®xed j,

we are in a parametric submodel. We shall not use directly Lemma 1 for the proof of

Proposition 1, but we emphasize expansion (4.5) to provide our intuition for the model and

for the proof of Lemma 2.

Lemma 2. Let j � jn and ã � ãn and assume that ãn � 1=n1=2 and 25 jn=2=n1=2 ! 0 as

n!1. Then

(i) there exist positive ë and p0 such that, for suf®ciently large n,

Pí
ÿ( ~Ë(ó�, óÿ, X (n)) . eÿë) > p0 . 0 (4:6)

and

(ii) (4.6) remains true when replacing ~Ë by Ë, for a modi®cation of the constants ë and

p0.

4.1.4. Completion of proof of Proposition 1

We take ãn � 1=n1=2 in (4.1). This leads to

2 jn � n1=(1�2s): (4:7)

The condition 25 jn=2=n1=2 ! 0 as n!1 is satis®ed since s . 2. From Lemma 2 and (4.3),

we deduce that

inf
ó̂ 2

n2F
Rn,í(ó̂

2
n, V ) > C1 nÿsp=(1�2s) (4:8)

where C1 � C1(s, p, M, í). The proof is complete. u

4.2. Proof of Lemma 1

For notational simplicity, we shall write X i instead of X i=n, P (or E) instead of Pÿ (or Eÿ)

and set ÄXi � X (i�1)=n ÿ X i=n. The quantity C will denote an generic constant depending on

s, p, M and ø which may vary at each occurrence. We shall also write ~Ë for
~Ë(ó�, óÿ, X (n)) when no confusion is possible. One has, under P,

(ÄXi)
2 �

�(i�1)=n

i=n

óÿ(X s) dWs

 !2

� ó 2
ÿ(X i)(ÄWi)

2 � R
(1)
i,n: (4:9)
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Consequently

log ~Ë �
Xnÿ1

i�0

log
óÿ
ó�

(X i)ÿ 1

2ä

Xnÿ1

i�0

óÿ
ó�

� �2

(X i)ÿ 1

( )
(ÄWi)

2 � R(2)
n

with

R(2)
n �

1

2ä

Xnÿ1

i�0

1

ó 2�
ÿ 1

ó 2ÿ

� �
(Xi)R

(1)
i,n:

A second-order Taylor expansion yields

log
óÿ
ó�

(X i) � ÿãø jk(Xi)� R
(3)
i,n

ÿ 1

2

óÿ
ó�

� �2

(X i)ÿ 1

( )
� ãø jk(X i)ÿ ã2ø2

jk(X i)� R
(4)
i,n:

Since ä � 1=n

log ~Ë �
Xnÿ1

i�0

ãø jk(Xi)fn(ÄWi)
2 ÿ 1g ÿ

Xnÿ1

i�0

nã2ø2
jk(Xi)(ÄWi)

2 � R(5)
n (4:10)

where

R(5)
n � R(2)

n �
Xnÿ1

i�0

(R
(3)
i,n � R

(4)
i,n):

De®ne now

Ei � n(ÄWi)
2 ÿ 1,

U n, j � 1

n1=2

Xnÿ1

i�0

ø jk(X i)Ei,

Vn, j � 2
Xnÿ1

i�0

ø2
jk(X i)(ÄWi)

2,

Rn, j(ã) � (n3=2ã3)ÿ1 R(5)
n :

Equation (4.10) can therefore be written as (4.5). Thus Lemma 1 is proved provided that the

following convergences hold:

Vn, j!P 2

�1

0

ø2
jk(Xs) ds as n! �1, (4:11)

U n, j ! Uj as n! �1, (4:12)
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in the P distribution, where Uj is a mixed normal centred variable with conditional variance

Vj, and

Rn, j(ã)!P 0 as n! �1: (4:13)

u

Proof of (4.13). Recall that

R
(1)
i,n �

�(i�1)=n

i=n

óÿ(Xs) dWs

 !2

ÿ ó 2
ÿ(X i)(ÄWi)

2,

R(2)
n �

1

2ä

Xnÿ1

i�0

Tn,i R
(1)
i,n, with Tn,i � 1

ó 2�
ÿ 1

ó 2ÿ

� �
(Xi):

R(5)
n � R(2)

n �
Xnÿ1

i�0

(R
(3)
i,n � R

(4)
i,n):

Thus, we shall successively prove that

1

n3=2ã3
R(2)

n !
P

0, (4:14)

1

n3=2ã3

Xnÿ1

i�0

(R
(3)
i,n � R

(4)
i,n)!P 0: (4:15)

u

Proof of (4.14). We use the following lemma from Genon-Catalot and Jacod (1993).

Lemma 3. Let ÷n
i , U be random variables, the ÷n

i being F n
i�1 measurable. The following two

conditions imply that
Pnÿ1

i�0 ÷
n
i !

P
U:Xnÿ1

i�0

E(÷n
i jF n

i )!P U ,

Xnÿ1

i�0

E(j÷n
i j2jF n

i )!P 0:

We have to check that

1

n3=2ã3

n

2

Xnÿ1

i�0

E(Tn,i R
(1)
n,ijF n

i )!P 0

1

n3ã6

n2

4

Xnÿ1

i�0

E(jTn,i R
(1)
n,ij2jF n

i )!P 0:
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Elementary computation yields

E(Tn,i R
(1)
n,ijF n

i ) � ÿ 2ãø jk(X i)

ó 2ÿ(X i)ó 2�(X i)
E

�(i�1)=n

i=n

fó 2
ÿ(X s)ÿ ó 2

ÿ(X i)g dsjF n
i

 !
: (4:16)

Since the choice of the wavelet ø is free, we may assume that ø is twice differentiable, hence

ó 2
ÿ(X s)ÿ ó 2

ÿ(X i) � (ó 2
ÿ)9(Xi)(X s ÿ X i)� Z n,i,

the remainder term Z n,i satisfying

jZ n,ij < Cã225 j=2jX s ÿ X ij2:
We apply the Fubini theorem and we use the fact that (Xt, 0 < t < 1) is a martingale under

Pÿ to obtain����E �(i�1)=n

i=n

fó 2
ÿ(Xs)ÿ ó 2

ÿ(X i)g dsjF n
i

 !���� < Cã225 j=2E

�(i�1)=n

i=n

(Xs ÿ X i)
2 dsjF n

i

 !
:

