
An LP Strategy for the Interval-Newton Method

in Deterministic Global Optimization

Youdong Lin and Mark A. Stadtherr∗

Department of Chemical and Biomolecular Engineering
University of Notre Dame, Notre Dame, IN 46556, USA

August 2003

(revised, November 2003)

∗Author to whom all correspondence should be addressed. Phone: (574) 631-9318; Fax: (574) 631-8366;
E-mail: markst@nd.edu



Abstract

A strategy is described for using linear programming (LP) to bound the solution set of the

linear interval equation system that must be solved in the context of the interval-Newton method

for deterministic global optimization. An implementation of this technique is described in detail,

and several important issues are considered. These include selection of the interval corner required

by the LP strategy, and determination of rigorous bounds on the solutions of the LP problems.

The impact of using a local minimizer for updating the upper bound on the global minimum in this

context is also considered. The procedure based on these techniques, LISS LP, is demonstrated

using several global optimization problems, with focus on problems arising in chemical engineering.

Problems with a very large number of local optima can be effectively solved, as well as problems

with a relatively large number of variables.

Keywords: Global Optimization, Linear Programming, Interval-Newton, Parameter Estimation,

Numerical Method



1 Introduction

Many optimization problems encountered in chemical engineering applications are nonlinear

and nonconvex, and thus potentially have multiple local optima. Typically in such problems it is

desired to seek the global optimum, though in some problems it might be of interest to find all

the local optima, or even all stationary points. One approach that can be used to address these

problems deterministically is the use of interval analysis. In recent years, it has been shown that

strategies based on an interval-Newton approach can be used to reliably solve a wide variety of

global optimization and nonlinear equation solving problems in chemical engineering, including

computation of fluid phase equilibrium from activity coefficient models,1–3 cubic equation-of state

(EOS) models4–6 and statistical associating fluid theory,7 calculation of critical points from cubic

EOS models,8 location of azeotropes9 and reactive azeotropes,10 computation of solid-fluid equi-

librium,11,12 parameter estimation using standard least squares13 and error-in-variables (EIV),14,15

and calculation of adsorption in nanoscale pores from a density function theory model.16 In each

case, the interval approach provides a mathematical and computational guarantee either that all

solutions have been located in a nonlinear equation solving problem or that the global optimum

has been found in an optimization problem. Another powerful approach for deterministic global

optimization, which has been used in several applications, is the use of convex underestimating

functions in connection with a branch-and-bound strategy, as implemented, for example, in the

α-BB approach.17,18

A drawback to the interval approach, as well as to other approaches for deterministic global

optimization, is the potentially high computational cost. One way to improve the efficiency of the

interval-Newton approach is to more tightly bound the solution set of the linear interval equation
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system that is at the core of this approach. Recently, Lin and Stadtherr19 proposed a new bounding

strategy based on the use of linear programming (LP) techniques, and also gave some examples

demonstrating its potential. Using this approach it is possible to exactly (within round out),

determine the desired bounds on the solution set of the linear interval system. By providing tight

interval bounds on the solution set, the goal is to more quickly contract intervals that may contain

solutions of the nonlinear system, as well as to more quickly identify intervals that contain a

unique solution, and intervals that contain no solution, thus leading to an overall improvement in

computational efficiency.

In this paper, it is explained in detail how the basic ideas presented earlier19 can be put into

practice. Several important implementation issues will be considered: 1. It is shown how the LP

strategy can be combined with a simple, low-overhead pivoting preconditioning technique20–22 and

a real-point selection scheme22 to improve performance. 2. The LP strategy requires the selection

of an interval corner; a heuristic procedure is given for determining which corner should be selected.

3. In order to ensure the reliability of the result, a procedure for determining rigorous error bounds

on the solution of the LP problems is given. The procedure based on these techniques, LISS LP, will

then be further demonstrated using several global optimization problems, with focus on problems

arising in chemical engineering.

In the next section, as background, we provide a brief outline of the interval-Newton approach

for nonlinear equation solving and global optimization. In Section 3, the basic ideas of the LP-based

strategy for bounding the solution set of the interval-Newton equation are summarized. Then, in

Section 4, we explain in detail how to implement this strategy, addressing the implementation issues

noted above. Finally, in Section 5, several examples are used to demonstrate the methodology and

evaluate its performance.
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2 Background

Several good introductions to interval computations are available.23–26 Of particular interest

here is the interval-Newton method. Given an n × n nonlinear equation system f(x) = 0 with a

finite number of real roots in some initial interval, this technique provides the capability to find

tight enclosures of all the roots of the system that lie within the given initial interval. For the un-

constrained minimization of φ(x), a common approach is to seek stationary points, that is, to solve

the nonlinear system f(x) = ∇φ(x) = 0. The global optimum will be one of roots of this nonlinear

equation system, but there may be other roots as well, representing local optima and saddle points.

To identify the global optimum, it is critical that none of the roots be missed, and such a guarantee

can be provided by the interval-Newton approach. For a constrained optimization problem, the

interval-Newton method can be applied to solve the KKT or Fritz-John conditions. An outline of

the interval-Newton methodology is given here. More details are available elsewhere.24,25,27

Given some initial interval X(0), the interval-Newton algorithm is applied to a sequence of

subintervals. For a subinterval X(k) in the sequence, the first step is the function range test.

