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We study the functional estimation of the space-dependent diffusion coefficient in a one-dimensional
framework. The sample path is observed at discrete times. We study global L,-loss errors
(I = p<+o0) over Besov spaces By,,,. We show that, under suitable conditions, the minimax rate of
convergence is the usual n~%/(+29) Linking our model to nonparametric regression, we provide an
estimating procedure based on a linear wavelet method which is optimal in the minimax sense.
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1. Introduction

1.1. Motivation

In recent years, much effort has been devoted to statistical inference in diffusion processes
when only a discrete sampling of the trajectory is available. In particular, a growing interest
in the diffusion coefficient has come from mathematical finance, where the diffusion
coefficient represents volatility. Whereas parametric inference is quite well known when the
discretization step is small (Donhal 1987; Genon-Catalot and Jacod 1993; 1994; Jacod 1993)
only emerging results have been proposed for the functional estimation of the diffusion
coefficient, when the parameter of interest is globally unknown, and subject only to a
functional constraint (usually a smoothness property).

A relatively simple situation consists in studying the time-dependent diffusion coefficient
02(-) in a model governed by a diffusion process X of the type

dX, = b(t, X,)dt + o (£)dW,, Xo = xo, t € [0, 1], (1.1)

observed at times i/n, i =0, ..., n, where (W;, 0 < ¢t < 1) is a standard Wiener process and
xo € R. Genon-Catalot et al. (1992) proposed a nonparametric estimator of o%(f) based on
orthonormal wavelets and studied its asymptotic properties in L, error. Soulier (1993)
proposed some extensions in L,. Hoffmann (1997) computed the minimax rate of
convergence for both upper and lower bounds. The usual n~ /029 rate holds. The
technicalities are close to nonparametric regression (see, for example, Korostelev and
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Tsybakov (1993)); by a change in probability argument, i.e. setting b = 0 in (1.1) the process
X is Gaussian with independent increments; therefore, standard nonparametric techniques
apply.

A more elaborate model, which will be studied in this paper, consists of a space-
dependent diffusion coefficient model, where now

dX, = b(t, X,)dt + o(X,)dW,, X, = xo, t € [xo, 1]. (1.2)

The situation becomes substantially more difficult. The identifiability domain (the interval
where o can be estimated) is random, and the achievable accuracy of estimation (the
analogous of the design in a regression model) is given by the observed process
XM =(x i/n» 1 =0, ..., n) itself. The first researcher to study this model was Florens-
Zmirou (1993), who proposed a consistent and asymptotically normal estimator. However, the
results obtained could not be linked to the smoothness of the parameter o2(x) and the
minimax properties of the model were left open.

The aim of this paper is to fill in this gap from the minimax theory point of view. We
define a suitable minimax framework to work with (Definition 2 below) by comparing the
model driven by (1.2) with a regression framework, with random design. We exhibit the
asymptotic minimax rate of convergence for a global L, loss (I < p<+oo) for an
unknown function o lying in a Besov space. This choice of function spaces is motivated by
the fact that, in regression or density estimation, the case of Besov spaces is optimal
(Kerkyacharian and Picard 1993). Another interesting point is that wavelet bases offer
unconditional bases for Besov spaces. We propose a linear estimating procedure based on
wavelets which is optimal. The numerical properties offered by multiscale schemes (in
particular, wavelets on the interval (Cohen et al. 1994)) suggest fast practical imple-
mentation.

1.2. Outline

We investigate the functional estimation of the diffusion coefficient o?(x) in the one-
dimensional model driven by the stochastic differential equation (1.2). The starting point xp is
fixed and o(x) and b(t, x) are unknown. The sample path (X, 0 =<1t =< 1) is discretely
observed at equidistant times i/n, i=0, ..., n.

Let us first describe the heuristics upon which our procedure relies. An underlying idea is
that the diffusion coefficient can be recovered through the quadratic variation of the process
X, which leads us to nomparametric regression (with random design), a paradigmatic
example of well-known statistical models. More precisely, put temporarily b = 0 in (1.2) for
simplicity and set

(i+1)/n
Yi/n = n(X(irnyn — Xifa)® = nJ o*(X)ds+ ¢y, i=0,...,n—1. (1.3)
i/n

where
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(i+1)/n 2 (i+1)/n

€i/n = n(J o(XS)dWS> — nJ 02(X;)ds.
i/n i/n

The ¢;/, are uncorrelated centred variables (in fact, martingale increments) which may be

viewed as noise terms when estimating nfl.(/l:”/ "02(X,)ds from the observation Yin

Provided that there is some smoothness condition on o2, the quantity (X i/n) can be

recovered from

(i+1)/n
nJ 0°(X;)ds
i/n

up to a negligible error. In other words, we can translate our problem in a nonparametric
regression setting, i.e. try to estimate the whole function o2 from the observation of (X i/n>
Yiju, 0 <i<n—1) in the model

Yiw = 0*(Xip) + €ijny i=0,...,n—1. (1.4)

However, the model suggested by (1.3) differs from usual regression frameworks as
follows.

(1) The X;/, which play the role of the observation points in (1.4) are not independent
and identically distributed (i.i.d.) variables. Moreover, the domain which is asymptotically
covered by the observation points is random itself. In classical nonparametric regression
with random design, whenever global rates are studied (Stone 1982; Hall 1984; Korostelev
and Tsybakov 1993) the observation points are assumed to have a density f, bounded away
from zero in some compact interval, say D, where the estimation is to be performed. In our
case, the density f(x) at some point x € D is given by the local time of the process X at x
up to time 1, namely

1
LY = }E%%JOI‘X‘Yix‘SE ds. (15)
In order to obtain global rates of convergence, we shall assume that the local time of X is
bounded from below on D (with xy € D) and therefore study the risk of an estimator
conditionally on the event “L* bounded away from zero on D”.

(2) A second major feature is that the noise variables ¢;/, are not independent from the
design points X/, nor i.i.d. To face this, we enhance the martingale structure of the ¢;/, by
considering an increasing sequence 7y < T} < --- < T}, of stopping times of the discrete

time filtration .7 | = 0(X;, 0 < s =<i/n), i=0, ..., n and we look for an estimator of the
form
ky
62X =Y Gui X1, X41/n0 %) (1.6)
=0

Considering estimates of this form will enable us to get rid of the spatial inhomogeneity of
the observation points X/, and still treat the noise terms as in classical regression by means
of a martingale version of the Rosenthal inequality (Hall and Heyde 1980). The precise form
of the G,; and k, will be given in Section 3. Further, we construct an estimator on the whole
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domain D by means of wavelets on the interval, as developed by Cohen et al. (1994), which
avoids the effects of boundaries.

Let us also mention that our model can be extended by a classical argument, derived
from the It6 formula, to the more general equation

dX, = b(t, X)) dt + h(Ho(X)dW,,  Xo = xp, £ € [0, 1],

where % is a known function which is assumed to be smooth (see, for example, Genon-
Catalot et al. (1992)).

1.3. Contents

Section 2 describes the model and hypotheses. Section 3 presents the construction of the
estimator and the derived minimax results. We show that, for s>2, the rate n—%/(+29
measured in some L, norm (I < p <oo) is a minimax lower bound over Besov balls By,
(see below) and that this rate is attained by our estimator for s> 1+ 1/p. Sections 4 and 5
are devoted to the proofs. Some additional results and comments are given in Section 6.
Appendix 1 contains an auxiliary result on the rate of convergence in L, of the empirical
local time and recalls some definitions about wavelets and Besov spaces.