We again apply the Fubini theorem and the Doob inequality to get

E

�(i�1)=n

i=n

(X s ÿ X i)
2 dsjF n

i

 !
< CÄ2

n:

Since ó 2
ÿ is bounded from below (Assumption 1), we deduce that

jE(Tn,i R
(1)
n,ijF n

i )j < Cnÿ2ã323 j:

It follows that

1

n1=2ã3

���� 12Xnÿ1

i�0

E(Tn,i R
(1)
n,ijF n

i )

���� < C
2 j

n1=2

� �3

:

The last quantity converges to 0. The second follows likewise; so we omit it. The proof of

(4.14) is ®nished. u

Proof of (4.15). From the de®nition of R
( l)
n,i for l � 3, 4

R
( l)
n,i < Cã3jø jk(Xi)j3: (4:17)

This entails

1

ã3 n3=2
jR(5)

n j < C
23 j=2

n1=2
: (4:18)

The last quantity converges to 0 from the hypothesis. Equation (4.15) is established, and

(4.13) follows. u

Proof of (4.11). From the de®nition of the quadratic variation of a continuous semimartingale

we immediately deduce (4.11). u

460 M. Hoffmann



Proof of (4.12). We ®rst set în
i � (1=n1=2)ø jk(X i)Ei. We have successively

max
i<n
jîn

i j!
P

0, (4:19)

E max
i<n
jîn

i j2
� �

bounded, (4:20)

Xnÿ1

i�0

jîn
i j2!

P
2

�1

0

ø2
jk(Xs) ds: (4:21)

Equations (4.19) and (4.20) are straightforward. u

Proof of (4.21). We apply again the lemma of Genon-Catalot and Jacod (1993) (Lemma 3).

We must check that Xnÿ1

i�0

E(jîn
i j2jF n

i )!P 2

�1

0

ø2
jk(X s) ds, (4:22)

Xnÿ1

i�0

E(jîn
i j4jF n

i )!P 0: (4:23)

It is easily seen thatXnÿ1

i�0

E(jîn
i j2jF n

i ) � 2

n

Xnÿ1

i�0

ø2
jk(Xi)! 2

�1

0

ø2
jk(X s) ds almost surely: (4:24)

On the other hand

E(jîn
i j4jF n

i ) <
C22 j

n2
: (4:25)

So (4.23) follows and (4.21) is proved. u

We are now ready to turn to (4.12) itself. We are in fact under the conditions for the

convergence of Un, j to a mixed normal variable with conditional variance Vj (Hall and

Heyde 1980, p. 58, Theorem 3.2). Unfortunately, we do not have the nesting condition on

the ®ltrations (F n
i ) which is necessary to accommodate the random limit. This dif®culty

has already been encountered in the paper by Genon-Catalot and Jacod (1993) and was

solved by a martingale characterization limit theorem. The same arguments can be used in

our setting and we refer to their paper for the method. The proof of Lemma 1 is complete.

4.3. Proof of Lemma 2

4.3.1. Proof of (i)

For simplicity, we take ã � 1=n1=2. Recall that now Pÿ depends on n through j � jn and ãn.

Note that
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( ~Ë(ó�, óÿ, X (n)) . eÿë \ LD > í) � (jlog ~Ë(ó�, óÿ, X (n))j < ë \ LD > í):

Using the Chebyshev inequality

Pí
ÿ( ~Ë(ó�, óÿ, X (n)) . eÿë) > Pÿ(jlog ~Ë(ó�, óÿ, X (n))j < ë)� Pÿ(LD > í)ÿ 1

> Pÿ(LD > í)ÿ 1

ë
Eÿfjlog ~Ë(óÿ, ó�, X (n))jg:

The assumption that ó 2 is bounded from below (Assumption 1) implies that

C3 � inf
ó 22Vsp

Pÿ(LD > í) . 0: (4:26)

For a proper choice of ë (speci®ed after (4.30) below), (i) will follow from

Eÿfjlog ~Ë(ó�, óÿ, X (n))jg < C4 ,1: (4:27)

With the notation of Lemma 1, (4.27) is a consequence of the three following bounds:

Eÿ(jU n, j n
)j < C4

3
, (4:28)

Eÿ(jVn, j n
j) <

C4

3
, (4:29)

Eÿ(jRn, j n
)j < C4

3
(4:30)

for some constant C4. One completes the proof by taking ë. C4=C3. u

Proof of (4.28), (4.29) and (4.30). Since ó . 0, the random variables X i=n admit a density

with respect to the Lebesgue measure, say pi=n, which is given (see for instance (4.31) below)

by

pi=n(x) � 1

ó (x)(2ði=n)1=2
ri=n(x0, x) exp H(x)ÿ H(x0)ÿ fS(x)ÿ S(x0)g2

2i=n

 !
,

where the functions S, H and r are described in the proof of (ii) below. One readily checks

that the following bound holds for every real number x:

pi=n(x) < C5

n

i

� �1=2

,

where C5 depends on M, and s, p.

For (4.28), we note that the discrete time process (Mi �
Pi

l�0ø jnk(Xl)E l, i � 0,

. . . , nÿ 1) is a (F n
i ) martingale. Hence

Eÿf(U n, j n
)2g �

Xnÿ1

i�0

Eÿfø2
j n k(Xi)g 2

n

after conditioning with respect to F n
i . On the other side, for i > 1
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Efø2
j n k(X i)g �

��1
ÿ1

ø2
j n k(x) pi=n(x) dx < C5

n

i

� �1=2

since ø is orthonormal in L2. It follows that

Eÿf(U n, j n
)2g < 2C5

C

n1=2

Xnÿ1

i�1

1

i1=2
:

Since this last quantity is bounded, the proof for Un, j n
is complete.

We now turn to (4.29). Recall that

Vn, j n
�
Xnÿ1

i�0

ø2
j n k(Xi)(ÄWi)

2:

Conditioning with respect to F n
i , one has

Eÿ(Vn, j n
) �

Xnÿ1

i�0

Eÿfø2
j n k(Xi)g 1

n

and we conclude as for (4.28).