An interval extension F (X(k)) of the function f(x) is calculated. An interval extension provides

upper and lower bounds on the range of values that a function may have in a given interval. It

is often computed by substituting the given interval into the function and then evaluating the

function using interval arithmetic. Thus, the interval extension is often wider than the actual

range of function values, but it always includes the actual range. If there is any component of the

interval extension F (X(k)) that does not include zero, then the interval can be discarded, since no

solution of f(x) = 0 can exist in this interval. The next subinterval in the sequence may then be

considered. Otherwise, testing of X(k) continues. During this step, other interval-based techniques
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(e.g., constraint propagation) may also be applied to try to shrink X(k) before proceeding.

For a global minimization problem, the next step is the objective range test. The interval

extension Φ(X(k)), containing the range of φ(x) over X(k) is computed. If the lower bound of

Φ(X(k)) is greater than a known upper bound on the global minimum, then X(k) can be discarded

since it cannot contain the global minimum and need not be further tested. If it is known that

X(k) contains a point that can be used to update (reduce) the upper bound on the global minimum

(i.e., if the upper bound of Φ(X(k)) is less than the current upper bound on the global minimum),

then this update is performed. This can be done in many different ways. A simple, cheap approach

that we have used effectively is to evaluate φ(x) at the midpoint of X(k) and use this to update

the upper bound. Another approach is to use a local minimization routine starting at the midpoint

of X(k). For this purpose, we use the simple, low-overhead direct search algorithm of Hooke and

Jeeves.28,29 Use of the local minimizer involves additional computational overhead, but should lead

to a better upper bound on the global minimum. Whether this is a profitable tradeoff is explored

below in Section 5. In cases when all the stationary points are desired rather than just the global

minimum, this test step can be turned off.

The next step is the interval-Newton test. The linear interval equation system

F ′(X(k))(N (k) − x(k)) = −f(x(k)), (1)

is solved for a new interval N (k), where F ′(X(k)) is an interval extension of the Jacobian of f(x),

and x(k) is an arbitrary point in X(k). It has been shown24–26 that any root contained in X(k) is

also contained in the image N (k). This implies that if the intersection between X(k) and N (k) is

empty, then no root exists in X(k), and also suggests the iteration scheme X(k+1) = X(k)∩N (k). In

addition, it has also been shown24–26 that, if N (k) ⊂X(k), then there is a unique root contained in
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X(k) and thus in N (k). Thus, after computation of N (k) from Eq. (1), there are three possibilities:

(1) X(k) ∩N (k) = ∅, meaning there is no root in the current interval X(k) and it can be discarded;

(2) N (k) ⊂X(k), meaning that there is exactly one root in the current interval X(k); (3) neither of

the above, meaning that no conclusion can be drawn. In the last case, if X(k) ∩N (k) is sufficiently

smaller than X(k), then the interval-Newton test can be reapplied to the resulting intersection.

Otherwise, the intersection is bisected, and the resulting two subintervals are added to the sequence

(stack) of subintervals to be tested. If an interval containing a unique root has been identified, then

this root can be tightly enclosed by continuing the interval-Newton iteration, which will converge

quadratically to a desired tolerance (on the enclosure diameter).

This approach is referred to as an interval-Newton/generalized-bisection (IN/GB) method. At

termination, when the subintervals in the sequence have all been tested, either all the real roots of

f(x) = 0 have been tightly enclosed or it is determined that no root exists. Applied to nonlinear

equation solving problems, this can be regarded as a type of branch-and-prune scheme on a binary

tree. Applied to global optimization problems, the use of the objective range test makes this a type

of branch-and-bound scheme on a binary tree.

Clearly, the solution of the linear interval system given by Eq. (1) is essential to this approach.

To see the issues involved in solving such a system, consider the general linear interval system

Az = B, where the matrix A and the right-hand-side vector B are interval-valued. The solution

set S of this system is defined by S =
{

z
∣∣∣ Ãz = b, Ã ∈ A, b ∈ B

}
. However, in general this set

is not an interval and may have a very complex, polygonal geometry. Thus to “solve” the linear

interval system, one instead seeks an interval Z containing S. Computing the interval hull (the

tightest interval containing S) is NP-hard,30 but there are several methods for determining an

interval Z that contains but overestimates S. Various interval-Newton methods differ in how they
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solve Eq. (1) for N (k) and thus in the tightness with which the solution set is enclosed. By obtaining

bounds that are as tight as possible, the overall performance of the interval-Newton approach can

be improved, since with a smaller N (k) the volume of X(k) ∩N (k) is reduced, and it is also more

likely that either X(k) ∩ N (k) = ∅ or N (k) ⊂ X(k) will be satisfied. Thus, intervals that may

contain solutions of the nonlinear system are more quickly contracted, and intervals that contain

no solution or that contain a unique solution may be more quickly identified, all of which leads to

a likely reduction in the number of bisections needed.