2. Statistical model

We consider the discrete observation X" = (Xy, X/, ..., X;) defined through the
stochastic differential equation (1.2) defined in Section 1 and denote by P, the law on
the space of continuous functions under which the canonical process (X, 0 <¢=<1) is a
solution of (1.2). We consider a compact interval D. We denote by Bj,..(D) the Besov space
on the interval D (the restriction of the functions of the space By,no(R) to D) and by ||.|[spe0
the Besov norm over D (see, for example, Peetre (1976) and Appendix 1 below). For M >0
we write Bg,oo(D; M) for the ball of radius M of By, (D), i.e.

Bypoo(D; M) = {f € Bapoc(D): ||/ llspoc < M}

For s>1+4+1/p, 1 < p<oo we make the following assumptions.

Assumption 1. o is positive, non-vanishing, and o> belongs to
Vip M) = {f € Z'(R): 0< Mo < f(x) < My, |f"llx < M2, fip € Bypoo(D, M3)}
where M = (M, ..., M3) is a given (multivariate) constant.
Assumption 2. The drift b is continuous and belongs to the class 7/ = (M) of functions of
uniform linear growth, i.e. such that
Y(t, x) € [0, 11 X R: b2(1, x) < M*(1 +x%)

where M is a given constant.
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Remarks.

(1) Assumptions 1 and 2 imply the existence and uniqueness of a strong solution for
(1.2) (Zvonkin 1974).

(2) The conditions s>1+ 1/p ensures that f is ! over D.

(3) Assumption 2 is a rather technical condition. Because of Assumption 1, it implies
that there exists 7>0 such that

sup Eg,b[eTX%] <o

0=r=l
(see, for example, Lipster and Shiryayev (1977, Theorem 4.7)). Actually, this condition
holds uniformly over V(M) X .7 and allows one to consider the drift as a nuisance
parameter which does not interfer in the estimation problem (see the proof of Proposi-
tion 4).

We estimate o2 over D. Let L* denote the local time of X at x up to time 1, as defined
by (1.5). Set LP = infcp L*. Considering the arguments given in Section 1.2, we define the
following criterion for the accuracy of estimation.

Definition 1. For v>0 the L, risk of an estimator G2 under the constraint V(M)
conditionally on the event (LP = v) is

Ry, VM), v) = sup Eb(J |oz(x)—6i(x)|”dleD>v>. 2.1)
(02,b)eVy(M)X.T D

3. Main results

3.1. Lower bounds

Proposition 1. Let .7 denote the set of all estimators constructed from the observation X™.
Suppose that Assumptions 1 and 2 hold. For s>2 and every p € [1, oo[, there exists a
constant Cy = Cy(s, p, M, v) such that

inf R"((}?v Vp(M), v) = Cyn /1529,
62es

Remarks.

(1) The classical rate for nonparametric models such as density estimation or regression
is a minimax lower bound.

(2) The method that we shall employ in the proof requires the smoothness condition
s>2, which is more restrictive than the initial assumption s>1+ 1/p for p> 1.
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3.2. Upper bounds

We begin this section by recalling some classical facts about the use of wavelets in
nonparametric regression. We then give the construction of our estimator and a bound for the
risk of Definition 1.

3.2.1. Preliminary results
Consider the model given by
Yi=f(x)+e, 1=0,...,n, (3.1

where f is a smooth function defined on the interval D (for instance f belongs to some
Besov ball 7of the space By, (D), with s>1, p € [1, oo[) and ¢; ~;; ./(0, 1) is a standard
Gaussian noise. The x; are equally spaced on D. Without loss of generality, we may assume
that D = [0, 1], hence x; = i/n.

Let (V}, j € Z) be a multiresolution analysis of L,(D), generated by a smooth, compactly
supported orthonormal scaling function ¢ (see Appendix 1 for a precise definition of V; and
@) with correction on the boundaries of D (Cohen et al. 1994). We assume that the length
support of ¢ is an integer Ny and we denote by ¢!, ¢f, k=0,..., No— 1 the left and
right edge scaling functlons on the boundary of D respectlvely Set also ¢ =
2/2p(2/x — k) and (pjk(x) (Z’x) for # =1, r.

The linear wavelet estlmator of fon D is constructed as follows.

(1) We first choose an integer J such that 27 = 2N,. According to the Cohen—
Daubechies—Vial algorithm, we approximate f by PE»OJ] f for j = J, where

No—1 No—1

PBQ’”f (x) = Z a ]k(p Jk(x) + Z o ji(x) + Z @5 ji(%).

kes;

The set of indices s; defines the interior functions on D: k € s] if and only if supppr C D.
We take 2/ = 2N, so that the left and right edge functlons i s and @’ do not interact.

(2) We then estimate the wavelets coefficients o, aj, i =1, r, for j=J, where

ay = ij(xmk(x) dx, ot = JDf(xw;‘i(x) dx.

A standard procedure consists in estimating o by its empirical wavelet coefficient

. 1 i

Aji = ;zl: Yip ji (Z) (3-2)
and proceed analogously for aﬁ, #=1Lr

The asymptotic results are obtained when letting j and » tend to oco. Choosing j = j,
such that 2/» < n'/0429) (g, < b, means that there exist two positive constants 4 and B
independent of n such that 4a, < b, < Ba,) the wavelet estimator
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No—1 No—1
Fa@) =" 0! (04D ampiu0+ Y & el ()
k=0 kes; k=0
is optimal in the minimax sense:
supE(J /() — fn(x)|"dx) < Cn /1429 (3.3)
fev D

for some constant C = C(7”, ).

Suppose that the x; are no longer equispaced on D. There is no reason why j‘ » should
converge to f in any sense. Of course, one may wish to alter the procedure in (3.2) by
considering the empirical wavelet coefficient along the design generated by the x;, namely

Qji = Z Yipju(xi)(Xip1 — Xi)- (3.4)

Such an estimator will still have good minimax properties provided that some accurate
control on sup;(x;.; — x;) is ensured, merely sup;(x;;; — x;) = O(n~"). If such a condition is
out of reach, say for technical reasons (and this will be the case for diffusion processes) one
may remark that, if f(x;) — f(i/n) is small, or equivalently (as f is smooth) if x; is close to
i/n, the estimator given by (3.2) will still enjoy good convergence properties. More precisely,
one can check that, if

sup

i<n

X — i‘ < Kn~*/(+29 (3.5)
n

for an absolute constant K, (3.3) still holds. This means that we do not need to bound the
distance between two successive observation points if we have insight into the number of
points located asymptotically around any given level. Hence, under condition (3.5), we can
simply take the estimate

. 1 i
Qjk ZZZ Yigji <n>

although the considered data are non-equally spaced. Further data on irregular samplings
following this approach has been used for instance by Hoffmann (1997).

3.2.2. Construction of an estimator for the diffusion coefficient

3.2.2.1. Preliminaries. We shall henceforth assume that D = [0, 1]. The general case is
obtained by dilating and translating the unit interval, the difficulty being merely notational.
Let us be given v €10, 1[ and choose a threshold %,>0. We divide D into |4, ]
identical boxes of size h,, denoted by C;, A =1, ..., Lh;lj. The convergence of the
empirical sampling measure to the local time, namely
1 n

X
h : : ll’\,i/n_]clshn/2 - L
Min =5
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if h, — 0 and nh, — oo will ensure that on the event (L” = v), | nh,v| observation points
X/ will lie (at least) in each C; with high probability.

We keep in the |nh,v| first observation points X/, hitting each box C; and apply the
empirical wavelet transform to the considered (X;/,, ¥;/,), with

Yi/n = n(X(i+l)/n - )(i/n)2 = Gz(Xi/n) + €i/n- (36)

The error of location due to the non-equally spaced design generated by the subsampled X/,
is controlled by the threshold 7%, (recall 3.5). The admissible i/n lie in a random set.