Finally, let us prove (4.30). One has

R(2)
n � ÿ

Xnÿ1

i�0

2ãø jnk(X i)

ó 2ÿ(Xi)ó 2�(X i)

�(i�1)=n

i=n

óÿ(Xs) dWs

 !2

ÿ ó 2
ÿ(X i)(ÄWi)

2

8<:
9=;:

Hence

Eÿ(jR(2)
n )j < 2

X
i

Eÿ ã
jø jnk(Xi)j

M2
1

Eÿ

���� �(i�1)=n

i=n

óÿ(Xs) dWs

 !2

ÿ ó 2
ÿ(X i)(ÄWi)

2

����jF n
i

8<:
9=;

264
375:

Writing�(i�1)=n

i=n

óÿ(X s) dWs)

 !2

ÿ ó 2
ÿ(Xi)(ÄWi)

2 �
�(i�1)=n

i=n

fóÿ(X s)ÿ óÿ(X i)g dWs

3

�(i�1)=n

i=n

fóÿ(Xs)� óÿ(Xi)g dWs,

applying the Schwarz and the Doob inequalities and using ã � 1=n1=2, one easily obtains

Eÿ(jR(2)
n )j < C

Xnÿ1

i�0

[Eÿfø2
j n k(Xi)g]1=2 1

n
:

The conclusion follows from the same arguments as for U n, j n
using the bound on the density

of the X i=n. u
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4.3.2. Proof of (ii)

To approximate Ë, we need an explicit form for the transition semigroup of the process X

under Pÿ. We ®rst recall an expansion of the transition density pä which may be found for

instance in Dacunha-Castelle and Florens-Zmirou (1986).

If X is a solution of (1.2) with coef®cients b � 0 and if ó is twice differentiable (for

ó 2 2 Vjn, this is obtained by taking the regularity r of ø greater than 2) then

pä(x, y) � 1

ó (y)(2ðä)1=2
rä(x, y) exp H(y)ÿ H(x)ÿ fS(y)ÿ S(x)g2

2ä

� �
, (4:31)

where S(x) � � x

0
f1=ó (t)g dt, e H( y)ÿH(x) � fó (x)=ó (y)g1=2 (in the case when b � 0 this term

reduces to a very simple formula) and

rä(x, y) � E exp ä

�1

0

cf(1ÿ u)S(x)� uS(y)� ä1=2 Bug du

 !( )
,

where (Bt, 0 < t < 1) is a standard Brownian bridge and c is a function which is bounded if

ãn23=2 jn is bounded. In fact (Dacunha-Castelle and Florens-Zmirou 1986)

c � 1
4
fó 0ÿ 1

2
(ó 9)2g � Sÿ1:

Therefore there exists C6 depending on M and ø such that

eÿC6ä < rä(x, y) < eC6ä: (4:32)

We ®rst need some technical results. Let us write R�(X (n)) for
Qnÿ1

i�0 r�
1=n

(X (i�1)=n, X i=n)

where r�ä is the function of (4.31) and (4.32) associated with the diffusion coef®cient ó�
and de®ne Rÿ analogously.

We de®ne H�, S� (or Hÿ, Sÿ) using the same convention. More generally, for any

function f, we set

Df (x) � f �(x)ÿ f ÿ(x) and: Ä f (X i) � f (X (i�1)=n)ÿ f (X i=n):

We have the following.

Lemma 4.

0 , C7 < exp
Xnÿ1

i�0

DÄH(X i)

 !
< C8 ,1, (4:33)

Xnÿ1

i�0

D(ÄS(Xi))
2 �

Xnÿ1

i�0

1

ó 2�(X i)
ÿ 1

ó 2ÿ(X i)

� �
(ÄXi)

2 � R(6)
n , (4:34)

where C7 and C8 only depend on M and if 25 jn=2 n1=2 ! 0 as n!1; then

nE(jR(6)
n j)! 0:

Completion of proof of (ii). We have
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Ë(óÿ, ó�, X (n)) � R�

Rÿ
(X (n))

Ynÿ1

i�0

óÿ
ó�

(Xi) exp
Xnÿ1

i�0

DÄH(X i)ÿ n

2
D(ÄS(X i))

2

� �
: (4:35)

Therefore

Pí
ÿ(Ë(óÿ, ó�, X (n)) . eÿë) � Pí

ÿ

 
log ~Ë(óÿ, ó�, X (n)) .ÿë

ÿ
Xnÿ1

i�0

DÄH(Xi)� n

2
R(6)

n �
R�

Rÿ
(X (n))

 !!
:

We then apply Lemma 4 and the Chebyshev inequality and we derive

Pí
ÿ(Ë(óÿ, ó�, X (n)) . eÿë) > Pí

ÿ(log ~Ë(óÿ, ó�, X (n)) .ÿ(ë� ç))ÿ C9

ç
, (4:36)

for any ç. 0. The constant C9 depends on C6 and M. Since the choice of ë is free and ç can

be chosen arbitrarily large, we apply Lemma 2(i) and we can conclude that there exists

p0 . 0 depending on ë, ç such that

Pí
ÿ(Ë(óÿ, ó�, X (n)) . eÿë) > p0 . 0:

The proof of Lemma 2 is complete. u

4.3.3. Proof of Lemma 4

Equation (4.33) is a direct consequence of the de®nition of H. To prove (4.34), we write� y

x

dt

ó (t)

� �2

� (yÿ x)2

ó 2(x)
� R(7)(x, y): (4:37)

We therefore need a bound for

R(6)
n �

Xnÿ1

i�0

fR
(7)
� (X ti

, X ti�1
)ÿ R(7)

ÿ (X ti
, X ti�1

)g:

We ®rst introduce some notation. R will denote a real function vanishing at the origin,

possibly varying at each occurrence and for which there exists a constant (possibly depending

on M and s, p) such that

jR(x)j < Cjxj:
For ó 2 2 Vjn, we denote by gjnk �

P
kEkøjnk the added function to the initial condition. Thus

ó 2 � 1� ãn g jn,k :

Using a Taylor argument, it is easily seen that
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1

ó (t)
ÿ 1

ó (x)
�ÿ 1

2
ãn (t ÿ x)(g j n,k)9(x)� (t ÿ î)2

2
(g j n,k) 0(î)

� �
� 3

8
ã2

n(t ÿ î)(g jn,k)9(î)fg j n,k(t)� g jn,k(x)g

� R(ã3
n g3

j n,k(t))� R(ã3
n g3

j n,k(x)),

1

ó (t)
� 1

ó (x)
� 2ÿ ãn

2
fg j n,k(x)� g jn,k(t)g � R(ã2

n g2
j n,k(t))� R(ã2

n g2
j n,k(x)):

We use the following notation:

1

ó (t)
ÿ 1

ó (x)
� ÿ1

2
ãn(t ÿ x)(g j n,k)9(x)� L( jn, ãn, t, x),

1

ó (t)
� 1

ó (x)
� 2� M( jn, ãn, t, x),

the de®nition of L and M being given by the foregoing expansion. Next, we have

R(7)(x, y) �
� y

x

dt

ó (t)

� �2

ÿ (yÿ x)2

ó 2(x)

�
� y

x

1

ó (t)
ÿ 1

ó (x)

� �� y

x

1

ó (t)
� 1

ó (x)

� �
� B1(x, y)� B2(x, y)� B3(x, y)� B4(x, y),

with

B1(x, y) � ÿãn(g jn,k)9(x)(yÿ x)3,

B2(x, y) � 2(yÿ x)

� y

x

L( jn, ãn, t, x) dt,

B3(x, y) � ÿ1
2
ãn(g j n,k)9(x)(yÿ x)2

� y

x

M( jn, ãn, t, x) dt,

B4(x, y) �
� y

x

L( jn, ãn, t, x) dt

� y

x

M( jn, ãn, t, x) dt:

We successively prove that

nE

����Xnÿ1

i�0

Bl(X i, X i�1)

����
 !

! 0, l � 1, . . . , 4:

under the condition 25 j n=2=n1=2 ! 0.
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4.3.3.1. Convergence of B1. The process

Mi � n
Xiÿ1

l�0

B1(Xl, X l�1) � ÿn
Xi

l�0

(g j n,k)9(X l)(X l�1 ÿ X l)
3, i � 0, . . . n,

is a (F n
i ) martingale. Hence

E(M2
n) � n2

Xnÿ1

i�0

EfB2
1(Xi, X i�1)g

� n2ã2
n

Xnÿ1

i�0

E[f(g jn,k)9(X i)g2Ef(X i�1 ÿ X i)
6jF n

i g]

< Cã2
n

Xnÿ1

i�0

E[f(g j n,k)9(X i)g2]
1

n
,

the last inequality coming from the Burckholder±Davis±Gundy inequality.

From j(g j n,k)9(Xi)j < C23 j n=2, we deduce that

E(M2
n) < C

23 j n=2

n1=2

� �2

,

which converges to 0 from the hypothesis. The conclusion follows from the Schwarz

inequality.

4.3.2.2. Convergence of B2. We have

jL( jn, ãn, t, x)j < C(ãn(t ÿ x)225 j n=2 � ã2
njt ÿ xj22 j n � ã3

n23 j n=2):

Therefore

n

����Xnÿ1

i�0

B2(X i, X i�1)

����
< C nãn25 j n=2

X
i

(X i�1 ÿ X i)
4 � nã2

n22 j n

X
i

jX i�1 ÿ X ij3 � nã3
n23 j n=2

X
i

(X i�1 ÿ Xi)
2

 !
:

Taking the expectation and applying the Burckholder±Davis±Gundy inequality yields

nE

����Xnÿ1

i�0

B2(Xi, X i�1)

���� < C
25 j n=2

n1=2
� 22 j n

n1=2
� 23 j n=2

n3=2

� �
:

The conclusion follows.

4.3.3.3. Convergence of B3. Likewise, one readily checks that

jM( jn, ãn, t, x)j < Cãn2 j n=2:
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Hence

n

����Xnÿ1

i�0

B2(Xi, X i�1)

���� < Cnã2
n23 j n=2

X
i

jX i�1 ÿ X ij3:

The same arguments as for B2 lead to

nE

����Xnÿ1

i�0

B3(X i, X i�1)

���� < C
22 j n

n1=2
:

4.3.3.4. Convergence of B4. This is straightforward from the results of B2 and B3. This ends

the proof of Lemma 4. u

5. Upper bounds; proof of Proposition 2

We shall prove general approximation results from which we can deduce Proposition 2. We

®rst state a result on the rate of convergence in Lp of the empirical local time, proved in

Appendix 1.

Proposition 3. Let ö be a compactly supported positive function of class C 3 such that�
ö � 1. For hn . 0, de®ne

Lx
n �

1

nhn

Xn

i�0

ö(hÿ1
n (X i=n ÿ x))

as the ö-empirical local time of X at x. For ã 2 [2, �1[ if nh2
n !1 as n!1, then there

exists a constant C10 � C10(s, p, M, ã) such that

sup
x2D

Eó ,b(jLx
n ÿ Lxjã) < C10 hã=2

n �
1

nh2
n

 !ã
8<:

9=;:
Remark. In our framework, we shall assume that hn � nÿs=(1�2s); hence the condition

nh2
n ! �1 is ful®lled. In general, optimizing the bound given in Proposition 3 leads to the

rate nÿ1=5. As a consequence, our rate of convergence is suboptimal (but suf®cient for our

purpose) compared with the classical nonparametric rate for a function of Besov regularity 1
2

which is nÿ1=4. In fact, the Brownian local paths belong almost surely to the space Bsp1, for

1 < p ,1 (Boufoussi and Roynette 1993).

The next result gives an upper bound for the minimax risk penalized by the empirical

local time. We ®rst need a de®nition.

De®nition 3. If xë is the midpoint of the box Cë, de®ne, for í. 0,

g n,í(x) �
X

l

Y
ë2C j, l

1L
xë
n >í1[ l2ÿ j ,( l�1)2ÿ j[(x),
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where C j, l � fë: Cë \ [l2ÿ j, (l � 1)2ÿ j[ 6� Æg as the ö-empirical penalization function at

level í. (Recall that Lx
n depends on ö from construction.)

In the following, we shall assume that ö(x) � (1=
�

~ö)~ö(x), where

~ö(x) < 1[ÿ1=2,1=2](x),�
~ö. 1

2

This will enable us to have a control with the empirical local time on the number of

observation points lying in each Cë.

Proposition 4. Set í � í=2
�

~ö. Suppose that Assumptions 1 and 2 hold. Let ó̂ 2
n be the

estimator of De®nition 2, constructed at level í=2. If 2 j n � n1=(1�2s) and hn � nÿs=(1�2s) then

sup
(ó 2,b)2V3H

Eó ,b

�
D

jó 2(x)ÿ ó̂ 2
n(x)j p gn,í(x) dx

� �
< C11 nÿsp=(1�2s)

for some constant C11 � C11(j, s, p1, M, í).

