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Abstract

Given a compact Lie group G, in this paper we give symbolic criteria for operators to be nuclear and r-nuclear on Lp(G)-spaces,
with applications to distribution of eigenvalues and trace formulae. Since criteria in terms of kernels are often not effective in view
of Carleman’s example, in this paper we adopt the symbolic point of view. The criteria here are given in terms of the concept of
matrix symbols defined on the noncommutative analogue of the phase space G× Ĝ, where Ĝ is the unitary dual of G. No regularity
of the kernel (or of the symbol) is assumed so that several of the obtained criteria extend to the more general setting of compact
topological groups.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Soit G un groupe de Lie compact, dans cet article on établit des critères sur les symboles pour assurer qu’un opérateur est
nucléaire et r-nucléaire sur les espaces Lp(G), avec des applications à la distribution des valeurs propres et la formule pour la
trace. Depuis des critères en termes de noyaux ne sont souvent pas efficase en vue de l’exemple de Carleman, dans cet article, on
adopte le point de vue symbolique. Les critères ici sont donnés en termes du concept de symboles matriciels définis sur l’analogue
non commutatif de l’espace des phases G × Ĝ, où Ĝ est le dual unitaire de G. Aucune régularité sur le noyau (ou du symbole)
n’est supposée de sorte que plusieurs des critères obtenus s’étendent au cas plus général des groupes topologiques compacts.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let G be a compact Lie group. In this paper we address the following problems:

• to find criteria for operators to be nuclear on Lp(G), for 1 � p < ∞;
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• since in the Banach spaces, due to Grothendieck’s work [9], we know that in order to have the operator trace
to agree with the spectral trace, the notion of nuclearity is not sufficient, to find criteria for the r-nuclearity
(0 < r � 1) and to apply this to derive information on the spectral behaviour and on the traces of operators on
Lp(G).

Our analysis will be based on the global quantisation recently developed in [19] and [21] as a noncommutative ana-
logue of the Kohn–Nirenberg quantisation of operators on Rn.

In general, for trace class operators in Hilbert spaces, the trace of an operator given by integration of its integral
kernel over the diagonal is equal to the sum of its eigenvalues. However, this property fails in Banach spaces. The
notion of r-nuclear operators becomes useful, and Grothendieck [9] proved that 2

3 -nuclear operators in this scale
satisfy the Lidskii trace formula on Lp-spaces. The question of finding good criteria for ensuring the r-nuclearity
of operators arises but this has to be formulated in terms different from those on Hilbert spaces and has to take into
account the impossibility of certain kernel formulations in view of Carleman’s example [2] recalled below.

The main results of the paper (in the setting of operators on a compact Lie group G) do not impose any conditions
on the regularity of the kernel (or of the symbol), and include:

• sufficient conditions for operators from Lp1(G) to Lp2(G) to be nuclear, for 1 � p1,p2 < ∞;
• sufficient conditions for operators from Lp1(G) to Lp2(G) to be r-nuclear, for 0 < r � 1, 1 � p1,p2 < ∞;
• a new trace formula relating the operator trace to an expression involving the matrix-symbol of an r-nuclear

operator (for 0 < r � 1), which in turn is equal to the sum of eigenvalues by the Lidskii formula (for 0 < r � 2
3 );

• an application to the trace formula for the heat kernel.

In order to get an efficient criterion for the r-nuclearity, the application of the notion of a matrix symbol of an
operator on a compact Lie group will be instrumental. We also give several further applications. A special feature of
our criteria is that we do not assume any regularity condition on the symbols, which shows a certain advantage in
comparison with the traditional Kohn–Nirenberg quantisation in the manifold setting. Here we will completely drop
regularity assumption on the symbol as a consequence of the technique of noncommutative quantisation that we are
using.

As a result, several of our criteria are valid on compact topological groups, without assuming the differential
structure of a Lie group.

While Grothendieck’s result yields the same index 2/3 for all Lp-spaces, we relate the index r of the r-nuclear
operators with the index p of Lp-spaces in which the trace formula holds. Nuclearity criteria for operators on L2 with
smooth symbols in Hörmander classes have been analysed, see e.g. Shubin [24, Section 27]. The problem of finding
criteria for Schatten classes in terms of symbols with lower regularity has been of interest in the last years, see e.g.
[26,27,1].

Symbolic criteria for the Lp-boundedness of operators on compact Lie groups, the Mikhlin–Hörmander multiplier
theorem and its extension to non-invariant operators for 1 < p < ∞, are presented in [23].

To formulate the notions more precisely, let E and F be two Banach spaces and let 0 < r � 1. A linear operator T

from E to F is called r-nuclear if there exist sequences (x′
n) in E′ and (yn) in F so that

T x =
∞∑

n=1

x′
n(x)yn (1.1)

and

∞∑
n=1

∥∥x′
n

∥∥r

E′ ‖yn‖r
F < ∞. (1.2)

The class of r-nuclear operators is usually endowed with the quasi-norm

nr(T ) = inf

{ ∞∑∥∥x′
n

∥∥r

E′ ‖yn‖r
F

} 1
r

, (1.3)

n=1
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where the infimum is taken over the representations (1.1) of T such that (1.2) holds. When r = 1 we obtain the ideal of
nuclear operators and n1(·) is a norm. In this case the definition above agrees with the concept of trace class operators
in the setting of Hilbert spaces (E = F = H ).

Since we are also interested in the distribution of eigenvalues we shall consider the case E = F and the notion
of the trace. In order to ensure the existence of a good definition of the trace on the ideal of nuclear operators N(E)

one is led to consider the Banach spaces E enjoying the so-called approximation property (cf. [16,4]). It is well
known that the spaces Lp(Ω,M,μ) satisfy the approximation property for any measure μ and 1 � p � ∞ (cf. [14,
Lemma 19.3.5]). Thus, a Banach space E is said to have the approximation property if for every compact subset K of
E and every ε > 0 there exists a finite rank bounded operator B on E such that

‖x − Bx‖E < ε for all x ∈ K.

On such spaces, if T : E → E is nuclear, the trace is well-defined by

Tr(T ) =
∞∑

n=1

x′
n(yn),

where T = ∑∞
n=1 x′

n ⊗ yn is a representation of T as in (1.1). It can be shown that this definition is independent of the
choice of the representation.

In the setting of Hilbert spaces the class of r-nuclear operators agrees with the Schatten–von Neumann ideal of
order r , a result due to R. Oloff (cf. [13]). When r = 2

3 , Grothendieck proved (cf. [9]) that the trace in Banach
spaces agrees with the sum of all the eigenvalues with multiplicities counted. In Hilbert spaces this holds for nuclear
(i.e. trace class) operators, the result which is known as the Lidskii formula (cf. [12]). It has been proven by A. Pietsch
[15] that if r > 1 the class of operators having decomposition (1.1) and satisfying (1.2) is essentially reduced to the
null operator. The question about the sharpness of the index r = 2

3 for trace formulae in the case of Lp-spaces has
been recently considered by Reinov and Laif [17]. Being in the class of r-nuclear operators can be used to deduce
properties concerning the asymptotic behaviour of the corresponding operators. The statement relating Grothendieck’s
r-nuclearity result to the Lidskii formula in Lp-spaces is known as a Grothendieck–Lidskii formula (see e.g. [17])
and we give its variant on compact Lie groups in Theorem 4.2 for 0 < r � 2/3 and in Corollary 4.4 for 0 < r � 1
with 1

r
= 1 + | 1

2 − 1
p
|. The r-nuclear operators are sometimes known as p-nuclear operators, but here we will reserve

the index p to indicate the Lp-spaces. A description of the current state of the art of the general theory of p-nuclear
operators has recently appeared in Hinrichs and Pietsch [10].

Among other things, in this paper we establish sufficient conditions on the matrix-valued symbol of an operator
in order to ensure the r-nuclearity in Lp-spaces. The nuclearity of pseudo-differential operators on the circle T1 has
been recently analysed in [7] but the situation in the present paper is much more subtle because of the necessarily
appearing multiplicities of the eigenvalues of the Laplacian on the noncommutative compact Lie groups; moreover,
due to the commutativity of the torus, the symbol there is scalar and hence all of its “matrix”-norms are uniformly
equivalent which is not the case if the group G is noncommutative.