Frequently, N (k) is computed component-wise using an interval Gauss-Seidel approach, precon-

ditioned with an inverse-midpoint matrix. Though the inverse-midpoint preconditioner is a good

general-purpose preconditioner, it is not always the most effective approach.24 Recently, a hy-

brid preconditioning approach, which combines a simple pivoting preconditioner with the standard

inverse-midpoint scheme, has been described by Gau and Stadtherr22 and shown to achieve sub-

stantially more efficient computational performance than the inverse-midpoint preconditioner alone.

However, it still cannot yield the tightest enclosure of the solution set, which, as noted above, is in

general an NP-hard problem. Lin and Stadtherr19 have recently suggested an LP-based strategy

for solving the linear interval system, Eq. (1), arising in the context of interval-Newton methods.

Using this approach, exact component-wise bounds on the solution set can be calculated, while

avoiding exponential time complexity. The basic idea behind this strategy is outlined in the next

section, and then in Section 4 details of its implementation are given.

3 An LP Strategy for the Interval-Newton Method

Many types of methods have been proposed for bounding the solution set of a system of linear
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interval equations. One such method is based on the use of LP techniques.23,31–33

Consider the linear interval system Az = B. Oettli & Prager34 showed that the solution set S

is determined by the constraints:

∣∣∣Âz − B̂
∣∣∣ ≤ ∆A |z|+ ∆B, (2)

where Â is the component-wise midpoint matrix of the interval matrix A, ∆A is the component-

wise half-width (radius) matrix of A, and similarly B̂ and ∆B are the midpoint and radius of B.

Eq. (2) is not directly useful for computing bounds on the solution set because of the absolute

value operation on the right-hand side. In general, the solution may lie in all 2n orthants for an

n-dimensional problem. In each orthant, each component of z keeps a constant sign, and thus the

absolute value can be dropped. For a given orthant, define the diagonal matrix Dα by

(Dα)jj =




1 zj ≥ 0

−1 zj ≤ 0

j = 1, 2, . . . , n. (3)

Thus |z| = Dαz and z = Dα |z|. Eq. (2) becomes:

∣∣∣Âz − B̂
∣∣∣ ≤ ∆ADαz + ∆B. (4)

This can be rearranged to the set of linear inequalities
 Â−∆ADα

−Â−∆ADα


z ≤


 B

−B


 , (5)

where the underline and overline denote lower and upper interval bounds, respectively. To determine

the tightest interval enclosing the solution set, one can then solve, in each orthant, the set of 2n
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optimization problems

max
z

zj , j = 1, 2, . . . , n, (6)

min
z

zj, j = 1, 2, . . . , n, (7)

each with the 2n linear inequality constraints given by Eq. (5). These can be solved using linear

programming (LP) techniques. However, in general, there are 2n orthants and so the solution time

complexity will be exponential, as expected since this problem is known to be NP-hard.

In the context of the interval-Newton method, however, the exponential time complexity can

be avoided. This is because only that part of the solution set of Eq. (1) that intersects X(k) needs

to be found. Consider the choice of the real point x(k) in Eq. (1). Here x(k) is an arbitrary point in

X(k) typically taken to be the midpoint. However, if x(k) is chosen to be a corner of X(k) instead,

the part of the solution set for N (k) − x(k) of Eq. (1) that intersects X(k) lies in just one orthant.

Thus, in the context of interval-Newton, only 2n LP subproblems, each with 2n constraints, needs

to be solved. Furthermore, the LP subproblems have properties that can be exploited. First, all the

2n subproblems share the same constraints; that is, they all have the same feasible region. Thus,

an initial feasible basis for the LP subproblems needs to be found only once. Second, the objective

function of each subproblem consists of just one variable. This makes the problem much simpler

since it is not necessary, as it is in the general case, to calculate the gain in objective value when

choosing variables to enter and exit the basis.

LISS LP (Linear Interval System Solver by Linear Programming) is a procedure that we have

developed based on the above scheme. This procedure is used to replace the inverse-midpoint

preconditioned Gauss-Seidel method for solving Eq. (1).
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4 Implementation of LISS LP

As noted above, the interval-Newton procedure is generally implemented by using an interval

Gauss-Seidel method to bound the solution to Eq. (1). In order to obtain reasonably good bounds

when this solution method is used, it is necessary to use a preconditioner, which is generally taken

to be the inverse midpoint matrix. When interval-Newton is implemented using LISS LP, Eq. (1)

is solved using an LP approach that guarantees tight bounds without requiring a preconditioner.

Nevertheless, the pivoting preconditioner scheme described by Gau and Stadtherr22 can still be

used as a simple, low overhead means to try to shrink, or perhaps eliminate, X(k). Thus, we

incorporate this procedure in LISS LP. Gau and Stadtherr22 also described another technique,

based on adjusting the value of the real point x(k), to further shrink, or perhaps eliminate, X(k).

This procedure is also incorporated in LISS LP, where it is also used to help determine the corner

of X(k) to be used as x(k) in the LP strategy. This is important since the selection of the real point

x(k) can have a significant impact on the size of the solution set of Eq. (1).