5.1. Proof of Proposition 2

As for the lower bounds, we shall use the notation C for a generic constant. Clearly

Eó ,b

�
D

jó 2(x)ÿ ó̂ 2
n(x)j p dx 1LD>í

� �
< Eó ,b

�
D

jó 2(x)ÿ ó̂ 2
n(x)j p gn,í(x) dx

� �

� Eó ,b

�
D

jó 2(x)ÿ ó̂ 2
n(x)j pf1ÿ g n,í(x)g dx1LD>í

� �
:

The ®rst term on the right-hand side of the last inequality is of order nÿsp=(1�2s) because of

Proposition 4. For the second term, we use the fact that it is unlikely that Lx
n is small and Lx

large simultaneously. More precisely, it is easily seen that

lim sup
n!1

sup
(ó 2,b)2Vsp(M)3H

Eó ,b

�
D

jó 2(x)ÿ ó̂ 2
n(x)j2 p dx

� �
,1:

Hence, by the Schwarz inequality and using the fact that gn,í is a step function, it is enough

to prove

Eó ,b

�
D

(1ÿ gn,í(x))1LD>í dx

� �� �1=2

< Cnÿsp=(1�2s): (5:1)

We write

L p estimation of diffusion coef®cient 469



(1ÿ g n,í(x))1LD>í �
X

l

1ÿ
Y

ë2C j n , l

1L
xë
n >í

 !
1LD>í1[ l2ÿ jn ,( l�1)2ÿ j[(x)

<
X

l

X
ë

1L
xë
n <í1LD>í

 !
1[ l2ÿ j ,( l�1)2ÿ j[(x):

Consequently, because í � 1=(2
�

~ö), we derive

Eó ,b

�
D

(1ÿ gn,í)(x)1LD>í dx

� �� �1=2

< C sup
x2D

Pó ,b jLx
n ÿ Lxj > í 1ÿ 1

2
�

~ö

 ! !1=2

: (5:2)

The choice of ~ö ensures that 1ÿ 1=(2
�

~ö) . 0.

Now, using the Chebyshev inequality and applying Proposition 3, it suf®ces to pick a

ã. 0 large enough in Proposition 3 so that (5.1) holds. The proof of Proposition 2 is

complete. u

5.2. Proof of Proposition 4

We denote by i:i p the Lp norm on the interval D � [0, 1]. We write Eó ,b i(ó̂ 2
n ÿ ó 2)gn,í i p

p as

a sum of a stochastic term and an approximating term linked to the wavelets method of

projection. More precisely

Eó ,bfi(ó̂ 2
n ÿ ó 2)g n,í i p

pg < 2 pÿ1(Sn � An),

with

Sn � Eó ,bfi(ó̂ 2
n ÿ P

[0,1]
j n

ó 2)gn,í i p

pg
and

An � ió 2 ÿ P
[0,1]
j n

ó 2 i p

p,

where P
[0,1]
j n

denotes the projection operator onto Vjn ([0, 1]) as de®ned in Section 3.2.

Let us ®rst study An. Resulting from the approximation of Besov spaces by wavelets

sequences, for any f 2 Bsp1([0, 1]; M3), the following inequality holds:

i f ÿ P
[0,1]
jn

f i Lp
< 2ÿ jn(s^r)E jn (5:3)

where E jn is bounded by a constant depending only on M3. The constant r in (5.3) is the

regularity of j. Assuming r . s and ó 2 2 Vsp(M), we get

An < C2ÿ jnsp: (5:4)

We now consider the stochastic term. We use the localization property of j and gn,í (note

that g n,í is a step function expanded in the Haar basis at the same resolution level as j jnk).

We apply the lemma of Meyer (1990, p. 30) to obtain
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Sn < C2 jn( p=2ÿ1)

 XN0ÿ1

k�0

Ej(á̂ l
j n k ÿ á l

jnk)c j n,k j p �
X
k2sj

Ej(á̂ jnkÿájk)c jn,k j p

�
XN0ÿ1

k�0

Ej(á̂r
j n k ÿ ár

j n k)c j n, k
j p
!
:

(5:5)

c j n,k �
Q

ë2C jn , k
1L

xë
n >í are the coef®cients of the penalization function. From now on, we

shall no longer distinguish in our notation the edge and interior components involved in

expansion (5.5). Recall that the number of coef®cients is eactly 2 j n.

We next show that the drift b can be regarded as a nuisance term which does not

interefere in the rate of convergence of our estimator.

Lemma 5. There exists q 2 [1, 1[ and a constant K5 depending only on p, M1 and M2 such

that

Eó ,b(já̂ jnk ÿ á jnk j p) < K2Eó ,0(já̂ jnk ÿ á jnk jqp)1=q:

Proof. From the Girsanov theorem, the two measures Pó ,b and Pó ,0 are equivalent on

F 1 � ó (X s, 0 < s < 1), with density

D � dPó ,b

dPó ,0

� exp

�1

0

b(s, X s)

ó 2(X s)
dX s ÿ 1

2

�1

0

b2(s, X s)

ó 2(X s)
ds

 !
:

Using the HoÈlder inequality, we have

Eó ,b(já̂ jnk ÿ á jnk j p) < fEó ,0(D q9)g1=q9fEó ,0(já̂ jnk ÿ á jnk jqp)g1=q

with 1=q� 1=q9 � 1. It suf®ces then to show that

sup
(ó 2,b)2V3H

Eó ,0(D q9) ,1

for some q9 2 ]1, �1[. The conclusion follows from the uniform linear growth hypothesis

and the fact that there exists a ô. 0 such that sup0< t<1 sup(ó 2, b) 2 V 3 H Eó ,b(eôX 2
t ) ,1.

With a modi®cation of the constants, it is enough to concentrate on Pó ,0. We shall now

work under Pó ,0.