We shall now briefly recall a classical result of Carleman [2] which will be helpful to clarify the significance of our
symbolic criteria. In 1916 Torsten Carleman constructed a periodic continuous function �(x) = ∑∞

n=−∞ cne
2πinx ,

i.e. a continuous function on the commutative Lie group T1, for which the Fourier coefficients cn satisfy

∞∑
n=−∞

|cn|r = ∞ for any r < 2.

Now, considering the normal operator

Tf = f ∗ � (1.4)

acting on L2(T1) one obtains that the sequence (cn)n forms a complete system of eigenvalues of this operator corre-
sponding to the complete orthonormal system φn(x) = e2π inx, T φn = cnφn. The system φn is also complete for T ∗,
T ∗φn = cnφn, the singular values of T are given by sn(T ) = |cn| and hence

∞∑
sn(T )r = ∞,
n=−∞
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for r < 2. Hence, the operator T is not nuclear. Moreover, due to the aforementioned Oloff’s result the operator
T is not r-nuclear for 0 < r � 1. However, the continuous integral kernel k(x, y) = �(x − y) satisfies any kind of
integral condition of the form

∫∫ |k(x, y)|s dx dy < ∞ due to the boundedness of k. This shows that it is impossible
to formulate a sufficient condition of this type for the kernel ensuring nuclearity on the torus T1.

In this work we will establish conditions imposed on symbols instead of kernels ensuring the r-nuclearity of
the corresponding operators. The criteria that we will obtain in the general case for the nuclearity from Lp1(G) to
Lp2(G) will depend on whether p1 � 2 or p1 � 2. The formulation for the left-invariant operators is simpler than
that in the general case, and in this respect, the result on the left-invariant operators with symmetric symbols is that
in Theorem 3.4, saying that if 1 � p1,p2 < ∞ and 0 < r � 1, and if A : Lp1(G) → Lp2(G) is a left-invariant linear
continuous operator, formally self-adjoint, with matrix-valued symbol σA(ξ) satisfying∑

[ξ ]∈Ĝ

d
1+( 1

p̃1
− 1

p̃2
)r

ξ

∥∥σA(ξ)
∥∥r

Sr
< ∞, (1.5)

where p̃1 = min{2,p1}, p̃2 = max{2,p2}, then the operator A : Lp1(G) → Lp2(G) is r-nuclear. We also analyse the
general case of non-self-adjoint non-invariant operators but in this case conditions analogous to (1.5) become more
complicated. This is in contrast to criteria for Schatten classes in the case of p1 = p2 = 2 (see [6]) when the conditions
do not depend on whether the operator is self-adjoint or not.

For p1 = p2 we will apply this to the question of the convergence of the series of eigenvalues of operators and to
the validity of the Lidskii formula. Thus, for 1 � p < ∞ and 0 < r � 1, if A : Lp(G) → Lp(G) is a linear continuous
r-nuclear operator with the matrix-valued symbol σA(x, ξ), then (under certain conditions) in Theorem 4.2 we prove
the trace formula

TrA =
∫
G

∑
[ξ ]∈Ĝ

dξ Tr
(
σA(x, ξ)

)
dx (1.6)

relating the operator trace to the matrix symbol of the operator. If in addition 0 < r � 2
3 , we have by the Lidskii

formula also the equality

TrA =
∞∑

n=1

λn(A), (1.7)

where λn(A) denote the eigenvalues of A counted with multiplicities.
We give examples applying our results to the heat kernel on general compact Lie groups (Section 4.1) as well as to

the Laplacian and the sub-Laplacian on SU(2) 	 S3 and on SO(3) (Section 3.2).
In Section 2 we discuss and formulate the known criteria for nuclearity as well as make a short introduction to the

noncommutative matrix quantisation on compact Lie groups. In Section 3 we move to the setting of Lp-spaces and
formulate our criteria for the r-nuclearity. There are different possibilities of how to impose conditions on the symbol.
We will discuss both the cases of invariant and non-invariant operators, and give examples of our results on the tori,
on the group SU(2) and on SO(3). In Section 4 we give applications to summability of eigenvalues, trace formulae
and the Lidskii theorem. In particular, in Section 4.1 we give the example of the heat kernel and its trace.

2. Preliminaries

In this section we recall some basic facts about the concepts of nuclear and r-nuclear operators, and the notion of the
trace on Banach spaces. In particular, we consider the trace of nuclear operators on Lp(μ). The fact that these spaces
satisfy the approximation property is a classical result (cf. [9,14]). We refer the reader to [14] and to [16, Chapter 4.2]
for the general theory of traces on operator ideals and the notation used in this section, see also [8] for an exposition
on the distribution of the eigenvalues. For the theory of pseudo-differential operators on compact Lie groups the we
refer to [19] and [21].

In the case of Lp-spaces we first record the following characterisation of nuclear operators (cf. [3]). In the statement
below we shall consider (Ω1,M1,μ1) and (Ω2,M2,μ2) to be two σ -finite measure spaces.
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Theorem 2.1. Let 1 � p1,p2 < ∞ and let q1 be such that 1
p1

+ 1
q1

= 1. An operator T : Lp1(μ1) → Lp2(μ2) is

nuclear if and only if there exist sequences (gn)n in Lp2(μ2), and (hn)n in Lq1(μ1) such that
∑∞

n=1 ‖gn‖Lp2 ‖hn‖Lq1 <

∞, and such that for all f ∈ Lp1(μ1) we have

Tf (x) =
∫ ( ∞∑

n=1

gn(x)hn(y)

)
f (y)dμ1(y), for a.e. x.

Remark 2.2. An analogue of the characterisation above holds for r-nuclear operators, 0 < r � 1, replacing the terms
‖gn‖Lp2 ‖hn‖Lq1 by ‖gn‖r

Lp2 ‖hn‖r
Lq1 in the sum, i.e. under the condition that

∞∑
n=1

‖gn‖r
Lp2 ‖hn‖r

Lq1 < ∞.

A distribution of the eigenvalues for r-nuclear operators can be obtained from the next theorem relating the
eigenvalues and the class of r-nuclear operators (cf. [9, Chap. II, p. 16], [8, Chap. 5, Theorem 4.2]):

Theorem 2.3. Let E be a Banach space which has the approximation property. Let T be an r-nuclear operator from
E into E for some 0 < r � 1. Then

∞∑
n=1

∣∣λn(T )
∣∣s � ns

r(T ),
1

s
= 1

r
− 1

2
,

where λn(T ) denote the eigenvalues of T with multiplicities counted, and where nr(T ) is defined in (1.3).

Remark 2.4. (i) Note that from 1
s

= 1
r
− 1

2 we obtain that s = 2r
2−r

for 0 < r � 1. In particular, the function s(r) = 2r
2−r

has the range (0,2]. It is clear that if s > 2 the series on the left in Theorem 2.3 also converges but the interesting
situation is to find smaller values of s ensuring such convergence.

(ii) Theorem 2.3 was established by Grothendieck [9], and later extended by e.g. König [11, p. 107] to the scale of
Lorentz sequences spaces; see also [16, Theorem 3.8.6].

(iii) If r = 1 we get s = 2, a classical result by Grothendieck (cf. [9]) establishing the square summability of
eigenvalues for nuclear operators. It is also known by Grothendieck that s = 2 is the best possible exponent in
this case.

Theorem 2.3 will be applied jointly with our sufficient conditions for r-nuclearity, to obtain estimates on the
asymptotic behaviour of the eigenvalues. From this point of view, the main goal of this paper becomes to find suitable
criteria for ensuring the r-nuclearity of an operator.

Given a compact Lie group G, in this work we consider Ω1 = Ω2 = G and M = M1 = M2, the Borel σ -algebra
associated to the topology of the smooth manifold G, with μ = μ1 = μ2 the normalised Haar measure of G. The
results of this paper concerning multiplier operators do not use the differential structure of G and hold on general
compact groups. When talking about compact topological groups in this paper we will always assume that the set
consisting of the unit element {e} is closed, so that the group is Hausdorff.