4.1 Pivoting Preconditioner and Selection of Real Point

If the interval-Newton equation is first preconditioned using a real matrix Y (k), then the pre-

conditioned linear interval equation system can be expressed as

Y (k)F ′(X(k))(N (k) − x(k)) = −Y (k)f(x(k)). (8)

Defining yi as the i-th row of the preconditioning matrix Y (k), Ai as the i-th column of the interval

Jacobian F ′(X(k)), and letting X = X(k) and x = x(k), then Eq. (8) can be written as

Ni = xi −
yif(x) +

n∑
j=1,j 6=i

yiAj(Xj − xj)

yiAi
, i = 1, . . . , n, (9)
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where yiAj indicates the inner product of the real row vector yi and the interval column vector

Aj . In a pivoting preconditioner,21 only one element of the preconditioning row yi, called the pivot

element, is nonzero, and it is assigned a value of one. In this case, Eq. (9) becomes

(Ni)j = xi −
fj(x) +

n∑
k=1,k 6=i

Ajk(Xk − xk)

Aji
= xi − (Qi)j

Aji
, (10)

where (Ni)j and (Qi)j indicate quantities that have been evaluated using element j of yi as the

pivot in the pivoting preconditioner. The image component Ni, and thus the intersection Ni ∩Xi,

can be manipulated by choosing different elements j to be the pivot.

For each component, Xi, i = 1, . . . , n, of the current interval being tested, X = X(k), the

procedure implemented in LISS LP is summarized algorithmically as follows:

1. Initialize: set j = 1 ; Wx = w[Xi] ; endi = 0. The quantity w[Xi] is the width of Xi.

2. If 0 /∈ Aji (i.e., it is a C-type pivot), then continue. Otherwise, go to Step 5.

3. Calculate (Ni)j from Eq. (10), and update Xi ← (Ni)j ∩Xi.

4. If Xi is empty, return, indicating that the current interval being tested contains no solutions

and can be eliminated. Otherwise, work on real-point selection:

(a) If w[Xi] < Wx (i.e., Xi has been improved using the pivoting preconditioner), then

continue. Otherwise, go to Step 5.

(b) Using Eq. (10), compute XL = (Ni)j ∩ Xi using the trial real point x̂ determined by

following the left endpoint rule given by Gau and Stadtherr22 (in step 4.1(b) on p. 834).

If XL is empty, return, indicating that the current interval being tested contains no

solutions and can be eliminated. If x̂i = Xi, set endL = 1; otherwise, x̂i = Xi and

endL = 0.
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(c) Using Eq. (10), compute XR = (Ni)j ∩Xi using the trial real point x̂, determined by

following the right endpoint rule given by Gau and Stadtherr22 (in step 4.1(c) on p.

834). If XR is empty, return, indicating that the current interval being tested contains

no solutions and can be eliminated. If x̂i = Xi, set endR = 1; otherwise, x̂i = Xi and

endR = 0.

(d) Perform Xi ← XL ∩XR and if Xi is empty, return, indicating that the current interval

being tested contains no solutions and can be eliminated.

(e) Update Wx← w[Xi].

(f) Choose an endpoint of Xi to use in corner for LP:

i. If endL = 0 and endR = 0 (that is, both left and right endpoint rules pick the lower

end of Xi), then endi ← endi − 2.

ii. If endL = 1 and endR = 1 (that is, both left and right endpoint rules pick the upper

end of Xi), then endi ← endi + 2.

iii. If endL = 1 and endR = 0:

- if w[XL] > w[XR] (that is, lower end of Xi is favorable), then endi ← endi − 1.

- otherwise, upper end of Xi is favorable, and endi ← endi + 1.

iv. If endL = 0 and endR = 1:

- if w[XL] > w[XR] (that is, upper end of Xi is favorable), then endi ← endi + 1.

- otherwise, lower end of Xi is favorable, and endi ← endi − 1.

5. Iterate: if j < n, then j ← j + 1 and go to Step 2.

6. If endi > 0, choose upper endpoint of Xi to use in corner. Otherwise, use lower endpoint in

corner.
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Note, that the pivoting preconditioning procedure used here (Steps 2 and 3) differs in some

aspects from the scheme described by Gau and Stadtherr:22

1. The pivoting preconditioner is only applied to C-type pivots (0 /∈ Aji). Gau and Stadtherr22

also apply the pivoting preconditioner in the case of E-type pivots (0 ∈ Aji, 0 6= Aji and

0 /∈ (Qi)j), which results in splitting the current box X(k). Here we have chosen not to use

E-type pivots to avoid the additional complexity resulting from the splitting of the current

interval.

2. Gau and Stadtherr22 applied Eq. (10) in real arithmetic, using it to determine the pivot j

that minimized w[(Ni)j∩Xi]. Then for this pivot only, the intersection (Ni)j∩Xi is computed

rigorously using interval arithmetic. Here we compute (Ni)j ∩Xi with interval arithmetic for

each j and in effect determine the intersection of all of these results. This is more expensive

to implement than the procedure used by Gau and Stadtherr,22 but may result in some

additional reduction in the width of Xi.