Recall that the wavelet estimator is constructed at level í=2. Coming back to De®nition

2, we write

á̂ jnk ÿ á jnk � Q1 � Q2 � Q3,

with

Q1 � 1

bní=2c
Xbní=2c

i�1

ó 2(XTi
)j jnk(xTi

)ÿ
�

S j n , k

ó 2(x)j jnk(x) dx,
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Q2 � 1

bní=2c
Xbní=2c

i�1

1

Än

�Ti�Ä n

Ti

fó 2(X Ti
)ÿ ó 2(Xs)gj jnk(xTi

) ds,

Q3 � 1

bní=2c
Xbní=2c

i�1

ETi
j jnk(xTi

),

where S jn,k denotes the support of j jnk . We then have

Eó ,0j(á̂ jnk ÿ á jnk)c j n,k j p < 3 pÿ1fEó ,0(jQ1j pc j n,k)� Eó ,0jQ2j p � Eó ,0jQ3j pg: (5:6)

Considering Q1, we write

Q1 � Q1,1 � Q1,2, (5:7)

with

Q1,1 � 1

bní=2c
X

(ë:Cë�S jn , k )

X
(i:i=(ní)2Cë)

fó 2(XTi
)ÿ ó 2(xTi

)gj jnk(xTi
),

Q1,2 � 1

bní=2c
Xbní=2c

i�1

ó 2(xTi
)j jnk(xTi

)ÿ
�

S jn , k

ó 2j jnk :

We are ready to use the ö-penalization c j n,k . Let us assume that ö � (1=
�

~ö)~ö, with
~ö(x) < 1[ÿ1=2,1=2]. Since í � í=(2

�
~ö) the following inclusion holds for any x 2 D:

(Lx
n > í) � 1

nhn

Xn

i�0

~ö(hÿ1
n (Xti

ÿ x)) >
í

2

 !

�
Xn

i�0

1jX ti
ÿxj<hn=2 > bnhní=2c

 !
:

In other words, multiplying by the factor c j n,k means that we retain the events N ë
Tbní=2c >

bnhní=2c (recall that Në
Tb ní=2c is the counter of the box Cë), i.e. the Ti are all distinct so that

we have suf®cient points of observation to proceed to the approximation of the wavelet

coef®cient. Indeed, using the Jensen inequality

Eó ,0(jQ1,1j pc j n,k) < C
2ÿ j n( pÿ1)

n

X
ë,i

Eó ,0(jó 2(XTi
)ÿ ó 2(xTi

)j pjj jnk(xTi
)j p1Në

Tbní=2c>nhní=2):

(5:8)

For the event (Në
Tb níc > nhní=2), since ó 2 has a bounded derivative, the following inequality

holds:

jó 2(X Ti
)ÿ ó 2(xTi

)j < CjX Ti
ÿ xTi

j < Chn, (5:9)

the last inequality coming from the construction of the Ti and the xTi
. Finally, from (5.8),

(5.9) and using the fact that the sum in (ë, i) is of order n2ÿ j n, we derive
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Eó ,0(jQ1,1j pc j n,k) < C2ÿ j n p=2 h p
n : (5:10)

Likewise

Eó ,0(jQ1,2j pc j n,k) < C
2 j n=2

n

� � p

: (5:11)

Now, putting together (5.10) and (5.11), we deduce that

Eó ,0(jQ1j pc jn,k) < C 2ÿ j n p=2 h p
n �

2 j n=2

n

� � p
( )

: (5:12)

We turn to Q2. Using the Jensen inequality and the same argument on the indices as for

(5.10), one has

Eó ,0(jQ2j p) <
2ÿ j n( p=2ÿ1)

n

X
i

E Äÿ1
n

�Ti�Ä n

Ti

jó 2(Xs)ÿ ó 2(XTi
)j p ds

 !
: (5:13)

From the Burckholder±Davis±Gundy inequality and the regularity of ó 2

Eó ,0 Äÿ1
n

�Ti�Än

Ti

jó 2(X s)ÿ ó 2(X Ti
)j p ds

 !
< CÄ p=2

n :

Hence

Eó ,0(jQ2j p) < C2ÿ j n p=2 nÿ p=2: (5:14)

We need a bound on Q3 to complete our study. We ®rst recall a martingale version of the

Rosenthal inequality, which may be found in the book by Hall and Heyde (1980, p. 23).

Lemma 6 (The Rosenthal inequality for martingales). Let Si �
Pi

l�0÷ l be a (F i)

martingale, for 1 < i < n. For every p 2 [1, 1[, there exists a constant Cp depending only

on p such that

E(jSnj p) < Cp E
Xn

i�1

E(÷2
i jF iÿ1)

 ! p=2
8<:

9=;�Xn

i�1

E(j÷ij p)

264
375:

Going back to our study, we ®rst remark that the random variables ETi
j jnk(xTi

) are

(F n
Ti�1

)-martingale increments. Hence, applying the Rosenthal inequality leads to

Eó ,0(jQ3j p) <
C

np
E

���� Xbní=2c

i�1

Eó ,0fE2
Ti
j2

j n k(xTi
)jF n

Ti
g
���� p=2

0@ 1A� Xbní=2c

i�1

Eó ,0(jETi
j jnk(xTi

)j p)

8<:
9=;:

With the same kind of arguments as for Q2 we get

Eó ,0(jETi
j jnk(xTi

)j pjF n
Ti

) < C2 jn( p=2ÿ1):
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Hence

Eó ,0(jQ3j p) < C(nÿ p=2 � nÿ( pÿ1)2 jn( p=2ÿ1)): (5:15)

Putting together (5.14), (5.12) and (5.15) in (5.6) and using that 23 jn=2=n1=2 ! 0 since

2 jn � n1=(1�2s) and s . 1 we ®nally obtain

Sn < C
2 j n

n

� � p=2

� h p
n

( )
: (5:16)

The optimal rate is obtained when An and Sn are of the same order of magnitude, which leads

to 2 jn ' n1=(1�2s). From (5.4) and (5.16), as hn is chosen to be of order nÿs=(1�2s) the

conclusion follows. The proof of proposition 4 is complete. u

6. Further remarks

6.1. Note on a previous construction

Florens-Zmirou (1993) proposed an estimator of ó 2, namely

~ó 2
n(x) � n

Xn

i�0

1jX i=nÿxj<rn
(X (i�1)=n ÿ X i=n)2

�Xn

i�0

1jX i=nÿxj<rn
: (6:1)

This estimator is consistent and asymptotically normal. However, regarding minimax

properties, this procedure is unlikely to be optimal. We propose the following heuristic

explanation. Using the regression approximation approach described by (1.3) and (1.4), we

can write (6.1) as

~ó 2
n(x) �

Xn

i�1

Krn
(X i=n ÿ x)Yi=n

�Xn

i�1

Krn
(X i=n ÿ x),

where K is the Haar kernel (Kh(x) � hÿ1 K(hÿ1x) and K(x) � 1[ÿ1=2,1=2](x)). The factor rn is

a smoothing parameter which should be compared in our framework with 2ÿ jn . The data

(X i=n, Yi=n, i � 0, . . . , nÿ 1) are obtained from the regression approximation

Yi=n ' ó 2(X i=n)� Ei=n, i � 0, . . . , nÿ 1, (6:2)

with Yi=n � n(X (i�1)=n ÿ X i=n)2. Thus ~ó 2
n is the Nadaraya±Watson estimator of the

regression model (6.2) with random design (Nadaraya 1964).