Let Ĝ denote the set of equivalence classes of continuous irreducible unitary representations of G. Since G is
compact, the set Ĝ is discrete. For [ξ ] ∈ Ĝ, by choosing a basis in the representation space of ξ , we can view ξ

as a matrix-valued function ξ : G → Cdξ ×dξ , where dξ is the dimension of the representation space of ξ . By the
Peter–Weyl theorem the collection {√

dξ ξij : 1 � i, j � dξ , [ξ ] ∈ Ĝ
}

is an orthonormal basis of L2(G). If f ∈ L1(G) we define its global Fourier transform at ξ by

FGf (ξ) ≡ f̂ (ξ) :=
∫

f (x)ξ(x)∗ dx, (2.1)
G
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where dx is the normalised Haar measure on G. Thus, if ξ is a matrix representation, we have f̂ (ξ) ∈ Cdξ ×dξ .
The Fourier inversion formula is a consequence of the Peter–Weyl theorem, so that

f (x) =
∑

[ξ ]∈Ĝ

dξ Tr
(
ξ(x)f̂ (ξ)

)
. (2.2)

Given a sequence of matrices a(ξ) ∈ Cdξ ×dξ , we can define(
F−1

G a
)
(x) :=

∑
[ξ ]∈Ĝ

dξ Tr
(
ξ(x)a(ξ)

)
, (2.3)

where the series can be interpreted distributionally or absolutely depending on the growth of (the Hilbert–Schmidt
norms of) a(ξ). For a further discussion we refer the reader to [19].

For each [ξ ] ∈ Ĝ, the matrix elements of ξ are the eigenfunctions for the Laplacian LG (or the Casimir element of
the universal enveloping algebra), with the same eigenvalue which we denote by −λ2[ξ ], so that

−LGξij (x) = λ2[ξ ]ξij (x) for all 1 � i, j � dξ . (2.4)

The weight for measuring the decay or growth of Fourier coefficients in this setting is 〈ξ〉 := (1 + λ2[ξ ])
1
2 , the eigen-

values of the elliptic first-order pseudo-differential operator (I −LG)
1
2 . The Parseval identity takes the form

‖f ‖L2(G) =
( ∑

[ξ ]∈Ĝ

dξ

∥∥f̂ (ξ)
∥∥2
HS

)1/2

, where
∥∥f̂ (ξ)

∥∥2
HS = Tr

(
f̂ (ξ)f̂ (ξ)∗

)
, (2.5)

which gives the norm on 
2(Ĝ).
For a linear continuous operator A from C∞(G) to D′(G) we define its matrix-valued symbol σA(x, ξ) ∈ Cdξ ×dξ

by

σA(x, ξ) := ξ(x)∗(Aξ)(x) ∈ Cdξ ×dξ , (2.6)

where Aξ(x) ∈ Cdξ ×dξ is understood as (Aξ(x))ij = (Aξij )(x), i.e. by applying A to each component of the matrix
ξ(x). Then one has [19,21] the global quantisation

Af (x) =
∑

[ξ ]∈Ĝ

dξ Tr
(
ξ(x)σA(x, ξ)f̂ (ξ)

)
(2.7)

in the sense of distributions, and the sum is independent of the choice of a representation ξ from each equivalence
class [ξ ] ∈ Ĝ. If A is a linear continuous operator from C∞(G) to C∞(G), the series (2.7) is absolutely convergent
and can be interpreted in the pointwise sense. We will also write A = Op(σA) for the operator A given by the formula
(2.7). The symbol σA can be interpreted as a matrix-valued function on G × Ĝ. We refer to [19,21] for the consistent
development of this quantisation and the corresponding symbolic calculus. If the operator A is left-invariant then its
symbol σA does not depend on x. We often call such operators simply invariant.

We now record simple inequalities on the norms of the representation coefficients which will be essential for
the analysis of the r-nuclearity. The result holds in a more general setting of compact (Hausdorff) groups without
assuming the differential structure:

Lemma 2.5. Let G be a compact group and let [ξ ] ∈ Ĝ. Then for all 1 � i, j � dξ we have

‖ξij‖Lq(G) �

⎧⎪⎨⎪⎩d
− 1

q

ξ , 2 � q � ∞,

d
− 1

2
ξ , 1 � q � 2,

(2.8)

where for q = ∞ we adopt the usual convention d
− 1

q

ξ = 1.
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Proof. If q = ∞, for any y ∈ G we have |ξ(y)ij | � ‖ξ(y)‖op = 1 by the unitarity of representations in Ĝ. If 2 � q <

∞ we apply the inequality

‖f ‖Lq � ‖f ‖
q−2
q

L∞ ‖f ‖
2
q

L2 .

Using that
√

dξ ξij is an orthonormal set in L2(G), i.e. that ‖ξij‖L2 = d
− 1

2
ξ , and that we have just showed that

‖ξij‖L∞ � 1, we obtain

‖ξij‖Lq(G) � ‖ξij‖
q−2
q

L∞ ‖ξij‖
2
q

L2 � ‖ξij‖
2
q

L2 � d
− 1

q

ξ .

Finally, for 1 � q � 2, using Hölder’s inequality, we get

‖ξij‖q

Lq(G) =
∫
G

∣∣ξij (y)
∣∣q dy �

(∫
G

1dy

)1− q
2
(∫

G

∣∣ξij (y)
∣∣q 2

q dy

) q
2

� ‖ξij‖q

L2(G)
= d

− q
2

ξ ,

where we have used the fact that the Haar measure on G is normalised. �
Our criteria will be formulated in terms of norms of the matrix-valued symbols. In order to justify the appearance

of them, we recall that if A ∈ Ψ m(G) on a compact Lie group G is a pseudo-differential operators in Hörmander’s
class Ψ m(G), i.e. if all of its localisations to Rn are pseudo-differential operators with symbols in the class Sm

1,0(R
n),

then the matrix-symbol of A satisfies∥∥σA(x, ξ)
∥∥

op � C〈ξ〉m for all x ∈ G, [ξ ] ∈ Ĝ.

Here ‖ · ‖op denotes the operator norm of the matrix multiplication by the matrix σA(x, ξ). For this fact, see e.g. [19,
Lemma 10.9.1] or [21], and for the complete characterisation of Hörmander classes Ψ m(G) in terms of matrix-valued
symbols see also [22]. In particular, this motivates the usage of the operator norms of the matrix-valued symbols.
However, since σA is in general a matrix, other matrix norms become useful as well.

3. r-Nuclearity on Lp(G) and examples

In this and next sections we analyse the r-nuclearity and trace formulae in Lp-spaces. We recall that the case
r = 1 corresponds to the class of nuclear operators. One of the features of the obtained criteria is that they require
the integrability (in some Lp-spaces) of symbols σA(x, ξ) with respect to x but do not assume any regularity of the
symbol.

We start by proving the following sufficient condition for the r-nuclearity of operators on L2(G) with symbols
depending only on ξ . We note that the property that the symbol depends only on ξ means that the operator is
left-invariant, that is, it commutes with the left translations on the group G.

Theorem 3.1. Let G be a compact group and let 0 < r � 1. Let A : L2(G) → L2(G) be a linear continuous operator
with matrix-valued symbol σA(ξ) depending only on ξ . Then A is r-nuclear provided that its symbol σA satisfies∑

[ξ ]∈Ĝ

dξ

∥∥σA(ξ)
∥∥r

Sr
< ∞. (3.1)

Here ‖σA(ξ)‖Sr = (Tr(|σA(ξ)|r ))1/r is the Schatten-norm of order r of the matrix σA(ξ) ∈Cdξ ×dξ .

Although this result is known (even in the ‘if and only if’ form, see [6]), we give here a different proof from the
one in that paper as it is more suitable for consequent extensions of this paper.