3.2.2.2. The algorithm. Define

N* = (Z lxj/,,EQ) A | nh,v) (3.7)

Jsi

as the C; counter stopped when exactly |nh,v| observation points lie in C;. Set

Ty =0,and for i =2: T; = inf{i> Tiy: Y (N;=Np )= 1} AL (3.8)
n Z -
The 7;, i=1, ..., |nv| are increasing (¥ !)-stopping times which correspond to the times

when the boxes are filled up to | nk,v| points each. The major point of interest is that (recall
(1.3)) the process ) _;<€r, remains a (7 7, ) martingale.

We extract from X the subsampling (X7,, ..., X 7.,) and apply the empirical wavelet
transform to the (X7, Yr,) suggested by (3.2) on the regular grid (i/|nv], i =0, ..., |nv]),
with

Yr, = n(Xr1n— Xr)i=1,..., [nv]. (3.9)

A last technical difficulty is that the X/, do not appear of course in an increasing order. We
cannot link (X7, Yr,) to |i/nv] directly. For a given box C;, the points on the regular design
are the
/
A—Dh,+——,1=1,..., [nhyv].
(= Db+ 10 Lnhv]
We set Ar, for the index of the box C, in which X7, falls. For a given (X7, Y,r,), the
corresponding point on the regular grid will be defined as
xr. = (g — Dhy L (3.10)
i i anJ
where /7, = #{ X7, € CirsJ = i}.
Note that this choice of sampling points x7, on the uniform grid at courser level 1/v
provides us with (7 ;j)—measurable X7;.

Definition 2. The wavelet coefficient estimator at level v is
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[nv]
. 1
Qj = W; Yr1,01(x7,). (3.11)

We define the edge wavelet coefficients estimate analogously. The estimator of 6% on D is
then

No—1 No—1
65(x) = ; ol () + kz e (x) + ; &l ().
—| g‘y/ —|

We may now state our result on upper bounds. For technical convenience, we work with
the wavelet estimator at level v/2.

Proposition 2. Let p € [1, oco[. Suppose that Assumptions 1 and 2 hold. Let 6> be the
estimator given by Definition 2 at level v/2. If 2/ < n'"/0429 and h, =< n=5/0%29) then there
exists C, = Co(@, s, p, M, M, v) such that

Ry(G7, Vip(M), v) < Cyn™ /01729,

Corollary 1. The minimax rate of convergence for the minimax risk defined by (2.1) over
Besov balls for s>2 and p € [1, +oo[ is the classical n=*?/0%29) and is attained by our
estimator.

4. Lower bounds; proof of Proposition 1

4.1. Sketch of the proof

We follow a classical method in nonparametric estimation, restricting ourselves to a
hypercube of V,(M). We refer to Korostelev and Tsybakov (1993) for general results on
proving lower bounds and to Kerkyacharian and Picard (1992; 1993) for the specific use of
wavelets and Besov spaces in this context. We outline the difficulties encountered when
considering the case of diffusion processes. Let P” denote the probability measure
conditioned on the event (L? = v) and let E” denote the corresponding expectation. Note that
Ry, VM), v) = sup  E'{[l67 = 0?7},
02€C;,b=0

where C;, is some parametric set included in V(M) of size 2/» with j, increasing as
n — oco. We shall henceforth consider the model without drift.

4.1.1. Constructing a hypercube of Vi,(M)

For technical convenience, we suppose that My <1 << M; without loss of generality. Let i be
a wavelet (Meyer 1990) of regularity » > s, with compact support included in [—A4, 4], where
A is a fixed integer. We set
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Ci(yn) = {Uz(x) =14y, Z aYik(x), g =%, k=1,..., ZJ”},

ek,

where y, is a positive number which measures the size of oscillations of the cube. We define
K; ={A+2kA, k=0,...,2/" — 1} and v, = 2/"/*yp(2/»x — k) so that y;; and ¥;, i
have disjoint supports for k # k'. Thus we disturb an original function identically equal to 1
by adding ¥,y for k=1, ..., 2/

We look for conditions in order to have C; (y,) C V,(M). From the definition of Besov
spaces in terms of wavelet sequences (see Appendix 1), this is satisfied if

S %2‘1"(’“/2) and y, < L= Mo 272, @1
Yn <= Y=l

4.1.2. Bounds on the minimax risk

The crucial point is to find a condition on (the order of magnitude of) y, in order to bound
the likelihood ratio induced by two generic points of C; (y,). More precisely, let P (or P_)
denote the law of a sample of observation, derived from a model with a diffusion coefficient
0L =14+ yu b rkrVjw +VnWjk (08 0% =14+ yu> pzp€ej ik — Yajk) for some
fixed k€ K;, and ¢, k'#k Let Aoy, 0_, X™) denote the likelihood ratio
(dP, /dP_)(X™). If we prove that there exist positive A and pop, independent of n such
that for sufficiently large n

P (Ao, 0_, X")y>e™) = py>0, (4.2)
then (Korostelev and Tsybakov 1993) we can derive the following bound:

Do

5 4.3)

inf R,(62, Vip(M), v) = 2772y |lyp|| D e
2 .7

62

The conditions on j, and y, exhibited in (4.1) and (4.2) will therefore provide a lower bound.

4.1.3. Control of the likelihood ratio

For 0 >0, let A denote the likelihood ratio associated with the Markov process of transition

semigroup
N 11 1 (y—x)?
Po(x, dy) = xp( RRCant, ) dy. (4.4)

Qa2 a) P\ 728 o2(x)

In our time equispaced design we take 0 = 1/n. We first prove an intermediate result for
A(oy,0_, X™), when the observation X" is taken under P_ and j, y are fixed
(independent of n).

Lemma 1. Assume that j and y are fixed. The following expansion holds:

log A(01, o, X"y = n'PyU,; —tny?V,; + n*?y* R, j(p), (4.5)
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where U, ; converges in distribution under P_ = P, o to U; as n goes to +oo, U; is a
centred mixed normal variable, with conditional variance V;= Zfo jk(X )ds, V.
converges in P_-probability to V; and R, ; — 0 in P_ measure (umermly in y) as n goes
to infinity.

Remark. This result is not surprising if one recalls that model (1.2) is parametrically local
asymptotic mixed normality (Donhal 1987; Genon-Catalot and Jacod 1993) since, for fixed j,
we are in a parametric submodel. We shall not use directly Lemma 1 for the proof of
Proposition 1, but we emphasize expansion (4.5) to provide our intuition for the model and
for the proof of Lemma 2.