The properties of the Nadaraya±Watson estimator have been extensively discussed in the

literature (see, for example, Chu and Marron (1991) and Wand and Jones (1995)). The

minimax ef®ciency of the Nadaraya±Watson estimator is linked to the smoothness of the

density of the design, say f. Poor smoothness of f leads to poor minimax results, whatever

the kernel is chosen (Fan 1992; Wand and Jones 1995).

In our framework, the analogous of the density x! f (x) is the local time x! Lx of the
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process X up to time 1. Consequently, the low smoothness parameter of the local time

(x! Lx does not belong almost surely to the Besov space Bsp1 for s . 1
2
, 1 < p ,1

(Boufoussi and Roynette 1993)) is likely to imply suboptimality for ~ó 2
n.

Indeed, we can emphasize this point noting that

~ó 2
n(x) � L x

n

Lx
n

, (6:3)

where

L x
n �

1

hn

Xn

i�0

1jX i=nÿxj<hn
(X (i�1)=n ÿ X i=n)2

is the empirical local time at its usual scale (see the remark in Appendix 1). In other words,
~ó 2

n is obtained by estimating ó 2(x)Lx and then dividing by an estimate of Lx.

6.2. A modi®cation of the estimating procedure

Looking at the integrated risk, it appears that, the smaller the chosen í, the better we can take

into account different behaviours of the sample path. However, our procedure appears as `̀ too

cautious''; it operates well in the worst case when only a few observations are available. What

about the regions of the domain D where more observation points lie? One may think of

re®ning the method using the b(1ÿ í)nc left X i=n in order to improve locally the property of

ó̂ 2
n, say for practical purpose (i.e. on constants since the rate is already optimal). We propose

the following ongoing construction.

Following Section 3.2, we de®ne the subsamplings

(T 2
1, . . . , T2

bníc), . . . , (T l
1, . . . , T l

bníc), . . .

as the successive passage times in the boxes Cë until saturation, which are all equal to 1 for i

large enough. If Në is the number of layers saturated by the X i=n for the box Cë, we write

k�j � infë:Cë�S j, k
Në. One has k�j > 1 if Ln > í. The modi®ed algorithm is then

á̂ j,k � 1

bník�j c
Xk�j
l�1

Xbníc
i�1

YT l
i
j j,k(xT l

i
):

This estimator encompasses the same minimax properties as that from Proposition 2 and

should become a better choice in practice. Unfortunately, there are still discarded observation

points in this second estimate, because of the random character of k�j .

Indeed, we can construct a third estimator, still coming from that presented in Section 3

using now all the observation points. We work in the following way: we ®t the regions with

poor observation (i.e. low local time) with pseudo-data coming from the observed X i=n.

This procedure still depends on í but discards no observation point. We intend to describe

this method in a more practically oriented forthcoming work.
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Appendix 1

A.1. Proof of Proposition 3

Remark. For the occupation times formula on the Lebesgue measure scale, we have, for

every positive Borel function f ,�1

0

f (Xs) ds �
��1
ÿ1

f (x)L x dx

ó 2(x)
, (A:1)

where

L x � lim
E!0

1

2E

�1

0

1jX sÿxj<E dhX is:

L x is the usual local time of a continuous semimartingale (de®ned through the Tanaka

formula), involving its quadratic variation.

For simplicity, we shall prove Proposition 3 under Pó ,0. The general case is obtained by a

change in probability, exactly as in Lemma 5. The only requirement for the general case is

a modi®cation of the constants exhibited in the Pó ,0 case.

We use the following decomposition:

Lx
n ÿ Lx � An � Bn,

where

An � 1

hn

�1

0

öfhÿ1
n (Xs ÿ x)g dsÿ Lx (A:2)

and

Bn � Lx
n ÿ

1

hn

�1

0

öfhÿ1
n (X s ÿ x)g ds: (A:3)

It is suf®cient then to study the convergence of An and Bn respectively.

A.1.1. Convergence of An

By the occupation times formula

An � 1

hn

�1

0

1

ó 2(y)
L y ÿ 1

ó 2(x)
L x

� �
öfhÿ1

n (yÿ x)g dy:

From the assumption that ó 2 is bounded below by M0, since ó 2 is Lipschitz continuous we

deduce that

jAnj < 1

hn

Mÿ1
0

�1

0

jL y ÿL xjöfhÿ1
n (yÿ x)g dy� 2ChnMÿ2

0 L �, (A:4)
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where

L � � sup
x2R

L x

denotes the supremum of the local time. We shall need the HoÈlder property of the local time

paths of a continuous martingale. This has been given by Revuz and Yor (1994, p. 227). In

fact, under Assumption 1 and 2, for ã > 2

Eó ,0(jL y ÿL xjã) < Cjyÿ xjã=2: (A:5)

The constant C depends only on ã, s, M0 and M1. Hence, by the Jensen inequality, from

(A.4) and (A.5) we obtain, for ã > 2,

Eó ,0(jAnjã) < Chã=2
n : (A:6)

Remark.We have implicitly used the property that the supremum of the local time is in Lã,

for all ã. 0 (Revuz and Yor 1994).

A.1.2. Convergence of Bn

Using a second-order Taylor expansion, we have

Bn � Bn,1 � Bn,2 � Bn,3,

with

Bn,1 � 1

h2
n

Xn

i�0

ö9fhÿ1
n (X i=n ÿ x)g

�(i�1)=n

i=n

(X s ÿ Xti
) ds,

Bn,2 � 1

h3
n

Xn

i�0

ö 0fhÿ1
n (X i=n ÿ x)g

�(i�1)=n

i=n

(X s ÿ X i=n)2

2
ds,

Bn,3 � 1

h4
n

Xn

i�0

�(i�1)=n

i=n

ö-fhÿ1
n (îs,i=n ÿ x)g (X s ÿ X i=n)3

6
ds:

The term Bn,2 will give the order of magnitude. We focus on Bn,1. Set

Zi � ö9fhÿ1
n (X i=n ÿ x)g

�(i�1)=n

i=n

(Xs ÿ X i=n) ds:

The discrete time process (
Pk

i�0 Zi, 1 < k < n) is a (F n
k�1)-martingale. Hence we may apply

the Rosenthal inequality to get

Eó ,0

����Xn

i�1

Zi

����ã
 !