Proof of Theorem 3.1. Let us suppose that the symbol σA satisfies (3.1). We note that the kernel of the operator A is
given by
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k(x, y) =
∑

[ξ ]∈Ĝ

dξ Tr
(
ξ(x)σA(ξ)ξ(y)∗

)
,

and we will show that it is well-defined and has the tensor product form of Theorem 2.1 that is required for the
nuclearity. To abbreviate the notation, we will write σ(ξ) for σA(ξ). We begin by writing

Tr
(
ξ(x)σ (ξ)ξ(y)∗

) =
dξ∑

i,j=1

(
ξ(x)σ (ξ)

)
ij
ξ(y)ij ,

and we set

gξ,ij (x) := dξ

(
ξ(x)σ (ξ)

)
ij
, hξ,ij (y) := (

ξ(y)∗
)
ji

= ξ(y)ij .

For gξ,ij (x) we have

‖gξ,ij‖L2(G) = √
dξ

∥∥√
dξ

(
ξ(x)σ (ξ)

)
ij

∥∥
L2(G)

= √
dξ

∥∥∥∥∥
dξ∑

k=1

√
dξ

(
ξ(x)

)
ik

σ (ξ)kj

∥∥∥∥∥
L2(G)

= √
dξ

( dξ∑
k=1

√
dξ

(
ξ(x)

)
ik

σ (ξ)kj ,

dξ∑
k′=1

√
dξ

(
ξ(x)

)
ik′σ(ξ)k′j

) 1
2

L2(G)

= √
dξ

( dξ∑
k=1

σ(ξ)kj σ (ξ)kj

) 1
2

= √
dξ

( dξ∑
k=1

(
σ(ξ)∗

)
jk

σ (ξ)kj

) 1
2

= √
dξ

(
σ(ξ)∗σ(ξ)

) 1
2
jj

= √
dξ

∣∣σ(ξ)
∣∣
jj

. (3.2)

Hence ‖gξ,ij‖r
L2(G)

= dξ
r
2 |σ(ξ)|rjj .

Now, since {d
1
2
ξ ξij } is an orthonormal set in L2(G), we have

‖ξ ij‖r
L2(G)

= d
− r

2
ξ .

Therefore,

∑
ξ,ij

∥∥gξ,ij (·)
∥∥r

L2(G)

∥∥hξ,ij (·)
∥∥r

L2(G)
�

∑
ξ

d
r
2
ξ d

− r
2

ξ

dξ∑
i,j=1

∣∣σ(ξ)
∣∣r
jj

=
∑
ξ

dξ∑
j=1

dξ

∣∣σ(ξ)
∣∣r
jj

=
∑
ξ

dξ Tr
(∣∣σ(ξ)

∣∣r) =
∑
ξ

dξ

∥∥σ(ξ)
∥∥r

Sr
< ∞,

completing the proof. �
Remark 3.2. We point out that one can prove that the condition (3.1) ensuring the r-nuclearity for left-invariant
operators on L2(G) is also necessary. We recall that in the Hilbert space setting, the Schatten class of order r agrees
with the class of r-nuclear operators whenever 0 < r � 1 by Oloff’s result [13]. For the details of Schatten classes of
invariant operators on compact Lie groups we refer the reader to the recent work [6].
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We will now extend Theorem 3.1 to the setting of Lp(G)-spaces. We shall require the following notation: 
∞
denotes the L∞-norm on Cdξ and ‖ · ‖op(
∞,
∞) denotes the operator norm with respect to 
∞ on Cdξ . More precisely,
for each d ∈N, let B ∈ Cd×d and u ∈Cd . Denoting

‖B‖op(
∞,
∞) := max
1�i�d

d∑
j=1

|Bij |,

we have |(Bu)i |� ∑d
j=1 |Bij |max1�j�d |uj | � ‖B‖op(
∞,
∞)‖u‖
∞ , so that we get

‖Bu‖
∞ � ‖B‖op(
∞,
∞)‖u‖
∞,

justifying the notation ‖ · ‖op(
∞,
∞), and the appearance of this norm. The transpose of the matrix M will be denoted
by Mt . We first deal with left-invariant operators.

Theorem 3.3. Let G be a compact group and let 1 � p1,p2 < ∞, 0 < r � 1. Let A : Lp1(G) → Lp2(G) be a linear
continuous operator with matrix-valued symbol σA(ξ) depending only on ξ . If 1 � p2 � 2 and∑

[ξ ]∈Ĝ

d
1+( 1

p̃1
− 1

2 )r

ξ

∥∥σA(ξ)
∥∥r

Sr
< ∞,

where p̃1 = min{2,p1}, then the operator A : Lp1(G) → Lp2(G) is r-nuclear.
If p2 > 2, and ∑

[ξ ]∈Ĝ

d
1+( 1

p̃1
− 1

p2
)r

ξ

∥∥(
σA(ξ)

)t∥∥ p2−2
p2

r

op(
∞,
∞)

∥∥σA(ξ)
∥∥ 2r

p2
S 2r

p2

< ∞,

then A : Lp1(G) → Lp2(G) is r-nuclear.

Proof. Let q1 and q̃1 be such that 1
p1

+ 1
q1

= 1
q̃1

+ 1
p̃1

= 1. Then, in particular, q̃1 = max{2, q1}. If 1 � p2 � 2 we
have, using (3.2), and denoting σ = σA,∥∥(

ξ(x)σ (ξ)
)
ij

∥∥r

Lp2 (G)
�

∥∥(
ξ(x)σ (ξ)

)
ij

∥∥r

L2(G)
� d

− r
2

ξ

∣∣σ(ξ)
∣∣r
jj

.

On the other hand

‖ξ ij‖r
Lq1 (G) � d

− r
q̃1

ξ .

Therefore,∑
ξ,ij

dr
ξ

∥∥(
ξ(x)σ (ξ)

)
ij

∥∥r

Lp2 (G)

∥∥ξ(y)ij
∥∥r

Lq1 (G)
�

∑
ξ

dr
ξ d

− r
2

ξ d
− r

q̃1
ξ

∑
ij

∣∣σ(ξ)
∣∣r
jj

=
∑
ξ

d
1+( 1

2 − 1
q̃1

)r

ξ

∥∥σA(ξ)
∥∥r

Sr

=
∑
ξ

d
1+( 1

p̃1
− 1

2 )r

ξ

∥∥σA(ξ)
∥∥r

Sr
< ∞.

Now, if p2 > 2 we first observe that

(
ξ(x)σ (ξ)

)
ij

=
dξ∑

k=1

ξ(x)ikσ (ξ)kj =
dξ∑

k=1

(
σ(ξ)

)t

jk
ξ(x)ik.

Hence and taking into account that |ξ(x)ik| � 1, we get

∣∣(ξ(x)σ (ξ)
)
ij

∣∣ =
∣∣∣∣∣

dξ∑
k=1

(
σ(ξ)

)t

jk
ξ(x)ik

∣∣∣∣∣
�

∥∥(
σ(ξ)

)t∥∥
op(
∞,
∞)

∥∥(
ξ(x)i1, . . . , ξ(x)idξ

)∥∥

∞

�
∥∥(

σ(ξ)
)t∥∥ ∞ ∞ . (3.3)
op(
 ,
 )
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Then using (3.2) and (3.3) we obtain

∥∥(
ξ(x)σ (ξ)

)
ij

∥∥r

Lp2 (G)
=

(∫
G

∣∣(ξ(x)σ (ξ)
)
ij

∣∣p2 dx

) r
p2

=
(∫

G

∣∣(ξ(x)σ (ξ)
)
ij

∣∣p2−2∣∣(ξ(x)σ (ξ)
)
ij

∣∣2
dx

) r
p2

� sup
x

∣∣(ξ(x)σ (ξ)
)
ij

∣∣ p2−2
p2

r∥∥(
ξ(x)σ (ξ)

)
ij

∥∥ 2r
p2
L2(G)

�
∥∥(

σ(ξ)
)t∥∥ p2−2

p2
r

op(
∞,
∞) d
− r

p2
ξ

∣∣σ(ξ)
∣∣ 2r

p2
jj .