3. As seen in Step 4(a), the real-point selection scheme is applied to seek additional shrinkage of

Xi, and to help select a corner of X for use in the LP scheme, only when pivoting precondi-

tioner has resulted in some improvement. Gau and Stadtherr22 apply the real-point selection

scheme in some additional circumstances.

These differences can be regarded as an attempt to improve the procedure and tune it for the context

of the LP strategy used here, as opposed to the context of an inverse-midpoint preconditioned

Gauss-Seidel approach.

Application of the LP strategy requires that a corner of the current box X(k) be selected and

used as the real point x(k) in Eq. (1). The width of the solution set of Eq. (1) may depend strongly
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on the choice of this point. Steps 4(f) and 6 provide a heuristic for trying to determine which end

of Xi is most likely, when used as a component of the corner point, to result in a relatively small

solution set. For some values of j the upper end of Xi may appear preferable, and for other values

of j the lower end may appear preferable. This preference may appear strong, as in the cases

treated in Steps 4(f)(i) and 4(f)(ii), or weak, as in the cases treated in Steps 4(f)(iii) and 4(f)(iv).

The heuristic deals with potentially contradictory preferences by assigning weights (two for strong

preference, one for weak preference) and summing to determine an overall preference.

4.2 Error Bounds for LP Objective Value

The LP strategy outlined above in Section 3 is used to determine exact (within round out)

bounds on the solution set of the linear interval equation system, Eq. (1), that must be solved in

the context of the interval-Newton method. Since the LP problems are solved using floating point

arithmetic on a computer, rounding errors will always occur and could lead to unreliable bounds

on the solution set, especially for ill-conditioned problems. To try to ameliorate this potential

difficulty, the problem is scaled using the method described by Curtis and Reid.35 However, a

rigorous procedure is needed to be sure that the exact bounds on the solution set are enclosed

when using the LP strategy. In particular, rigorous upper bounds are needed on the solutions

of the LP maximization problems, and rigorous lower bounds are needed on the solutions of the

LP minimization problems. A procedure for determining these bounds, based on primal-dual

relationships, is given here. Similar procedures have also been recently developed independently

by Neumaier and Shcherbina36 and Jansson.37
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The linear programming subproblems can be stated in the following standard form:

max P = cT z

s.t. Az ≤ b

0 ≤ z ≤ u,

(11)

where, A ∈ Rm×n, b ∈ Rm, and c,z,u ∈ Rn. Associated with the LP problem (11), called the

primal problem, there is another LP problem, called the dual problem:

min D = bT π + uT ω

s.t. AT π + ω ≥ c

π ≥ 0, ω ≥ 0,

(12)

where π ∈ Rm and ω ∈ Rn. The duality theorem states that if either problem has a finite optimal

solution, then the other also has a finite optimal solution, and that the two optimal objective values

are equal in value; that is,

cT ẑ = P̂ = D̂ = bT π̂ + uT ω̂, (13)

where x̂ and (π̂, ω̂)T denote the optimal solution of primal and dual problem, respectively, and P̂

and D̂ denote the optimal objective value of primal and dual problems, respectively. Let z0 be a

feasible solution to the primal and (π0, ω0)T be a feasible solution to the dual; then

P0 = cT z0 ≤ cT ẑ = P̂ = D̂ = bT π̂ + uT ω̂ ≤ bT π0 + uT ω0 = D0. (14)

This is known as the weak duality property. Eq. (14) provides an upper bound on the optimal

objective value of the primal problem (maximization problem) in terms of a feasible solution of

the dual problem. That is, if a feasible solution of the dual problem, such as (π0, ω0)T , can be

found, it will provide an upper bound on the solution (optimal objective value, P̂ ) of the primal
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maximization problem. Moreover, in the context of LISS LP, this allows the solution set of the

linear interval equation system to be rigorously enclosed. To provide tight bounds, it is clearly

preferable that the feasible solution of the dual problem used to provide the bounds be as close as

possible to the optimal solution D̂.

A standard LP routine applied to compute the solution ẑ to the primal problem will also

compute in the process the optimal values of the dual variables π̂. Assume that the results actually

computed using the LP solver are given by x̃ and π̃. Since rounding errors may have occurred

in the LP solver, x̃ and π̃ should be regarded as approximations of the true solutions x̂ and π̂.

Beginning with π̃, the following procedure is used to find a feasible solution of the dual problem

that is close to the true optimal solution:

1. In principle, all components of π should be nonnegative. However, it is possible that due to

numerical errors that this is not true for the computed π̃. Thus, define a feasible π0 that is

close to the optimal value, by rounding all negative components of π̃ to zero, that is

π0j = max{π̃j , 0}, j = 1, . . . ,m. (15)

2. Compute ω̃ from the dual constraint,

ω̃ = c−AT π0. (16)

3. Define ω0 by rounding all negative components of ω̃ to zero, that is

ω0j = max{ω̃j, 0}, j = 1, . . . , n. (17)

Eq. (15) ensures that π0 ≥ 0; Eq. (17) ensures that ω0 ≥ 0; and from Eq. (16) and (17)

ω0 ≥ ω̃ = c−AT π0, (18)
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that is,

AT π0 + ω0 ≥ c. (19)

Thus, the computed (π0, ω0)T satisfies the constraints of the dual problem (12) and indeed is a

feasible solution of the dual problem. From Eq. (14), D0 = bT π0 + uT ω0 is an upper bound on P̂ ,

the optimal value of primal maximization problem.