< Cã Eó ,0

Xn

i�1

Eó ,0(Z2
i jF n

i )

 !ã=2
8<:

9=;�Xn

i�0

Eó ,0jZijã
264

375:
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Using successively the Jensen inequality, the Fubini theorem and the Burckholder±Davis±

Gundy inequality, we obtain

Eó ,0(Z2
i jF n

i ) < (ö9)2fhÿ1
n (X i=n ÿ x)gM2

1Ä
3
n:

Hence

Eó ,0

Xn

i�1

Eó ,0(Z2
i jF n

i )

 !ã=2
8<:

9=; < M
ã
1Ä

ã
nEó ,0

����Xn

i�0

(ö9)2(hÿ1
n (X i=n ÿ x))Än

����ã=2
 !

:

Using a Riemann approximation argument and the occupation times formula, because ö is

compactly supported, we derive

Eó ,0

����Xn

i�0

(ö9)2fhÿ1
n (X i=n ÿ x)gÄn

����ã=2
 !

< Chã=2
n :

Likewise

hÿ2ã
n

Xn

i�0

Eó ,0jZijã < CÄ3=2ãÿ1
n hÿ2ã�1

n :

In conclusion, as ã > 2 and nhn ! �1,

Eó ,0(jBn,1jã) < CÄã
n hÿ3=2

n :

We now turn to Bn,2. From the ItoÃ formula, one has under Pó ,0

(X s ÿ X i=n)2 �
� s

i=n

(X u ÿ X i=n)ó (X u) dWu �
� s

i=n

ó 2(X u) du:

Hence

Bn,1 � hÿ3
n

Xn

i�0

(Ti,1 � Ti,2),

with

Ti,1 � 1
2
ö 0fhÿ1

n (X i=n ÿ x)g
�(i�1)=n

i=n

ds

� s

i=n

(X u ÿ X i=n)ó (X u) dWu,

Ti,2 � 1
2
ö 0fhÿ1

n (X i=n ÿ x)g
�(i�1)=n

i=n

i� 1

n
ÿ s

� �
ó 2(Xs) ds:

For Ti,1, we apply the same martingale technique as for Bn,1 and we obtain

hÿ3ã
n Eó ,0

����Xn

i�0

Ti,1

����ã
 !

< CÄ2ã
n hÿ5=2ã

n :

For Ti,2, we ®rst remark that jTi,2j < M3jö 0fhÿ1
n (X i=n ÿ x)gjÄ2

n. Hence
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hÿ3ã
n Eó ,0

����Xn

i�0

Ti,2

����ã
 !

< Chÿ3ã
n Äã

nEó ,0

����Xn

i�0

jö 0fhÿ1
n (X i=n ÿ x)gjÄn

����ã
 !

< Chÿ2ã
n Äã

n:

Finally

Eó ,0(jBn,ijã) < Chÿ2ã
n Äã

n:

The bound for the third terms follows likewise using the same technique; so we omit it. In

the same way

Eó ,0(jBn,3jã) � o(hÿ2ã
n Äã

n):

The proof of Lemma 3 is complete. u

A.2. Wavelets and Besov spaces

We recall some well-known results from approximation theory. Some references are Bergh

and LoÈfstroÈm (1976), Peetre (1976) and Meyer (1990).

For f 2 Lp(R), de®ne ù p(t) � supjhj< t iôh f ÿ f i p, where ôh f (x) � f (x)ÿ f (xÿ h).

Then

f 2 Bsp1(R), f 2 Lp(R) and
ù p(t)

ts
2 L1(R�):

For s � 1, the same de®nition remains valid if we change ôh f ÿ f by ôh f � ôÿh f ÿ 2 f . For

s � N � á, with N 2 N and 0 ,á < 1, f 2 Bsp1(R), f 2 Lp(R) and f (N) 2 Bá p1, where

f (N) is an Nth weak derivative of f .

We now give the de®nition of Besov spaces in terms of wavelet coef®cients. Further data

may be found in Meyer (1990). We recall that one can construct a function j such that the

following are true.

(1) The sequence fj(xÿ k), k 2 Zg is an orthonormal family of L2(R). Let V0 be the

subspace spanned by this sequence.

(2) If j jk � 2 j=2j(2 jxÿ k), let Vj denote the subspace spanned by fj jk , k 2 Zg. Then

8 j 2 Z: Vj � V j�1. Consequently
T

j2ZVj � f0g. Furthermore
S

j2ZVj is dense in L2. The

function j is called the scaling function of the multiresolution analysis (Vj, j 2 Z). In

addition, we may assume the following regularity condition.

(3) j is of class C r, j and every derivative up to order r has fast decay. In this case the

multiresolution analysis is said to be r regular.

Under these conditions, de®ne the space Wj by

V j�1 � Vj � Wj:

Then, there exists a function ø (called the wavelet) such that

(1) fø(xÿ k), k 2 Zg is an orthonormal basis of W0,

(2) fø j,k , k 2 Z, j 2 Zg is an orthonormal basis of L2(R), where ø jk � 2 j=2ø(2 jxÿ k),

and
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(3) ø has the same regularity property as j.

In addition, we have the following decomposition for any integer j0:

L2(R) � V j0 �� j> j0
Wj:

We may now give the characterization of Besov spaces in terms of sequence spaces. Let Pj

denote the projection operator onto Vj and Dj � Pj�1 ÿ Pj. A function f belongs to the space

Bsp1 if and only if the norm

iP0 f i p � sup
j>0

2 js i Dj f i p ,�1:

Using now the decomposition of f according to

P0 f �
X
k2Z

á0,kj0,k ,

Dj f �
X
k2Z

â j,kø jk ,

we may say equivalently that f 2 Bsp1 if

iá0: i lp � sup
j>0

2s�1=2ÿ1= p iâ j: i lp ,�1:

This second de®nition is equivalent to the previous one as a consequence of the lemma of

Meyer (1990). This was also helpful to prove Proposition 4.
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