Therefore, ∑
ξ,ij

dr
ξ

∥∥(
ξ(x)σ (ξ)

)
ij

∥∥r

Lp2 (G)

∥∥ξ(y)ij
∥∥r

Lq1 (G)

�
∑
ξ

dr
ξ d

− r
p2

ξ , d
− r

q̃1
ξ

∥∥(
σ(ξ)

)t∥∥ p2−2
p2

r

op(
∞,
∞)

∑
ij

∣∣σ(ξ)
∣∣ 2r

p2
jj

=
∑
ξ

dr
ξ d

− r
p2

ξ d
− r

q̃1
ξ

∥∥(
σ(ξ)

)t∥∥ p2−2
p2

r

op(
∞,
∞) dξ

∑
j

∣∣σ(ξ)
∣∣ 2r

p2
jj

=
∑
ξ

dξ d
(1− 1

q̃1
− 1

p2
)r

ξ

∥∥(
σ(ξ)

)t∥∥ p2−2
p2

r

op(
∞,
∞) Tr
(∣∣σ(ξ)

∣∣ 2r
p2

)
=

∑
ξ

dξ d
( 1

p̃1
− 1

p2
)r

ξ

∥∥(
σ(ξ)

)t∥∥ p2−2
p2

r

op(
∞,
∞)

∥∥σ(ξ)
∥∥ 2r

p2
S 2r

p2

< ∞,

completing the proof. �
In the particular case of diagonal symbols only depending on ξ we can improve the sufficient condition in the

above theorem. An example of such behaviour are the left-invariant vector fields on a compact Lie group G, the
Laplacian and the sub-Laplacian on G, which always have diagonal symbols in an appropriately chosen basis in the
representation spaces. Moreover, symbols of general left-invariant self-adjoint operators can be chosen to be diagonal
by choosing a particular representative from each equivalence class [ξ ] ∈ Ĝ. We formulate a general result now, and
will give its application to the sub-Laplacian in Section 3.2.

Theorem 3.4. Let G be a compact group, 1 � p1,p2 < ∞ and 0 < r � 1. Let A : Lp1(G) → Lp2(G) be a left-
invariant linear continuous operator which is formally self-adjoint. Assume that its matrix-valued symbol σA(ξ)

satisfies ∑
[ξ ]∈Ĝ

d
1+( 1

p̃1
− 1

p̃2
)r

ξ

∥∥σA(ξ)
∥∥r

Sr
< ∞,

where p̃1 = min{2,p1}, p̃2 = max{2,p2}. Then the operator A : Lp1(G) → Lp2(G) is r-nuclear.

Proof. First we observe that since A is left-invariant, indeed its matrix-valued symbol σA(ξ) is independent of x, and
since A is formally self-adjoint, the matrices σA(ξ) are also self-adjoint for all ξ . Therefore, we can choose the basis
in the representation spaces so that the symbol σA(ξ) becomes diagonal. Since the Schatten norms ‖σA(ξ)‖Sr do not
change under a change of basis in the representation spaces, we may assume further, without loss of generality, that
the matrices σA(ξ) are diagonal for all ξ .
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We consider q1 such that 1
p1

+ 1
q1

= 1 and q̃1 = max{2, q1}, and we observe that 1
q̃1

+ 1
p̃1

= 1. Since σ(ξ) = σA(ξ)

is diagonal, and using the equality (3.2), we have∥∥(
ξ(x)σ (ξ)

)
ij

∥∥r

Lp2 (G)
= ∥∥ξ(x)ij σ (ξ)jj

∥∥r

Lp2 (G)
� d

− r
p̃2

ξ

∣∣σ(ξ)
∣∣r
jj

.

On the other hand, by (2.8) we have

‖ξ ij‖r
Lq1 (G) � d

− r
q̃1

ξ .

Therefore,∑
ξ,ij

dr
ξ

∥∥(
ξ(x)σ (ξ)

)
ij

∥∥r

Lp2 (G)

∥∥ξ(y)ij
∥∥r

Lq1 (G)
�

∑
ξ

dr
ξ d

− r
p̃2

ξ d
− r

q̃1
ξ

∑
ij

∣∣σ(ξ)
∣∣r
jj

=
∑
ξ

d
− r

p̃2
ξ d

r
p̃1
ξ

∑
j

dξ

∣∣σ(ξ)
∣∣r
jj

=
∑
ξ

d
1+( 1

p̃1
− 1

p̃2
)r

ξ

∥∥σ(ξ)
∥∥r

Sr
< ∞,

completing the proof. �
We will sometimes give examples of our results on the torus, so we summarise its notation:

Remark 3.5. If G = Tn =Rn/Zn, we have T̂n 	 Zn, and the collection {ξk(x) = e2πix·k}k∈Zn is the orthonormal basis
of L2(Tn), and all dξk

= 1. If an operator A is invariant on Tn, its symbol becomes σA(ξk) = ξk(x)∗Aξk(x) = Aξk(0).
In general, on the torus we will often simplify the notation by identifying T̂n with Zn, and thus writing ξ ∈ Zn instead
of ξk ∈ Zn. The toroidal quantisation

Af (x) =
∑
ξ∈Zn

e2πix·ξ σA(x, ξ)f̂ (ξ) (3.4)

has been analysed extensively in [20] (see also [18,19]) and it is a special case of (2.7), where we have identified, as
noted, T̂n with Zn.

As a consequence of Theorem 3.1 on the torus, we obtain:

Corollary 3.6. Let 1 � p1,p2 < ∞ and 0 < r � 1. Let A : Lp1(Tn) → Lp2(Tn) be a linear continuous operator with
symbol σA(ξ) depending only on ξ . Then A is r-nuclear provided that its symbol σA satisfies∑

ξ∈Zn

∣∣σA(ξ)
∣∣r < ∞. (3.5)

We shall now consider more general non-invariant operators so that the symbols may depend also on x.

Theorem 3.7. Let G be compact Lie group and let 0 < r � 1. Let operator A have the matrix symbol σA(x, ξ).
Let 1 � p1,p2 < ∞ and let us denote p̃1 = min{2,p1}. Suppose that the symbol σA satisfies∑

[ξ ]∈Ĝ

d
2+ r

p̃1
ξ

∥∥∥∥(
σA(x, ξ)

)t∥∥
op(
∞,
∞)

∥∥r

Lp2 (G)
< ∞.

Then the extension A : Lp1(G) → Lp2(G) is r-nuclear.

Here we have denoted

∥∥∥∥σA(x, ξ)
∥∥

op(
∞,
∞)

∥∥
Lp2 (G)

=
(∫ ∥∥σA(x, ξ)

∥∥p2
op(
∞,
∞)

dx

) 1
p2

.

G
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Proof. The kernel of the operator A is given by

k(x, y) =
∑

[ξ ]∈Ĝ

dξ Tr
(
ξ(x)σA(x, ξ)ξ(y)∗

)
,

and we will show that it is well-defined and has the tensor product form of Theorem 2.1 that is required for the
nuclearity. As before, to abbreviate the notation, we will write σ(x, ξ) for σA(x, ξ). We begin by writing

Tr
(
ξ(x)σ (x, ξ)ξ(y)∗

) =
dξ∑

i,j=1

(
ξ(x)σ (x, ξ)

)
ij
ξ(y)ij ,

and we set

gξ,ij (x) = dξ

(
ξ(x)σ (x, ξ)

)
ij
, hξ,ij (y) = (

ξ(y)∗
)
ji

= ξ(y)ij .

A similar argument like in (3.3) shows that∣∣(ξ(x)σ (x, ξ)
)
ij

∣∣� ∥∥(
σ(x, ξ)

)t∥∥
op(
∞,
∞)

.

Hence ∥∥gξ,ij (x)
∥∥r

Lp2 (G)
= ∥∥dξ

(
ξ(x)σ (x, ξ)

)
ij

∥∥r

Lp2 (G)
� dr

ξ

∥∥∥∥(
σ(x, ξ)

)t∥∥
op(
∞,
∞)

∥∥r

Lp2 (G)
.

Let q1 be such that 1
p1

+ 1
q1

= 1. Now, if we denote q̃1 = max{2, q1}, we have 1
p̃1

+ 1
q̃1

= 1. According to (2.8), we have

‖ξ ij‖r
Lq1 (G) � d

− r
q̃1

ξ .