The calculation of an upper bound on P̂ in this way requires only few additional matrix-vector

operations, which are performed using interval arithmetic to guarantee the enclosure (the lower

interval bound does not need to be computed). Note that the above procedure is based on a primal

maximization problem. To deal with the minimization problems that must be solved, min P can be

transformed to the maximization problem max(−P ) and the above procedure used to obtain the

upper bound D0, so that −P̂ ≤ D0. Thus, −D0 ≤ P̂ , and a lower bound on the optimal objective

value of the minimization problem has been obtained. If the system is ill-conditioned it is possible

that the bounds obtained using this procedure will be relatively loose; nevertheless, the bounds

will be rigorous.

4.3 LISS LP Procedure for the Interval-Newton Equation

The overall procedure for using linear programming in solving the interval-Newton equation

can be summarized algorithmically as follows:

1. Apply pivoting preconditioner and perform real-point selection as shown in Section 4.1. De-

termine the corner of the current box to be used in the LP strategy.

2. Scale the problem using the method of Curtis and Reid.35

3. Find a beginning feasible basic solution. If there is no feasible basic solution, return, indicating
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that the current interval being tested contains no solutions and can be eliminated. Record

all necessary information, which will be used to restore this feasible basic solution as the

beginning basic feasible solution for each of subproblems.

4. Using LP, find the optimal solution for each of the 2n subproblems. Begin all the subproblems

with the same feasible solution, as found in Step 3. The reason for restoring the same

beginning feasible basic solution for each subproblem, rather than using the final one from the

previous subproblem, is to prevent accumulation of numerical errors and possible numerical

instability.

5. Apply the procedure in Section 4.2 to calculate an upper bound on the optimal objective

value in the maximization subproblems, and a lower bound on the optimal objective value in

the minimization subproblems. This step can be skipped if the optimum occurs at a bound

of the current interval. In this case, the original bound value can be used.

6. Scale back to the original scale, and assemble the computed bounds on the solution set of the

linear interval system.

7. Return.

The LISS LP procedure was implemented in C++. Two implementations were developed, one

for use on Sun workstations, and another for use on Linux workstations. The Sun version makes use

of the Sun Interval Arithmetic Library. The Linux version is portable and uses simulated directed

rounding (as in the Fortran 77 INTLIB routines38) in performing interval arithmetic.
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5 Results and Discussion

In this section, we present the results of numerical experiments using LISS LP in implement-

ing the interval-Newton approach for global optimization. To do this we compare LISS LP to

the HP/RP approach of Gau and Stadtherr,22 which itself provides substantial improvements in

computational performance over a standard interval-Newton method, and which performs well22

relative to the α-BB approach. Additional examples of the effectiveness of LISS LP compared to

HP/RP approach can also be found in Lin and Stadtherr.19

The first three test problems are parameter estimation problems, formulated using the error-in-

variables (EIV) approach, and demonstrate the case in which the number of variables is relatively

large (at least in the context of deterministic global optimization). The fourth test problem demon-

strates the case in which there are a very large number of local minima or other stationary points

and multiple global minima. The last test problem is a constrained optimization problem arising

in an engineering design problem.

Comparisons to the HP/RP approach were performed on a Sun Blade 1000 model 1600 work-

station. Other tests were also performed on a Dell Precision workstation 530MT with dual Intel

Xeon 1.7GHz processors and 1G RAM under Red Hat Linux 7.3. Only one processor was used

during testing.

5.1 Problem 1

This is a parameter estimation problem using the error-in-variables (EIV) approach to estimate

kinetic parameters for an irreversible, first order reaction A
k1−→ B, using data from an adiabatic
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CSTR. The reaction rate constant can be expressed as

k1 = c1 exp
(−Q1

RT

)
, (20)

where the Arrhenius constants c1 and Q1 are the parameters to be determined. The two parameters

are estimated from simulated measurements with 10 data points for 5 state variables, namely

the inlet temperature, the outlet temperature, the outlet concentrations of A and B, and the

inlet concentrations of A. The problem39,40 is formulated as an unconstrained global optimization

problem with 22 variables. Complete problem details are given by Gau and Stadtherr.14

The global optimization problem was solved successfully, with comparative computational per-

formance results shown in Table 1, which shows the number of interval-Newton (I-N) tests per-

formed, and the CPU time in seconds on the Sun Blade workstation. Table 1 shows a comparison of

LISS LP and HP/RP; two versions of LISS LP are compared. One version, denoted LISS LP(LM),

uses a local minimizer in updating the upper bound on the global minimum, as described in Section

2. The other version does not use a local minimizer in doing this update. In comparison to HP/RP,

both versions of LISS LP provide a large reduction in the number of I-N tests required. This is due

to the ability, provided by the LP strategy, to tightly bound the solution set of the interval-Newton

equation. However the percent reduction in CPU time is less than the percent reduction in I-N

tests, due to the overhead in solving the LP subproblems.