Lemma 2. Let j=j, and y =y, and assume that y, = 1/n'? and 257/ /n'/?> — 0 as
n — oo. Then
(i) there exist positive A and py such that, for sufficiently large n,
P’ (A(04, 0_, X'")y>e*) = py>0 (4.6)

and
(ii) (4.6) remains true when replacing A by A, for a modification of the constants A and

DPo-

4.1.4. Completion of proof of Proposition 1
We take y, =< 1/n'/? in (4.1). This leads to
2Jn = pl/(425) “4.7)

The condition 2%/7/2/n'/2 — 0 as n — oo is satisfied since s> 2. From Lemma 2 and (4.3),
we deduce that

61221; R,(G2, V)= C n~ /(1429 (4.8)
where C; = Ci(s, p, M, v). The proof is complete. O

4.2. Proof of Lemma 1

For notational simplicity, we shall write X; instead of X;/,, P (or E) instead of P_ (or E_)
and set AX; = X 1)/» — Xi/»- The quantity C will denote an generic constant depending on
s, p, M and v which may vary at each occurrence. We shall also write A for
Ao, o_, X) when no confusion is possible. One has, under P,

(+1)/n 2
(AX:)? = (J : a(Xs)dWs> = o (X)(AW;)* + R}). (4.9)

i/n
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Consequently

n—1
~ o_
logA = log—(X;) — Xi) — 1 3(AW)* + R?
ceA =3 loa 7 (X) 262{( >< ) }( 7+
with
R(2):an_i L_ (X)R(l)
" 204\0%
A second-order Taylor expansion yields

log—<X) = —yP (X)) + R

1 B 2
- { (Z—+) X)) — 1} = PP — PR + R,

Since 0 = 1/n
n—1 n—1
log A =" yyu(X){n(AW)? — 1} =Y 0y ph(X)AW) + R
i=0 i=0
where

RO = RO +Z(R(3) + RY).

Define now

¢ = n(AW;)* — 1,

1 n—1
U,;= WZO Y (X,

n—1
Vi =2 Yo(X)AW),
i=0

Ry j(y) = (n*2y) 7 RD.

(4.10)

Equation (4.10) can therefore be written as (4.5). Thus Lemma 1 is proved provided that the

following convergences hold:
1
V"’JLZJ wik(Xs) ds as n— 4oo,
0

Upj— U as n— +oo,

(4.11)

(4.12)
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in the P distribution, where U; is a mixed normal centred variable with conditional variance

V;, and

R,,,j(y)io as n — 4oo.

Proof of (4.13). Recall that

i/n

(i+1)/n 2
R = J o (X)dW, | — oL (XNAW,

1

1 n—1
2 E : D :
R("):%_OTanS”’ WlthT”ﬂi:(O_Z_
i=

+

RS = RO +Z(R(3) +RY).

Thus, we shall successively prove that

Proof of (4.14). We use the following lemma from Genon-Catalot and Jacod (1993).

1

—2> (X5).

o

(4.13)

O

(4.14)

(4.15)

Lemma 3. Let y!', U be random variables, the y!' being .7} | measurable. The following two

conditions imply that Y1~ 1" n Ly

3
|

Bl 75U,

Il
=3

n—1

E(lx![?

i=0

gn
o

We have to check that

L g Dy >=ny P
nszs 22 BRI L0

2n1

(1)
s S BT

7mn250.
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Elementary computation yields

2y (X:) . <J<i+1)/n

E(TuiR )17} = = -5
| Oa(Xi)oi(Xi) i/n

{oz(x1>—-ozcxo}dﬂ5??>~ (4.16)

Since the choice of the wavelet ¢ is free, we may assume that v is twice differentiable, hence
0% (Xy) — 02 (X)) = (02 X)Xy — X))+ Zis
the remainder term Z,; satisfying
|Zi| < Cy?2572 | X, — X3

We apply the Fubini theorem and we use the fact that (X,, 0 < ¢ =< 1) is a martingale under
P_ to obtain

(i+1)/n (i+1)/n

‘E J {0%(X,) — 0% (X))} ds|. 7" ‘ < Cy*2%’E J X, — X,)*ds|.7 " |.
i/n i/n

We again apply the Fubini theorem and the Doob inequality to get

(i+1)/n
EJ (X, — X)*ds| 7" | < CA2.
i/n

Since o2 is bounded from below (Assumption 1), we deduce that

[E(T,,; R7 1| < Cn2y32%.

NS
2J

()

The last quantity converges to 0. The second follows likewise; so we omit it. The proof of

(4.14) is finished. O

It follows that

Z E(T,R\71)| <

n1/2 3

Proof of (4.15). From the definition of R\, for [ =3, 4
R, < CpP |y (X)) (4.17)
This entails

23j/2

|R(5)| T

. 3/2 (4.18)

The last quantity converges to 0 from the hypothesis. Equation (4.15) is established, and
(4.13) follows. O

Proof of (4.11). From the definition of the quadratic variation of a continuous semimartingale
we immediately deduce (4.11). O
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Proof of (4.12). We first set & = (1/n"/?) 4(X;)¢;. We have successively

max|&7] 50, (4.19)
E(m<ax|§;’ |2) bounded, (4.20)
n—1 P 1
S IEP —>2J01/J§k(Xs) ds. 4.21)
i=0
Equations (4.19) and (4.20) are straightforward. O

Proof of (4.21). We apply again the lemma of Genon-Catalot and Jacod (1993) (Lemma 3).
We must check that

n—1 1
n2) 7ny P
> E(E P zjozpﬁk(xs) ds, (4.22)
i=0
n—1 P
S E(ENN T 0. (4.23)
i=0
It is easily seen that
n—1 5 2n71 5 1 )
E(&PL7m) == (X)) — 2| 92 (X,)ds almost surely. 4.24
D EGEPITD = 33 v — Jow,k( ) ds almost surely (4.24)
On the other hand
it o _ €2
BE 17 <=5 (4.25)
So (4.23) follows and (4.21) is proved. O

We are now ready to turn to (4.12) itself. We are in fact under the conditions for the
convergence of U, ; to a mixed normal variable with conditional variance V; (Hall and
Heyde 1980, p. 58, Theorem 3.2). Unfortunately, we do not have the nesting condition on
the filtrations (77 [') which is necessary to accommodate the random limit. This difficulty
has already been encountered in the paper by Genon-Catalot and Jacod (1993) and was
solved by a martingale characterization limit theorem. The same arguments can be used in
our setting and we refer to their paper for the method. The proof of Lemma 1 is complete.

4.3. Proof of Lemma 2

4.3.1. Proof of (i)

For simplicity, we take y = 1/n'/?

Note that

. Recall that now P_ depends on # through j = j, and y,,.
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A0y, 0, X)y>e*NLP =v) D (logA(oy, o_, X)) <AnLP = ).
Using the Chebyshev inequality
P (A, 0_, X"y >e*) = P_(llogA(0, o_, X" <)+ P_(IP =v)—1

1 -
=P (P =v)— I1~:,{|1ogA(a,, o, XM}

The assumption that o2 is bounded from below (Assumption 1) implies that

C; = inf P_(LP =v)>0. (4.26)

o2eVy,

For a proper choice of 4 (specified after (4.30) below), (i) will follow from

E_{|logA(0,, 0_, XM)|} < 4 <. (4.27)
With the notation of Lemma 1, (4.27) is a consequence of the three following bounds:

C

E-(Uns)l <5 (4.28)
C

BV =5 (4.29)
C

E-(IRuy) < (4.30)

for some constant C4. One completes the proof by taking A > C4/Cs5. ]

Proof of (4.28), (4.29) and (4.30). Since o >0, the random variables X/, admit a density
with respect to the Lebesgue measure, say p;/,, which is given (see for instance (4.31) below)
by

pial) = {500 = S(xo)}2>

Xx) exp <H(x) — H(xo) — 2i/n

1
o (x)Q27i/n)'/? ri/n(X0,

where the functions S, H and r are described in the proof of (ii) below. One readily checks
that the following bound holds for every real number x:

N\ 172
piw = cs(%)

where Cs depends on M, and s, p. '
For (4.28), we note that the discrete time process (M; = ¥ x(X)e;, i=0,
.., n—1)is a () martingale. Hence

n—1 )
E AW, =D B Ay} (X0}
i=0

after conditioning with respect to .7 ;. On the other side, for i = 1
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—+00 n 1/2
E{wi,,k(Xi)} = J W?nk(x)Pi/n(x)dX =< (s (1)
since 1 is orthonormal in L,. It follows that
c =
Ef{(Un,jn)z} = ZCSWZW'
i=1

Since this last quantity is bounded, the proof for U, ;, is complete.
We now turn to (4.29). Recall that

n—1
Vg, = 395 ((XDAW).
i=0

—~
o7

Conditioning with respect to .77/, one has
n—1 1
_ 2 N
E (V)= ;Ef{wj,,kor,)} .
and we conclude as for (4.28).