Therefore, ∑
ξ,ij

∥∥gξ,ij (·)
∥∥r

Lp2 (G)

∥∥hξ,ij (·)
∥∥r

Lq1 (G)
�

∑
ξ

dr
ξ d

− r
q̃1

ξ d2
ξ

∥∥∥∥(
σ(x, ξ)

)t∥∥
op(
∞,
∞)

∥∥r

Lp2 (G)

=
∑
ξ

d
2+ r

p̃1
ξ

∥∥∥∥(
σ(x, ξ)

)t∥∥
op(
∞,
∞)

∥∥r

Lp2 (G)
< ∞,

completing the proof. �
Remark 3.8. (i) If G = Tn = Rn/Zn, an invariant operator A is a Fourier multiplier, Âf (k) = a(k)f̂ (k) with symbol
σA(ξk) = a(k), see Remark 3.5. Theorem 3.7 implies that if 0 < r � 1 and

∑
k∈Zn |a(k)|r < ∞, then the operator T

is r-nuclear from Lp1(Tn) to Lp2(Tn) for all 1 � p1,p2 < ∞.
(ii) For the convolution operator on T1 as in (1.4), we have T̂1 	 Z1 and σ(n) = �̂(n) = cn, or �(x) =∑∞
n=−∞ cne

2πinx . In this case Theorem 3.7 implies that if
∑∞

n=−∞ |cn|r < ∞, the operator Tf = f ∗ � is r-nuclear
from Lp1(T1) to Lp2(T1) for all 1 � p1,p2 < ∞.

(iii) If p1 = p2 = 2 and A is a left-invariant operator on a compact Lie group G, it follows from Theorem 3.1 that
if

∑
[ξ ]∈Ĝ

dξ‖σA(ξ)‖S1 < ∞, then A is a trace class operator on L2(G).
(iv) We note that the condition of Corollary 3.12 required the integrability of the symbol with respect to x and does

not require any regularity.

In order to deduce some interesting consequences we will apply the following lemma proved in [5]:

Lemma 3.9. Let G be a compact Lie group. Then we have∑
[ξ ]∈Ĝ

d2
ξ 〈ξ〉−s < ∞

if and only if s > dimG.
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This yields the following corollary, and in Remark 3.14 we note that the following orders are in general sharp.

Corollary 3.10. Let G be a compact Lie group of dimension n and let 0 < r � 1. Let 1 � p1,p2 < ∞ and let us
denote p̃1 = min{2,p1}. Assume that ∥∥(

σA(x, ξ)
)t∥∥

op(
∞,
∞)
� Cd

− 1
p̃1

ξ 〈ξ〉− s
r

with some s > n. Then A : Lp1(G) → Lp2(G) is r-nuclear.

Proof. We have

d
2+ r

p̃1
ξ

∥∥(
σ(x, ξ)

)t∥∥r

op(
∞,
∞)
� Cd

2+ r
p̃1

ξ d
− r

p̃1
ξ 〈ξ〉−s = Crd2

ξ 〈ξ〉−s .

The result now follows from Lemma 3.9 and Theorem 3.7. �
As consequence of Theorem 3.4 and Lemma 3.9 we have:

Corollary 3.11. Let G be a compact Lie group, 1 � p1,p2 < ∞ and 0 < r � 1. Let A : Lp1(G) → Lp2(G) be a linear
continuous formally self-adjoint operator with matrix-valued symbol σA(ξ) depending only on ξ . Assume that∥∥σA(ξ)

∥∥
Sr
� Cd

1
r
−( 1

p̃1
− 1

p̃2
)

ξ 〈ξ〉− s
r ,

where p̃1 = min{2,p1}, p̃2 = max{2,p2}. Then the operator A : Lp1(G) → Lp2(G) is r-nuclear.

Proof. We can estimate

d
1+( 1

p̃1
− 1

p̃2
)r

ξ

∥∥σA(ξ)
∥∥r

Sr
� Crd

1+( 1
p̃1

− 1
p̃2

)r

ξ d
1−( 1

p̃1
− 1

p̃2
)r

ξ 〈ξ〉−s = Crd2
ξ 〈ξ〉−s .

The result now follows from Lemma 3.9 and Theorem 3.4. �
3.1. Example on the torus

We observe that on the torus Tn criteria obtained in the above statements are in general sharp. In general, we recall
that the relation of our setting to the special case of the torus was outlined in Remark 3.5, with examples given already
in Corollary 3.6 and in Remark 3.8.

Indeed, as a consequence of Theorem 3.7, recalling the notation on the torus in Remark 3.5, for the torus group
G = Tn, we have:

Corollary 3.12. Let 1 � p1,p2 < ∞, 0 < r � 1, and let A : Lp1(Tn) → Lp2(Tn) be a linear continuous operator
with symbol σA(x, ξ) satisfying ∑

ξ∈Zn

∥∥σA(·, ξ)
∥∥r

Lp2 (Tn)
< ∞,

then the operator A : Lp1(Tn) → Lp2(Tn) is r-nuclear.

To see the sharpness, we establish the following simple characterisation of the nuclearity for Bessel potentials on
L2(Tn).

Proposition 3.13. Let � be the Laplacian on the torus Tn and let 0 < r � 1. Then (I − �)− α
2 is r-nuclear on L2(Tn)

if and only if αr > n.

Proof. The symbol of the operator T = (I − �)− α
2 is positive, hence T being a multiplier operator, it is positive

definite and |T | = √
T ∗T = T . Thus, the singular values of T agree with the values of its symbol 〈ξ〉−α . Therefore,

T ∈ Sr(L
2(Tn)) if and only if αr > n. The result now follows from the identification of the Schatten class of order r

and the class of r-nuclear operators [13]. �
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Remark 3.14. In the case of the torus Tn we have dξ = 1. From Proposition 3.13 it follows that the index n in the
sufficient condition in Corollary 3.10 cannot be improved.

Corollary 3.15. Let 1 � p1,p2 < ∞, 0 < r � 1 and let A : Lp1(Tn) → Lp2(Tn) be a linear continuous operator with
symbol σA(x, ξ) satisfying ∥∥σA(x, ξ)

∥∥
Lp2 (Tn)

� C〈ξ〉−s/r ,

for some s > n. Then the operator A : Lp1(Tn) → Lp2(Tn) is r-nuclear (for all p1,p2).

Using compactness of Tn, the following criterion can be practical:

Corollary 3.16. Let 1 � p1,p2 < ∞, 0 < r � 1 and let A : Lp1(Tn) → Lp2(Tn) be a linear continuous operator with
symbol σA(x, ξ) satisfying ∣∣σA(x, ξ)

∣∣ � C〈ξ〉−s/r for all x ∈ Tn,

for some s > n. Then the operator A : Lp1(Tn) → Lp2(Tn) is r-nuclear (for all p1,p2).

3.2. Examples on SU(2) 	 S3 and on SO(3)

Let us now show other examples of the above statements for some particular compact groups. We first consider
the case of G = SU(2), the group of the unitary 2 × 2 matrices of determinant one. The same results as given below
can be stated for the 3-sphere S3 by using of the identification SU(2) 	 S3, with the matrix multiplication in SU(2)

corresponding to the quaternionic product on S3, with the corresponding identification of the symbolic calculus, see
[19, Section 12.5].

We refer the reader to [19, Chapter 12] for the details of the global quantisation (2.7) on SU(2) an the details on the
representation theory of the group G = SU(2). In this case, we can enumerate the elements of its dual as Ĝ 	 1

2N0,
with N0 = {0} ∪N, so that

ŜU(2) =
{[

t

]
: t
 ∈ C(2
+1)×(2
+1), 
 ∈ 1

2
N0

}
.