When the local minimizer is used, both the number of I-N tests and CPU time are reduced

somewhat since the “better” upper bound results in more intervals being discarded due to the

objective range test since they cannot contain the global minimum. This suggests that a more

sophisticated local minimizer, as opposed to the the simple direct search method28,29 currently

implemented, might further improve the computational performance of interval-Newton methods
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for global optimization problems.

We have also implemented LISS LP for a Linux workstation. Table 2 shows the computational

performance on the Dell workstation (Intel Xeon processor running Linux). This was done only for

the case of LISS LP with the local minimizer. As should be expected, the only significant difference

from the results in Table 1 is that the CPU time is less since this is a faster machine. Continuing

improvements in computational speed (increasing at a rate of about two orders of magnitude per

decade for a single processor), will make the interval-Newton methodology an increasingly attractive

tool for reliable problem solving.

5.2 Problem 2

This is a parameter estimation problem using the EIV approach to estimate the kinetic param-

eters for chemical conversion of initially pure species A to species B in isothermal batch reactor,

A
k−→ B, as described by Bard.41 An Arrhenius relationship for the rate constant is again assumed,

k = θ1 exp
(
−θ2

T

)
, (21)

and so the parameters θ1 and θ2 must be determined. The two parameters are estimated from

experimental measurements of the reaction time t, the system temperature, and the fraction of the

initial amount of component A that remains at time t. Two sets of data are considered for this

system. The first data set (Problem 2-1) consists of 15 data points, and there are 7 data points in

the second set (Problem 2-2). The problems are formulated as unconstrained global optimization

problems with 32 (Problem 2-1) and 16 (Problem 2-2) independent variables, respectively. Complete

problem details are given by Gau and Stadtherr.14 For the second data set, some of the data points

are suspicious, and, to investigate, the objective range test was turned off to obtain all of the

stationary points instead of just the global minimum, as Gau and Stadtherr14 also did.
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The two problems were solved successfully, with computational performance results shown in

Table 1 and Table 2. In Problem 2-1, although the number of I-N tests has been reduced by a factor

of about 4 when using LISS LP, the CPU time is almost the same for the two methods. Again

this is due to the overhead in solving the LP problems. In Problem 2-2, two stationary points are

found: one is the reported global minimum with objective value of 16.55240 and the other is a local

minimum with objective value of 36.46666. Note that since the objective range test was turned off

in Problem 2-2 in order to find all the stationary points, there is no use for the local minimizer on

this problem.

5.3 Problem 3

This is a parameter estimation problem using the EIV approach in modeling an isothermal

pseudo-differential reactor for the catalytic hydrogenation of phenol on a palladium catalyst, as

described by Rod and Hancil.42 There are 28 experimental kinetic data points of the partial

pressure of phenol (P1), the partial pressure of hydrogen (P2), and the initial reaction rate (r). It

is desired to fit this kinetic data to a semi-empirical model of the form

r =
θ1θ

2
2θ3P1P

2
2

(1 + θ1P1 + θ2P2)3
, (22)

where θ1, θ2 and θ3 are the parameters to be estimated. The problem is formulated as an uncon-

strained global optimization problem with 59 variables, with complete details given by Gau and

Stadtherr.15

The global optimization problem was solved successfully, with computational performance re-

sults shown in Table 1 and 2. Due to the relatively large number of variables in this problem, a

sparse linear programming routine was implemented in LISS LP. Both I-N tests and CPU time

are reduced compared to HP/RP. This is the largest problem (in terms of number of independent
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variables) considered here. However, we have solved some much larger problems, as reported in Lin

and Stadtherr,19 with up to 264 variables. On these larger problems, the impact of the LP overhead

appears to be less significant, and the percent reduction in CPU time more closely corresponds to

the percent reduction in I-N tests.

5.4 Problem 4

This problem is to find the global minimum of the function

f(x) = 100
N∏

i=1

5∑
j=1

(
j5

4425
cos(j + jxi)

)
+

1
N

N∑
i=1

(xi − x0,i)2, (23)

where xi ∈ [x0,i − 20, x0,i + 20] and x0,i = 3, i = 1, ...,N . This is used as a test problem by Siirola

et al.43 There are 2048 local minima for the case N = 2 and on the order of a hundred million

(108) local minima for the case N = 5. The problem also has multiple (N) global minimizer points.

The problems were solved for the cases of N = 2 to N = 6 on the Dell workstation (Intel Xeon

processor running Linux) using LISS LP with the local minimizer (i.e., using the best of the three

methods compared in Problems 1–3).

Results are shown in Table 3. For each value of N , there are N global minimizer points, all

of which have been found. The global minimizer points can all be expressed in terms of only two

numbers, denoted in Table 3 as x∗
i and x∗

j 6=i. The i-th global minimizer point will have the value

x∗
i for its i-th element, and the value x∗

j 6=i for its other N − 1 elements.