Finally, let us prove (4.30). One has

n—1 2),1/) . k(X') (i+1)/n 2
Q) — N _SV Rk 2y e
8 ==Y vnern |\, ) - oroan

Hence

2

e (i+1)/n

B-(R) =23 k. [yl ’(j/ o (X)dW, | — o (XNAWR| 7T
i 1 i/n

Writing

(i+1)/n 2 (i+1)/n
(J o(XadWs)) X)W = J {6_(X,) — o_ (X))} dW,
i/n i/n

(i+1)/n
X J {o_(X5)+o0_(X)}dw,,
i/n

1/2

applying the Schwarz and the Doob inequalities and using y = 1/n'/%, one easily obtains

n—1 1
E-(RP)| = CY_[E-{y? (X}~
i=0

The conclusion follows from the same arguments as for U, ;, using the bound on the density
of the X;/,. O
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4.3.2. Proof of (ii)

To approximate A, we need an explicit form for the transition semigroup of the process X
under P_. We first recall an expansion of the transition density ps which may be found for
instance in Dacunha-Castelle and Florens-Zmirou (1986).

If X is a solution of (1.2) with coefficients » = 0 and if o is twice differentiable (for
0% € Vj,, this is obtained by taking the regularity  of ¥ greater than 2) then

1 {S(») - S<x>}2>
o(»)(2md)!/2 20 ’

where S(x) = [;{1/0()}dt, e"O=1® = {5(x)/o()}'/? (in the case when b = 0 this term
reduces to a very simple formula) and

ro(x, ¥) eXP<H(y) - H(x) - (4.31)

ps(x, y) =

1
ro(x, v) = E{exp (aLc{u — w)S(x) + uS(y) + 0'2B,} du> }

where (B;, 0 < ¢t =< 1) is a standard Brownian bridge and c is a function which is bounded if
y,23/2 is bounded. In fact (Dacunha-Castelle and Florens-Zmirou 1986)

c=Ho" =40y} oS
Therefore there exists Cq depending on M and v such that

~C0 < py(x, y) < e (4.32)

We first need some technical results. Let us write RT(X™) for H;’:_OI rf/n(X (i+1)/ns Xi/n)
where rj is the function of (4.31) and (4.32) associated with the diffusion coefficient o
and define R~ analogously.

We define H*, St (or H~, §7) using the same convention. More generally, for any

function f, we set
Df(x)=f"(x) = f~(x) and: Af(X)) = f(X(is1y/n) — [(Xiyn).
We have the following.

(¢

Lemma 4.
n—1
0<C; < exp (Z DAH(X,—)) < Cg < 00, (4.33)
i=0
n—1 5 n—1 1 1 5 ©)
D(AS(X)))? = ————— J(AX;* + RO, 434
> DA () ;(oim) Gz(Xi))( P+ R (4.34)

where C; and Cg only depend on M and if 2//>n'/2 — 0 as n — oo; then

nE(|R®) — 0.

Completion of proof of (ij). We have
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n—1 n—1
A 0 x0) =B (xm) JIESEOE DY (D AH(X) -2 D(AS(X»)Z) . (435)
R i—0 O+ i=0 2

Therefore

P (A_, 0., X"M)y>eH) =P <1og[\(o, o, XM)y> -}

i=0

! n Rt
- (Z DAH(X) + RO + = (X<">)> ) .

We then apply Lemma 4 and the Chebyshev inequality and we derive
v (n) —A v A (n) C9
P (Ao_, 04, X'")>e™) = P (logA(o_, 0, X'")>—(A+1n)) — PE (4.36)

for any 5 > 0. The constant Cy depends on C¢ and M. Since the choice of A is free and # can
be chosen arbitrarily large, we apply Lemma 2(i) and we can conclude that there exists
Po >0 depending on A, 1 such that

P’ (A(o_, 0., X")y>e) = py>0.

The proof of Lemma 2 is complete. Il

4.3.3. Proof of Lemma 4

Equation (4.33) is a direct consequence of the definition of H. To prove (4.34), we write

2
(J P ) SO, RO(x, y). (4.37)

L o(h) o2(x)

We therefore need a bound for

n—1
R(;16) = Z{Rg)(){tw Xli+1) - R(—7)(Xfi’ Xfi+1)}'
i=0

We first introduce some notation. R will denote a real function vanishing at the origin,
possibly varying at each occurrence and for which there exists a constant (possibly depending
on M and s, p) such that

|R(x)| < Clx].
For 0% € V},, we denote by gjx = >_kcx;,« the added function to the initial condition. Thus
or=1+ Yn&jnk-

Using a Taylor argument, it is easily seen that
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1 1 ! t - g 2 ”
o=@+ S 00
+ 392 (t = &gy k) (E){ g k(D + g5, (1)}
+ R85, (D) + R g5, 1 (),
1 1

s Tom =2 21,0 + 1,0} + RG2S (1) + RO ().

We use the following notation:

1 1

o) ox) —3Yn(t = X)(&7,.1)' %) + LGn> V> 1, X),
L MGyt

m—f—m— + M, Yns , X),

the definition of L and M being given by the foregoing expansion. Next, we have

RO(x, y) = (Jy dt )Z(y —x)?

) 0 2(x)

) ()
) \e(n o)) \a(n o)

= Bl(x9 y) + BZ(xa y) + B3(xs y) + B4(X, y)a
with

Bi(x, y) = —yu(gj,0) )y — x)°,

y
Bax, ) = 2(y x)j LGins s £, 0)d1,

y
Bax, ) = ~lyalgy,) (v — x>2J MGins Yoo £, %) d1,

X

y y
Ba(x, y) = J L(jn, Yn» t, X) dtJ MG, vn, t, x)dt.

X X

>—>0, I=1,...,4

We successively prove that

under the condition 2%/+/2/n'/? — 0.

n—1

ZBI(Xi, Xiy1)

i=0
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4.3.3.1. Convergence of B;. The process

i—1 i
M; = ”;BI(XI, X)) =—n ;(gj,,,k),(Xl)(XHl -X)’, i=0,...n,

is a (7}) martingale. Hence

n—1
E(M3) = n* > E{Bi(X:, Xi11)}
i=0

n—1
= Y2 > BI{(g),.0) (XD PE{(Xix1 — X)°|7 1]
=0

n—1 1
= v, ) El{(g),.0' (X))
i=0

the last inequality coming from the Burckholder—Davis—Gundy inequality.
From |(g;,.x)(X;)| < C2¥"/2, we deduce that

23jn/2 2
2
o= (3

which converges to 0 from the hypothesis. The conclusion follows from the Schwarz
inequality.
4.3.2.2. Convergence of B,. We have

LGns Vs £, 0 < Cya(t = 20252 4 |1 = |27 4 3 2%072),

Therefore

n

n—1
> By(Xi, Xiy1)
=0

= C(”Vnzsj"/z Z(Xi+l — Xt + nyy 2 Z X1 = Xif* + nyy 2% Z(Xiﬂ - Xi)2> .

Taking the expectation and applying the Burckholder—Davis—Gundy inequality yields

25jn/2 22j,, 23j,1/2
<C nl/2 erJr w32 )

n—1

nE By(Xi, Xiy1)
=0

I

The conclusion follows.