The dimension of each t
 is dt
 = 2
 + 1, and there are explicit formulae for t
 as functions of Euler angles in
terms of the so-called Legendre–Jacobi polynomials, see [19, Chapter 11]. The Laplacian on SU(2) has eigenvalues
λ2

t

= 
(
 + 1), so that we have 〈t
〉 ≈ 
. With this, Corollary 3.10 becomes:

Corollary 3.17. Let 0 < r � 1 and 1 � p1,p2 < ∞. Let A : Lp1(SU(2)) → Lp2(SU(2)) be an operator with matrix
symbol

σA(x, 
) ≡ σA

(
x, t


) := t
(x)∗At
(x), 
 ∈ 1

2
N0.

Let s > 3 and p̃1 = min{2,p1}. If there is a constant C > 0 such that∥∥∥∥(
σA(x, 
)

)t∥∥
op(
∞,
∞)

∥∥
Lp2 (G)

� C

− 1

p̃1
− s

r

for all 
 ∈ 1
2N, then A : Lp1(SU(2)) → Lp2(SU(2)) is r-nuclear.

For left-invariant operators with diagonalisable symbols on SU(2), as a consequence of Corollary 3.11 we have:

Corollary 3.18. Let 1 � p1,p2 < ∞, 0 < r � 1 and let p̃1 = min{2,p1} and p̃2 = max{2,p2}. Let A : Lp1(SU(2)) →
Lp2(SU(2)) be a formally self-adjoint operator with symbol σA(
) such that∥∥σA(
)

∥∥
Sr
� C


1−s
r

−( 1
p̃1

− 1
p̃2

)
,

for some s > 3. Then A : Lp1(SU(2)) → Lp2(SU(2)) is r-nuclear.
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In particular we will apply the above corollary to the Laplacian and the sub-Laplacian.
If LSU(2) denotes the Laplacian on SU(2), we have LSU(2)t



mn(x) = −
(
+ 1)t
mn(x) for all 
,m,n and x ∈ SU(2),

so that the symbol of I −LSU(2) is given by

σI−LSU(2)
(x, 
) = (

1 + 
(
 + 1)
)
I2
+1,

where I2
+1 ∈ C(2
+1)×(2
+1) is the identity matrix. Hence, σI−LSU(2)
(x, 
) is diagonal and independent of x.

Consequently, Corollary 3.18 applied to 1 � p = p1 = p2 < ∞ says that the operator (I −LSU(2))
− α

2 is r-nuclear on

Lp(SU(2)) provided that 

1
r
−α � C


1−s
r

−| 1
p

− 1
2 | for s > 3. Summarising, we obtain

Corollary 3.19. For α > 3
r

+ | 1
p

− 1
2 |, 0 < r � 1 and 1 � p < ∞, the operator (I − LSU(2))

− α
2 is r-nuclear on

Lp(SU(2)).

If p = 2, the order αr > 3 is sharp, see [6, Section 4].
We shall now consider the group SO(3) of the 3 × 3 real orthogonal matrices of determinant one. For the details

of the representation theory and the global quantisation of SO(3) we refer the reader to [19, Chapter 12]. The dual in
this case can be identified as Ĝ 	N0, so that

ŜO(3) = {[
t


]
: t
 ∈ C(2
+1)×(2
+1), 
 ∈ N0

}
.

The dimension of each t
 is dt
 = 2
 + 1. The Laplacian on SO(3) has eigenvalues λ2
t


= 
(
 + 1), so that we have

〈t
〉 ≈ 
. By the same argument as above, Corollary 3.19 also holds for the Laplacian on SO(3).
Let us fix three invariant vector fields D1, D2, D3 on SO(3) corresponding to the derivatives with respect to the

Euler angles. We refer to [19, Chapter 11] for the explicit formulae for these. However, for our purposes here we
note that the sub-Laplacian Lsub = D2

1 + D2
2 , with an appropriate choice of basis in the representation spaces, has the

diagonal symbol given by

σLsub(
)mn = (
m2 − 
(
 + 1)

)
δmn, m,n ∈ Z, −
�m,n � 
, (3.6)

where δmn is the Kronecker delta. The operator Lsub is a second order hypoelliptic operator and we can define the
powers (I −Lsub)

−α/2. These are pseudo-differential operators with symbols

σ(I−Lsub)
−α/2(
)mn = (

1 + 
(
 + 1) − m2)−α/2
δmn.

We now have

∥∥σ(I−Lsub)
−α/2(
)

∥∥
Sr

= (
Tr

(
σ(I−Lsub)

−α/2(
)
)r) 1

r =
(


∑
m=−


(
1 + 
(
 + 1) − m2)− αr

2

) 1
r

,

where 
 ∈ N0. Comparing with the integral

R∫
−R

(
1 + R2 − x2)− αr

2 dx ≈ CR− αr
2

R∫
0

(1 + R − x)−
αr
2 dx ≈ CR− αr

2 ,

for αr > 2 and large R, it follows that
∑


m=−
(1 + 
(
 + 1) − m2)− αr
2 is of order 
− αr

2 . Now, the inequality


− α
2 � C


(1−s)/r−| 1
p

− 1
2 |

,

with s > 3 holds if and only α > 4
r

+ 2| 1
p

− 1
2 |. If 1 � p = p1 = p2 < ∞, as a consequence of Corollary 3.18 we

obtain the condition for the nuclearity of the operator (1 −Lsub)
−α/2:

Corollary 3.20. For α > 4
r

+ 2| 1
p

− 1
2 | with 0 < r � 1 and 1 � p < ∞, the operator (I − Lsub)

− α
2 is r-nuclear on

Lp(SO(3)). The same conclusion holds for the same powers (of sub-Laplacians) on Lp(SU(2)) or on Lp(S3).

Again, if p = 2, the order αr > 4 in Corollary 3.20 is sharp, see [6, Section 4].
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4. Trace formulae on Lp(G) and distribution of eigenvalues

We now turn to some applications of the r-nuclearity on Lp(G)-spaces for the trace formulae, the Lidskii formula
and the distribution of eigenvalues. In the special case 1 � p1 = p2 = p < ∞, applying Theorem 2.3 and Theorem 3.7
we obtain:

Corollary 4.1. Let G be compact Lie group and 0 < r � 1. Let 1 � p < ∞ and let us denote p̃ = min{2,p}. Let
σA(x, ξ) be the matrix symbol of a bounded operator A : Lp(G) → Lp(G) such that∑

[ξ ]∈Ĝ

d
2+ r

p̃

ξ

∥∥∥∥(
σA(x, ξ)

)t∥∥
op(
∞,
∞)

∥∥r

Lp(G)
< ∞.

Then A : Lp(G) → Lp(G) is r-nuclear and

∞∑
n=1

∣∣λn(A)
∣∣ 2r

2−r < ∞.

We now derive another consequence relating the trace formulae with matrix-valued symbols. As we have already
explained in the introduction, every nuclear operator acting from a Banach space E into E admits a trace provided
that E satisfies the approximation property, which is the case here dealing with Lp-spaces. In the next proposition we
show that, when p = p1 = p2, the sufficient condition in Theorem 3.7 ensures the existence of a formula for the trace
in terms of the matrix-valued symbol.

Theorem 4.2. Let G be a compact Lie group and 0 < r � 1. Let 1 � p < ∞ and p̃ = min{2,p}. Let A : Lp(G) →
Lp(G) be a linear continuous operator with matrix-valued symbol σA(x, ξ) such that∑

[ξ ]∈Ĝ

d
2+ r

p̃

ξ

∥∥∥∥(
σA(x, ξ)

)t∥∥
op(
∞,
∞)

∥∥r

Lp(G)
< ∞.

Then the operator A : Lp(G) → Lp(G) is r-nuclear and its trace is given by

TrA =
∫
G

∑
[ξ ]∈Ĝ

dξ Tr
(
σA(x, ξ)

)
dx. (4.1)

Moreover, if in addition 0 < r � 2
3 , then

TrA =
∞∑

n=1

λn(A), (4.2)

with multiplicities taken into account.