For the search of the binary tree generated in the bisection process, we generally use an efficient

depth-first search procedure. However, for global optimization (branch-and-bound) problems, some

type of heuristic “best”-first search might be used to try to reduce the number of boxes that must

be tested. In our experience, a difficulty that may arise when this is done is that the number of

boxes that remains in the stack to be tested may become very large in comparison to depth-first
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search, resulting in much larger memory requirements. One type of best-first search is to choose

as the next box to be tested the interval for which the lower bound on the objective function is

the smallest.25 When this is done for the case of N = 5, the number of I-N tests is reduced from

614, 522 to 155, 666, the figure reported in Lin and Stadtherr.19 However, this causes the maximum

depth of boxes in the stack to increase to 98, 650, as compared to 28 for depth-first search. These

trade-offs need to be further investigated. The results in Table 3 are for the depth-first search

procedure.

5.5 Problem 5

This problem deals with the maximization of the drying production rate in a through-circulation

dryer.44,45 The problem is to find the mass flow rate x1, and the bed thickness x2, such that the

drying production rate P is maximized. The problem is formulated as a constrained optimization

problem:

max
x1,x2

P = 0.033x1 (A + 0.095 −B)−1

s.t. 0.2− 4.62 × 10−10x2.85
1 x2 − 1.055 × 10−4x1 ≥ 0

1.75/12 − 8.20 × 10−7x1.85
1 x2 ≥ 0

0.64 − 109.6
x2

x0.41
1

(A + 0.095 −B) ≥ 0,

(24)

where

A =
0.036

1− e−107.9x2/x0.41
1

, (25)

B =
9.27 × 10−4x0.41

1

x2
ln

(
1− e−5.39x2/x0.41

1

1− e−107.9x2/x0.41
1

)
. (26)

The global maximum is sought in the initial interval given by x1 ∈ [10, 10000] and x2 ∈ [0.01, 10].

The problem was solved by applying the interval-Newton approach to solve the Fritz-John condi-
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tions. A different local minimizer must be used in this problem to account for the constraints. For

this purpose, we used the successive quadratic programming (SQP) method implemented by Chen

and Stadtherr.46 Using the interval methodology described above (LISS LP with local minimizer),

the global maximum of drying production rate is found to be P = 172.487, with x1 = 975.831, and

x2 = 0.524. The number of interval-Newton tests was 76 and the total CPU time required was 2.1

seconds on the Dell workstation (Intel Xeon processor running Linux).

6 Concluding Remarks

We have described here the implementation of an LP-based method to solve the linear interval

equation system arising in the context of the interval-Newton approach for nonlinear equation

solving and global optimization. The method can obtain tighter bounds on the solution set of the

linear interval system than the preconditioned interval Gauss-Seidel approach, and thus leads to

a large reduction in the number of subintervals that must be tested during the interval-Newton

procedure. However, the difference between the overhead required to solve the LP subproblems and

that required to perform the preconditioned Gauss-Seidel method may lead to relatively smaller or

larger improvements in overall computational time, depending on the size of the problem. With

sparse linear algebra in the LP subproblems, the method can be successfully applied to problems

involving over two hundred variables.19

We have demonstrated that the interval-Newton approach is a powerful, deterministic approach

for the solution of a number of global optimization problems, such as arise in chemical engineering

and other areas of engineering and science. Problems with a very large number of local optima can

be effectively solved, as well as problems with a relatively large number of variables. Continuing

improvements in methodology, together with advances in software and hardware (e.g., for parallel
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computing47) will make this an increasingly attractive problem solving tool.
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Table 1: Computational performance of LISS LP and HP/RP on a Sun Blade 1000 Model 1600.

In Problem 2-2, all local minima are sought (not just the global minimum). Thus, the objective

range test is turned off, and the local minimizer (LM) strategy is not applicable (NA).

HP/RP LISS LP LISS LP(LM)

Problem Variables(n) I-N Tests CPU time I-N Tests CPU time I-N Tests CPU time

1 22 9,505 24.0 2,004 19.2 1,258 12.7

2-1 32 144,833 976.2 30,560 992.6 24,817 837.2

2-2 16 69,421 91.8 18,715 68.0 NA NA

3 59 55,255 2315.9 10,689 1863.3 9,757 1692.4
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Table 2: Computational performance of LISS LP on Dell Precision workstation (Intel Xeon 1.7

GHz running Linux). The local minimizer is used except on Problem 2-2.

Prob. Variables I-N Tests CPU time (s)

1 22 1,237 5.99

2-1 32 24,851 238.48

2-2 16 17,027 26.15

3 59 9,647 726.2
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Table 3: Global solution of Siirola’s problem,43 with computational performance on a Dell Precision

workstation (Intel Xeon 1.7 GHz running Linux).

Global Minimizer Points

N x∗
i x∗

j 6=i Global Minimum I-N tests CPU time (s)

2 4.6198510288 5.2820519601 -88.1046253312 807 0.07

3 4.6201099154 5.2824296177 -87.6730486951 10,591 2.12

4 4.6202393815 5.2826184940 -87.4572049443 86,796 33.95

5 4.6203170683 5.2827318347 -87.3276809494 614,522 413.61

6 4.6203688625 5.2828074014 -87.2413242244 4,296,083 4566.42
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