4.3.3.3. Convergence of Bs. Likewise, one readily checks that
|M(jn, Yns L, X)‘ = C»yn?_jn/z'



468 M. Hoffmann
Hence

n

n—1
Z By(Xi, Xit1)| < Cny?2%/? Z X1 — X
pry 7

The same arguments as for B, lead to

22jn
s C—ps.
nl/2

n—1
> Bs(Xi, Xip1)

i=0

nE

4.3.3.4. Convergence of B4. This is straightforward from the results of B, and Bs. This ends
the proof of Lemma 4. U

5. Upper bounds; proof of Proposition 2

We shall prove general approximation results from which we can deduce Proposition 2. We
first state a result on the rate of convergence in L, of the empirical local time, proved in
Appendix 1.

Proposition 3. Let ¢ be a compactly supported positive function of class %> such that
[¢ =1. For h, >0, define
1

LY =
" nh,

> ph, (Xijn —x)
i=0

as the ¢-empirical local time of X at x. For y € [2, +o0[ ifnhi — 00 as n — 0o, then there
exists a constant Cyy = Cio(s, p, M, y) such that

y
1
sup Eq (| — L") < C1o h/* + <—2>
xeD nh

n

Remark. In our framework, we shall assume that £, =< n~%/(*29); hence the condition
nhi — +o0 is fulfilled. In general, optimizing the bound given in Proposition 3 leads to the
rate n~'/5. As a consequence, our rate of convergence is suboptimal (but sufficient for our
purpose) compared with the classical nonparametric rate for a function of Besov regularity %
which is n~'/4. In fact, the Brownian local paths belong almost surely to the space Bgpoo, for
1 < p<oo (Boufoussi and Roynette 1993).

The next result gives an upper bound for the minimax risk penalized by the empirical
local time. We first need a definition.

Definition 3. If x; is the midpoint of the box C), define, for v >0,

g =>_ [ 1s=lin s 1),

1 AEC,J
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where C;;={A: C,N[1277, (I1+ 1)27/[ # DB} as the ¢p-empirical penalization function at
level v. (Recall that L) depends on ¢ from construction.)

In the following, we shall assume that ¢(x) = (1/ f(ﬁ)(i)(x), where

P(x) =< 1_1/2,1/2(%)s
o

This will enable us to have a control with the empirical local time on the number of
observation points lying in each Cj.

Proposition 4. Set v = 1//2]@. Suppose that Assumptions 1 and 2 hold. Let 6% be the
estimator of Definition 2, constructed at level v/2. If 2/» < n'/0+2) and h, =< n=5/%29 then

sup Eg’b (J |02(x) - OA'i(x)|pgn’7(x) dx) S Clln*SP/(lJrZs)
(02, eVXTH D

for some constant Cy; = C1(o, s, p1, M, v).

5.1. Proof of Proposition 2

As for the lower bounds, we shall use the notation C for a generic constant. Clearly

By (J 10200 — 6207 dx 1LD>V) <E,, (j 16200 — 6200 gus(@®) dx>
D D

+Eop <J lo2(x) — 62(0)|P{1 — g.5(x)} dleD>V>.
D

The first term on the right-hand side of the last inequality is of order n~**/(0+29) because of
Proposition 4. For the second term, we use the fact that it is unlikely that L7 is small and L*
large simultaneously. More precisely, it is easily seen that

lim sup sup Es.p (J lo%(x) — éi(x)|2p dx) < 0.
n—00 (02,b)eVy,(M)X.7 D

Hence, by the Schwarz inequality and using the fact that g,, is a step function, it is enough
to prove

1/2
{Ea,b (J (1 = gur(@)] o=y dx) } < Cp /142, .1)
D

We write
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(I = guz(N1 o=y = Z (1 - H L ;;) L o=y 11— (1 1)2-i7(X)

! IIGC_/',,J

< Z,: <XA: L g;lL’)2v> L1/ (4 1y2-7(%)-

Consequently, because v = 1/ (2](3&), we derive

1/2 1 1/2
{Eo‘,b (J (1 — gn,i_/)(x)lLD>v dX)} = CSllp Pg’b ‘L):l — Lx| =yl ———= . (52)
D xeD 2[¢

The choice of ¢ ensures that 1 —1/(2 f(i&) >0.

Now, using the Chebyshev inequality and applying Proposition 3, it suffices to pick a
y >0 large enough in Proposition 3 so that (5.1) holds. The proof of Proposition 2 is
complete. |

5.2. Proof of Proposition 4

We denote by |[|.||, the Z, norm on the interval D = [0, 1]. We write E; /(65 — 0)ga5ll), as
a sum of a stochastic term and an approximating term linked to the wavelets method of
projection. More precisely

Eo {67 — o) gasllp} < 2771(Su + 40,
with
Su = Eon{l&}, = P} o) gz}
and
4, = |lo* = PPYa|7,

where PBS’I] denotes the projection operator onto V;, ([0, 1]) as defined in Section 3.2.
Let us first study A4,. Resulting from the approximation of Besov spaces by wavelets
sequences, for any f € Bgo([0, 1]; M3), the following inequality holds:

||f _ P['(:’l]f”Lp < 2_'in(S/\r)€j,, (53)

where ¢;, is bounded by a constant depending only on M3. The constant r in (5.3) is the
regularity of ¢. Assuming »>s and 02 € Vp(M), we get

A, < C27/»P, (5.4

We now consider the stochastic term. We use the localization property of ¢ and g,, (note
that g,, is a step function expanded in the Haar basis at the same resolution level as ¢; ).
We apply the lemma of Meyer (1990, p. 30) to obtain
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No—1
Sy =< C2M2h ( S EI@h  — b )es,kl” + Y Elk-ap)c),il?
=0 kes;

(5.5)

No—1
+ Z E|(d,r',,k - a;nk)cjn,k _r
=0

¢jnk =Ilzec, 1 1u=, are the coefficients of the penalization function. From now on, we
shall no longer distinguish in our notation the edge and interior components involved in
expansion (5.5). Recall that the number of coefficients is eactly 2/,

We next show that the drift b can be regarded as a nuisance term which does not
interefere in the rate of convergence of our estimator.

Lemma 5. There exists q € [1, oo[ and a constant Ks depending only on p, M| and M, such
that

P) < K2Eq (|0, — 0| %)9.

Eo p(|0k — @)k

Proof. From the Girsanov theorem, the two measures P, ; and P, are equivalent on
T 1 =0(X, 0<s=<1), with density

~ dPa b ! b(S3 XS) 1 ! bz(s» Xs)
9y = — = dX, —=| ——=ds|.
Py P (L o2(Xy) 2L a2(x,)

Using the Holder inequality, we have
Py < {Eo o(Z){Eg 0(|etjk — jk

with 1/¢ + 1/q' = 1. It suffices then to show that

qp)}l/q

Eo (|05 — @)k

sup E(,’O(”]/q') < o0
(02D)EVXT

for some ¢’ € 11, +oo[. The conclusion follows from the uniform linear growth hypothesis
and the fact that there exists a 7> 0 such that supg<,<| sup(c?, b) € V X .7 Eg,b(e’er) < o0.
With a modification of the constants, it is enough to concentrate on P, . We shall now
work under Py .
Recall that the wavelet estimator is constructed at level v/2. Coming back to Definition
2, we write

ajr— =01+ O+ Os,
with
L e

> metn - | 0w ds

O =T &

Sjn.
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1 Rl A,
O = [ /2] 2 Z J {0%(X1) — 02 (X))} u(xr) ds,
Ayl

| )
O = /2] ; er,0;x(xr,),

where §;, r denotes the support of ¢; ;. We then have
P <37 HEy o(|Q117¢;, 1) + Eo 0| Oa|” + Eq 0| 057} (5.6)

Eg0l(Gjk — @,0)C),k
Considering Q;, we write
O =011+ 0O, (5.7
with

Ou=—r S Y {02 - 02},

Lnv/2] (2:C1CS)pp) (i:1/(m)EC)

1 [nv/2] , 5
Oip = W ; 0 (xr) 9k (x1,) _J ko Pk

Sjn,

We are ready to use the ¢-penalization c;, x. Let us assume that ¢ = (1/ f(i&)(i&, with
@(x) < 1{_1/2,12)- Since v = v/(2 [ ¢) the following inclusion holds for any x € D:

D, X ) = ;)

1 n
(L% =) = <
nh, —

g <ZO I\X,i7x|<hn/2 = \_I’lh,ﬂ//ZJ) .