Proof. The r-nuclearity is a consequence of Theorem 3.7 and we adopt the notation of the proof of Theorem 3.7, and
denote σ = σA. Concerning the trace formula, for the sake of simplicity we will just consider r = 1, the general case
follows from inclusion. As we have seen in the proof of Theorem 3.7, the formula

k(x, y) =
∑

[ξ ]∈Ĝ

dξ Tr
(
ξ(x)σ (x, ξ)ξ(y)∗

)
represents the kernel of A. Moreover, it is well-defined on the diagonal: in fact for the terms of the decomposition of
the kernel

gξ,ij (x) = dξ

(
ξ(x)σ (x, ξ)

)
ij
, hξ,ij (y) = (

ξ(y)∗
)
ji

= ξ(y)ij ,

by Hölder’s inequality we have on the diagonal
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∫
G

∣∣gξ,ij (x)
∣∣∣∣hξ,ij (x)

∣∣dx �
∥∥gξ,ij (·)

∥∥
Lp(G)

∥∥hξ,ij (·)
∥∥

Lq(G)
.

Hence, since p = p1 = p2 we have∫
G

∑
[ξ ]∈Ĝ

dξ

∣∣Tr
(
σ(x, ξ)

)∣∣dx �
∑
ξ,ij

∥∥gξ,ij (·)
∥∥

Lp(G)

∥∥hξ,ij (·)
∥∥

Lq(G)

�
∑
ξ

d
2+ 1

p̃

ξ

∥∥∥∥(
σ(x, ξ)

)t∥∥
op(
∞,
∞)

∥∥
Lp(G)

< ∞.

Therefore,

TrA =
∫
G

k(x, x) dx

=
∫
G

∑
[ξ ]∈Ĝ

dξ Tr
(
ξ(x)σ (x, ξ)ξ(x)∗

)
dx

=
∫
G

∑
[ξ ]∈Ĝ

dξ Tr
(
σ(x, ξ)ξ(x)∗ξ(x)

)
dx

=
∫
G

∑
[ξ ]∈Ĝ

dξ Tr
(
σ(x, ξ)

)
dx.

We have employed the tracial property Tr(AB) = Tr(BA) and the fact that ξ(x) is unitary for every x. Finally, (4.2)
follows from Theorem 4.2 and Grothendieck’s theorem. �
Remark 4.3. We note that not for every kernel it is convenient to calculate the trace integrating along the diagonal due
its degeneracy. When the kernel is representable by an expansion of the kind appearing in Theorem 2.1 one is allowed
to proceed in such a way. For a general kernel the integration along the diagonal should be calculated involving an
averaging processes, see e.g. [3].

Very recently it has been proved (cf. [17]) that if 1
r

= 1 +| 1
2 − 1

p
|, the Lidskii formula holds for r-nuclear operators

on Lp(ν)-spaces. The importance of this result for us is that it allows to move r along the interval [ 2
3 ,1] keeping the

validity of Lidskii’s formula for suitable values of p. If r ∈ ( 2
3 ,1) there exist two corresponding values of p solving

the equation 1
r

= 1 + | 1
2 − 1

p
| the first one with p < 2 and the other one with p > 2. As a consequence of this result

and Theorem 4.2 we obtain an extension of (4.2) allowing now a larger range of r :

Corollary 4.4. Let G be compact Lie group. Let 1 � p < ∞ and let us denote p̃ = min{2,p}. Let 0 < r � 1 be such
that 1

r
= 1 + | 1

2 − 1
p
|. If

∑
[ξ ]∈Ĝ

d
2+ r

p̃

ξ

∥∥∥∥(
σA(x, ξ)

)t∥∥
op(
∞,
∞)

∥∥r

Lp(G)
< ∞,

then A is r-nuclear on Lp(G) and we have

TrA =
∫
G

∑
[ξ ]∈Ĝ

dξ Tr
(
σA(x, ξ)

)
dx =

∞∑
n=1

λn(A),

with multiplicities taken into account.
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4.1. Heat kernels

We shall now establish some applications, in particular to the heat kernels on compact Lie groups. The heat kernel
constructions, and the subsequent Poisson kernel constructions, are instrumental in the advances in the Littlewood–
Paley theory on compact Lie groups, see e.g. [25]. However, our approach is more straightforward, making use of the
symbol of the heat kernel. Indeed, taking into account that σe−tLG (x, ξ) = e−t |ξ |2Idξ , where |ξ |2 = λ2[ξ ] with λ[ξ ] as in
(2.4), we have

e−tLGf (x) =
∑

[ξ ]∈Ĝ

dξ Tr
(
ξ(x)σe−tLG (x, ξ)f̂ (ξ)

) =
∑

[ξ ]∈Ĝ

dξ e
−tλ2[ξ ] Tr

(
ξ(x)f̂ (ξ)

)
.

We can now derive the nuclearity of the heat kernel on Lp-spaces.

Theorem 4.5. Let G be compact Lie group. Then the heat operator e−tLG : Lp1(G) → Lp2(G) is nuclear for every
t > 0 and all 1 � p1,p2 < ∞. Moreover, if 0 < r � 1, then e−tLG : Lp(G) → Lp(G) is r-nuclear for every t > 0 and
1 � p < ∞. In particular, on each Lp(G), due to the 1-nuclearity we have the trace formula

Tr e−tLG =
∑

[ξ ]∈Ĝ

d2
ξ e

−tλ2[ξ ] .

Proof. The kernel of e−tLG is given by

kt (x, y) =
∑

[ξ ]∈Ĝ

dξ e
−tλ2[ξ ] Tr

(
ξ(x)ξ(y)∗

)
,

with

Tr
(
ξ(x)ξ(y)∗

) =
dξ∑

i,j=1

ξ(x)ij ξ(y)ij .

We set

gξ,ij (x) = dξ e
−tλ2[ξ ]ξ(x)ij , hξ,ij (y) = (

ξ(y)∗
)
ji

= ξ(y)ij .

As before we shall consider q1 such that 1
p1

+ 1
q1

= 1 and we denote q̃1 = max{2, q1}. Then by Lemma 2.5 we have

‖ξ ij‖Lq1 (G) = d
− 1

q̃1
ξ .

On the other hand

‖gξ,ij‖Lp2 (G) = ∥∥dξ e
−tλ2[ξ ]ξij

∥∥
Lp2 (G)

�
∥∥dξ e

−tλ2[ξ ]‖ξ‖op
∥∥

Lp2 (G)
� dξ e

−tλ2[ξ ] .

Therefore, ∑
ξ,ij

∥∥gξ,ij (·)
∥∥

Lp2 (G)

∥∥hξ,ij (·)
∥∥

Lq1 (G)
�

∑
ξ

d2
ξ dξ

1
p̃1 e

−tλ2[ξ ] < ∞,

the last convergence following, for example, from any of the Weyl formulae, see, for example [5].
The r-nuclearity follows in a similar way. The trace formula follows immediately from Lemma 4.2 and fact that

the Haar measure on G is normalised:

Tr e−tLG =
∫
G

∑
[ξ ]∈Ĝ

dξ Tr
(
e
−tλ2[ξ ]Idξ

) =
∑

[ξ ]∈Ĝ

d2
ξ e

−tλ2[ξ ] .

The proof is complete. �
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Remark 4.6. The Lidskii formula can be used to deduce lower bounds on the number of eigenvalues: Let E be a
Banach space enjoying the approximation property. If T : E → E is a 2

3 -nuclear operator which possesses at least one
eigenvalue and if |λk(T )| �M for all k, then

|Tr(T )|
M

� N,

where N is the number of eigenvalues of T . Indeed, applying the Lidskii formula

Tr(T ) =
N∑

k=1

λk(T ),

we can estimate

∣∣Tr(T )
∣∣ =

∣∣∣∣∣
N∑

k=1

λk(T )

∣∣∣∣∣ �
N∑

k=1

∣∣λk(T )
∣∣� MN.

As a consequence of this observation, taking into account the trace formula in [3] we obtain the following estimate
for integral operators. The symbol˜will denote the averaging process for kernels described in [3]. Let μ be a Borel
measure on a second countable topological space and let T : Lp(μ) → Lp(μ) be a 2

3 -nuclear operator with kernel
K(x,y). If T possesses at least one eigenvalue and if |λk(T )| � M for all k, then

| ∫
Ω

K̃(x, x) dμ(x)|
M

�N,

where N is the number of eigenvalues of T . The last inequality means that the better one can estimate the size of the
trace the better lower bound one gets for the number of the eigenvalues.
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