In other words, mult1ply1ng by the factor c;, ; means that we retain the events N’l =
| nh,v/2] (recall that N% oy 18 the counter of the box Cy), i.e. the T; are all distinct s0 that
we have sufficient pomts of observation to proceed to the approximation of the wavelet
coefficient. Indeed, using the Jensen inequality

2—Jin(p=
Eo 0101117 ), 0) < CiZEa ojo*(Xz) -0 (xT)|p|(p]nk(xT)|p1N’l oy =2
Ai "
(5.8)
For the event (Ni = nh,v/2), since 02 has a bounded derivative, the following inequality
holds:

0%(X1,) — 0*(xp)| < C|X7, — x1| < Chy, (5.9)

the last inequality coming from the construction of the 7; and the xr,. Finally, from (5.8),
(5.9) and using the fact that the sum in (4, i) is of order n27/», we derive



L, estimation of diffusion coefficient 473

Eo0(|O11|Pc;,4) < C27/P12 P, (5.10)

Likewise

2]»1/2 P
Eg’0(|Q1,2|chn’k) <=C . (511)

n

Now, putting together (5.10) and (5.11), we deduce that

. 5 2jn/2 p
Eoo(|Q1]7c),0) < CY 2777712 h2 + : (5.12)
n
We turn to ;. Using the Jensen inequality and the same argument on the indices as for
(5.10), one has

2—in(p/2-1) T4A,

Es0(|0:]") = TZE<A”IJ

From the Burckholder—Davis—Gundy inequality and the regularity of o2

lo%(X,) — 02(X1)|? ds). (5.13)
T;

Ti+A,
E, 0 (A;IJ lo2(X;) —oz(Xﬂ)|pds> < CAP2,

T
Hence

E; o(|Qa|7) =< C277nP2p P12, (5.14)
We need a bound on Qj to complete our study. We first recall a martingale version of the

Rosenthal inequality, which may be found in the book by Hall and Heyde (1980, p. 23).

Lemma 6 (The Rosenthal inequality for martingales). Let S; = Zé:o%l be a (7))
martingale, for 1 < i < n. For every p € [1, oo[, there exists a constant C, depending only
on p such that

n /2 n
E(S,|”) < G, |E (ZE@%%») + > E(xilN)|-
i=1 i=1

Going back to our study, we first remark that the random variables ez, ¢ r(xr,) are
(7 %H)-martingale increments. Hence, applying the Rosenthal inequality leads to

[nv/2]
S Evoléed i)l 7

i=1

p2\ L2

C
Eoo(|Os|") < 1 E + le Booller, @ uCer)|”)

With the same kind of arguments as for O, we get

Eoo(ler,@x(xr)|P| 7)< €220,
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Hence
Eo0(|0s5]7) < C(n~P/% 4 p~(p=D2in(p/271), (5.15)

Putting together (5.14), (5.12) and (5.15) in (5.6) and using that 23//2/»'/2 — 0 since
2/n = p!/0+29 and s> 1 we finally obtain

2jr1 p/2
S, <C ( ) + P (5.16)
n

The optimal rate is obtained when A4,, and S, are of the same order of magnitude, which leads
to 2/ ~ n'/0+29) From (5.4) and (5.16), as h, is chosen to be of order n~%/(+29) the
conclusion follows. The proof of proposition 4 is complete. |

6. Further remarks

6.1. Note on a previous construction

Florens-Zmirou (1993) proposed an estimator of ¢, namely

G2 (x) = nz Lix,,—vi=n (X 1y/n — Xi/,,)z/z [P —— (6.1
i=0 i=0

This estimator is consistent and asymptotically normal. However, regarding minimax
properties, this procedure is unlikely to be optimal. We propose the following heuristic
explanation. Using the regression approximation approach described by (1.3) and (1.4), we
can write (6.1) as

X = Kn(Xin— 0y, / > K (Xiyn =),
i=1 i=1

where K is the Haar kernel (K;(x) = 2~'K(h™'x) and K(x) = 1{_1/2,1/2(x)). The factor r, is
a smoothing parameter which should be compared in our framework with 27/». The data
(Xi/ns Yiyn, i =0, ..., n—1) are obtained from the regression approximation

Yiw =0 (Xiyw) 4+ €ipms i=0,...,n—1, (6.2)

with Y/, = n(X(i11)/, — Xi/»)>. Thus G2 is the Nadaraya—Watson estimator of the
regression model (6.2) with random design (Nadaraya 1964).

The properties of the Nadaraya—Watson estimator have been extensively discussed in the
literature (see, for example, Chu and Marron (1991) and Wand and Jones (1995)). The
minimax efficiency of the Nadaraya—Watson estimator is linked to the smoothness of the
density of the design, say f. Poor smoothness of f leads to poor minimax results, whatever
the kernel is chosen (Fan 1992; Wand and Jones 1995).

In our framework, the analogous of the density x — f(x) is the local time x — L* of the



L, estimation of diffusion coefficient 475

process X up to time 1. Consequently, the low smoothness parameter of the local time
(x — L* does not belong almost surely to the Besov space By, for s>%, 1< p<oo
(Boufoussi and Roynette 1993)) is likely to imply suboptimality for ¢2.

Indeed, we can emphasize this point noting that

7

...2 _
50 =7

(6.3)

where
X 1 & 2
Z, = T 20: Lix,,—xj<n,(Xar1y/n — Xisn)

is the empirical local time at its usual scale (see the remark in Appendix 1). In other words,

G2 is obtained by estimating o(x)L* and then dividing by an estimate of L*.

6.2. A modification of the estimating procedure

Looking at the integrated risk, it appears that, the smaller the chosen v, the better we can take
into account different behaviours of the sample path. However, our procedure appears as “too
cautious”; it operates well in the worst case when only a few observations are available. What
about the regions of the domain D where more observation points lie? One may think of
refining the method using the |(1 — v)n| left X;/, in order to improve locally the property of
62, say for practical purpose (i.e. on constants since the rate is already optimal). We propose
the following ongoing construction.
Following Section 3.2, we define the subsamplings

(T s Ths s (T s T -

as the successive passage times in the boxes C) until saturation, which are all equal to 1 for i
large enough. If N; is the number of layers saturated by the X, for the box C;, we write

k} = infy.c,cs, N;. One has k7 = 1 if L, = v. The modified algorithm is then

J

L B )
Ujk = m; ; Yr19)k(xr1).

This estimator encompasses the same minimax properties as that from Proposition 2 and
should become a better choice in practice. Unfortunately, there are still discarded observation
points in this second estimate, because of the random character of k;‘f.

Indeed, we can construct a third estimator, still coming from that presented in Section 3
using now all the observation points. We work in the following way: we fit the regions with
poor observation (i.e. low local time) with pseudo-data coming from the observed X/,.
This procedure still depends on v but discards no observation point. We intend to describe
this method in a more practically oriented forthcoming work.
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Appendix 1

A.l. Proof of Proposition 3

Remark. For the occupation times formula on the Lebesgue measure scale, we have, for
every positive Borel function f,

—+00

fo) 7

J;f(Xs) s | (A1)

o2(x)’

where

, 1
¥ =lm— | 1y _y=cd(X)s.
7% =t | e d0),
™ is the usual local time of a continuous semimartingale (defined through the Tanaka
formula), involving its quadratic variation.

For simplicity, we shall prove Proposition 3 under P, . The general case is obtained by a
change in probability, exactly as in Lemma 5. The only requirement for the general case is
a modification of the constants exhibited in the P;( case.

We use the following decomposition:

LY — L' =4, + B,,

where

4, = hinj(icb{h;l(xs —9ds— I (A2)
and

B,=L"— hlnﬁqs{hnl()(s —x)}ds. (A.3)

It is sufficient then to study the convergence of A, and B, respectively.

A.1.1. Convergence of A,

By the occupation times formula

4 :ijl gy (v - v} d
"Tho\o20) T T )P TR

From the assumption that o2 is bounded below by M, since o2 is Lipschitz continuous we
deduce that

1 r ] ]
[4nl = 7= Malj |27 — 2k, (v — )} dy + 2Ch,M > £, (A4)
n 0
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where

L =supL*

xeR

denotes the supremum of the local time. We shall need the Hélder property of the local time
paths of a continuous martingale. This has been given by Revuz and Yor (1994, p. 227). In
fact, under Assumption 1 and 2, for y =2

Eoo(| 27 — ) < Cly — x|"/%. (A.5)

The constant C depends only on y, s, My and M;. Hence, by the Jensen inequality, from
(A.4) and (A.5) we obtain, for y = 2,

Eoo(|4,]") < ChY/2. (A.6)

Remark. We have implicitly used the property that the supremum of the local time is in L,,
for all y >0 (Revuz and Yor 1994).

A.1.2. Convergence of B,
Using a second-order Taylor expansion, we have

B, = B,1+ B2+ B3,

with
1< . (i+1)/n
Bui =5 >0 (i - x)}J/ (X, — X,)ds,
n i=0 i/n
1 . - (i+1)/n (Xs - Xi n)2
Buy=— > ¢"{h, Xy —x)}J e 7 Tl g,
hn i=0 i/n 2
1 " (+1)/n moeq— (X.s - Xi n)3
Bn,3 _MZJ/ ¢ {hnl(gs,i/n —x)}%d&
n =0 Ji/n

The term B, will give the order of magnitude. We focus on B, ;. Set
. (i+1)/n
Zi:(p’{hn (Xl/n—x)}J/ (XS—X[/n)dS.
The discrete time process (Zf:o Zi, 1 < k < n)is a (¥} ,)-martingale. Hence we may apply
the Rosenthal inequality to get

n v/2 n
EU,O( > = Cy EO’,O (Z EU,O(Zﬂ?;n)) + ZEU,O‘Zi|y .
i=1 i=0

n

2

i=1

Y
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Using successively the Jensen inequality, the Fubini theorem and the Burckholder—Davis—
Gundy inequality, we obtain

Eoo(Z2 7)) < (9'V{h, (Xijn — )} MIAS,

Hence

n y/2 }’/2
Es (Z Eo,o<z?|.~7;’>> < M{A1E0,0< )
i=1

Using a Riemann approximation argument and the occupation times formula, because ¢ is
compactly supported, we derive
7/2
< Ch/%.
n

EU,O (

D (@Y, (Xi — DA,
i=0

D @k, (Xin — 0}A,
=0

Likewise
n
BN Eool Zi)7 < CAY
i=0
In conclusion, as y = 2 and nh, — +o0,
Eoo(|Bui|") < CAV K32,

We now turn to B,,. From the It6 formula, one has under P; o

Xy — Xy = J (Xu = Xy (X,) AW, +J 02(X,) du.
i/n i/n
Hence
By =1, (Tur + Ti),
=0
with

(i+1)/n s
T =170 o~ 0} | 85|t - do

i/n i/n
1 pngp—1 (i1 2
Tio =3¢ "{h, (Xi/n — x)}J_/ — 5 o (X,)ds.

For T;;, we apply the same martingale technique as for B,; and we obtain

n
E,, ( 37,
i=0

For T;,, we first remark that |T;,| < M3|¢”{h;1(X,»/,, — x)}|Afl. Hence

Y
> < CA¥ 3%,
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n 4
h;”EU,o( > T ) < CthAz,Eg,o(
i=0

Finally
E0,0(|Bn,i|y) = ChgzyA%

n 4
D 1"k, (X — 0}A, ) < Ch,?’A".
i=0

The bound for the third terms follows likewise using the same technique; so we omit it. In
the same way

Eoo(|Bn3l") = o(h;ZyA’;).

The proof of Lemma 3 is complete. ]

A.2. Wavelets and Besov spaces

We recall some well-known results from approximation theory. Some references are Bergh
and Lofstrom (1976), Peetre (1976) and Meyer (1990).

For f e L,(R), define w,(1)=supy</|ltaf — fll,, where 7,f(x)= f(x)— f(x—h).
Then

w p(2)

tS

f € Byp(R) = f € L(R) and € Loo(RT).
For s = 1, the same definition remains valid if we change 7,/ — f by 7,f + 7_,f — 2f. For
s=N+a,with NeNand 0<a <1, f € Byn(R) & f € L,(R) and /™) € By o0, where
f™ is an Nth weak derivative of f.

We now give the definition of Besov spaces in terms of wavelet coefficients. Further data
may be found in Meyer (1990). We recall that one can construct a function ¢ such that the
following are true.

(1) The sequence {@(x — k), k € Z} is an orthonormal family of L,(R). Let ¥, be the
subspace spanned by this sequence.

(2) If @ =2/2¢(2/x — k), let V; denote the subspace spanned by {¢j, k € Z}. Then
Vj € Z: V; C V1. Consequently () jezV; = {0}. Furthermore | jezV; is dense in L,. The
function ¢ is called the scaling function of the multiresolution analysis (V}, j € Z). In
addition, we may assume the following regularity condition.

(3) ¢ is of class Z", ¢ and every derivative up to order r has fast decay. In this case the
multiresolution analysis is said to be r regular.

Under these conditions, define the space W; by
Vin=V,& W,
Then, there exists a function ¢ (called the wavelet) such that

(1) {y(x— k), k € Z} is an orthonormal basis of Wy,
(2) {¢j k €Z, j€Z} is an orthonormal basis of Ly(R), where y; = 2//2yp(2/x — k),
and
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(3) v has the same regularity property as ¢.

In addition, we have the following decomposition for any integer jo:
LR =V,ee.- W,.

J=Jo
We may now give the characterization of Besov spaces in terms of sequence spaces. Let P,

denote the projection operator onto V; and D; = P;; — P;. A function f belongs to the space
Bgoo if and only if the norm

1Pl -+ sup 2|y < .
Jj=

Using now the decomposition of f according to

Pof = a0 ko

keZ

Dif = Bt

keZ
we may say equivalently that f € By, if

ol + sup 2By < oo
Jj=

This second definition is equivalent to the previous one as a consequence of the lemma of
Meyer (1990). This was also helpful to prove Proposition 4.
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