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Lp String Stability of Cascaded Systems:
Application to Vehicle Platooning
Jeroen Ploeg, Nathan van de Wouw, and Henk Nijmeijer,Fellow, IEEE

Abstract—Nowadays, throughput has become a limiting factor
in road transport. An effective means to increase the road
throughput is to employ a small intervehicle time gap using
automatic vehicle-following control systems. String stability, i.e.,
the disturbance attenuation along the vehicle string, is considered
an essential requirement for the design of those systems. However,
the formal notion of string stability is not unambiguous in
literature, since both stability and performance interpretations
exist. Therefore, a novel definition for string stability of nonlinear
cascaded systems is proposed, using input–output properties.
This definition is shown to result in well-known string stability
conditions for linear cascaded systems. The theoretical results
are experimentally validated using a platoon of six passenger
vehicles equipped with cooperative adaptive cruise control.

Index Terms—Cascaded systems, cooperative adaptive cruise
control (CACC), input–output stability, string stability , vehicle
platoons.

I. I NTRODUCTION

L IMITED highway capacity causes traffic jams, which
tend to increase over the years with respect to both the

number of traffic jams and their length. An effective means to
increase road capacity is to decrease the intervehicle distance.
As this would be unsafe in case of human drivers, longitudinal
automation will be required. To this end, cooperative adaptive
cruise control (CACC) can be employed as an automatic
vehicle-following system based on intervehicle data exchange
through wireless communications, in addition to the data
obtained by radar or lidar [1], [2]. CACC is known to allow
for time gaps significantly less than 1 s, being the standardized
minimum value for currently available adaptive cruise control
(ACC) systems [3]. Thus, an increase in traffic throughput is
expected [4], [5]. In addition, the aerodynamic drag is reduced,
especially for heavy-duty vehicles, thereby decreasing fuel
consumption [2], [6].

A leading objective in the design of CACC systems is to
prevent disturbance amplification in upstream direction, for
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instance induced by velocity variations of the lead vehicle,
which would compromise throughput and safety. The distur-
bance propagation along interconnected systems, such as a
vehicle platoon, is covered by the notion of string stability
of which a vast amount of literature is available. In [7]–[16],
for instance, several types of string stability definitionsare
given, focusing on various aspects of cascaded systems. In
addition, publications that focus on controller design tend to
interpret string stability as a performance criterion, rather than
a stability property [17]–[25]. As a result, the notion of string
stability has become rather ambiguous over the years. This
brief, therefore, first aims to formally define string stability,
providing a rigourous basis for often-used string stability
criteria for linear systems, thus including and generalizing
existing results. Second, using a test set-up of six vehicles, it
is shown that, using these criteria, controller design for string
stability is not only theoretically, but also practically feasible.

This brief is organized as follows. Section II summarizes
existing string stability concepts. Section III derives a platoon
model that forms the basis for the definition of string stability
in Section IV and the analysis thereof for vehicle platoons
in Section V. Section VI presents experimental results of
a vehicle platoon specifically developed for this purpose.
Section VII summarizes the main conclusions.

II. STRING STABILITY REVIEW

As opposed to conventional stability notions for dynamical
systems, that are basically concerned with the evolution of
system states over time, string stability focuses on the propa-
gation of system responses along a cascade of systems. Several
approaches exist regarding string stability, as reviewed below.

Probably the most formal approach is based on Lyapunov
stability, of which [7] provides an early description, compre-
hensively formalized in [8]. In this approach, the notion of
Lyapunov stability is employed, focusing on initial condition
perturbations. Consequently, string stability is interpreted as
asymptotic stability of interconnected systems [9]. Recently,
new results appeared in [10], regarding a one-vehicle look-
ahead topology in a homogeneous vehicle platoon. In [10],
the response to an initial condition perturbation of a single
vehicle in the platoon is considered, thereby conserving the
disturbance-propagation idea behind string stability. The draw-
back of this approach, however, is that only this special case is
regarded, ignoring the effect of initial condition perturbations
of other vehicles in the platoon, as well as the effect of external
disturbances to the interconnected system. Consequently,the

1063–6536 c© 2013 IEEE –personal version
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practical relevance of this approach is limited, since external
disturbances, such as velocity variations of the first vehicle in
a platoon, are of utmost importance in practice.

The perspective of infinite-length strings of interconnected
systems [16] also gave rise to a notion of string stability,
described in [11] in the context of a centralized control scheme
and in [12] for a decentralized controller. Various applications
regarding interconnected systems are reported in [13] and
[14], whereas [15] and [16] provide extensive analyzes of
the system properties. In this approach, the system model is
formulated in the state space and subsequently transformed
using the bilateral Z-transform. The Z-transform is executed
over the vehicle index instead of over (discrete) time, resulting
in a model formulated in the “discrete spatial frequency”
domain [15], related to the subsystem index, as well as in the
continuous-time domain. String stability can then be assessed
by inspecting the eigenvalues of the resulting state matrixas
a function of the spatial frequency. Unfortunately, the stability
properties of finite-length strings, being practically relevant,
might not converge to those of infinite-length strings as length
increases. This can be understood intuitively by recognizing
that in a finite-length platoon, there will always be a first and
a last vehicle, whose dynamics may significantly differ from
those of the other vehicles in the platoon, depending on the
controller topology. Consequently, the infinite-length platoon
model does not always serve as a useful paradigm for a finite-
length platoon as it becomes increasingly long [16].

Finally, a performance-oriented approach for string stability
is frequently adopted, since this appears to directly offer
tools for controller design for linear cascaded systems. This
approach is employed for the control of a vehicle platoon
with and without lead vehicle information in [17], whereas
[18] and [19] apply inter-vehicle communication to obtain
information of the preceding vehicle. In [20], a decentralized
optimal controller is designed by decoupling the intercon-
nected systems using the so-called inclusion principle, and
in [21], optimal decentralized control is pursued by means
of nonidentical controllers. Furthermore, [22] extensively in-
vestigates the limitations on performance, whereas in [23], a
controller design methodology is presented. Finally, in [24]
the performance-oriented approach is adopted to investigate a
warning system for preventing head-tail collisions in mixed
traffic. In the performance-oriented approach, string stability
is characterized by the amplification in upstream direction
of either distance error, velocity, or acceleration, the specific
choice depending on the design requirements at hand. Let the
signal of interest be denoted byyi for vehiclei, and letΓi(jω)
denote the frequency response function describing the relation
between the scalar outputyi−1 of a preceding vehiclei − 1
and the scalar outputyi of the follower vehiclei. Then the
interconnected system is considered string stable if

sup
ω

|Γi(jω)| ≤ 1, 2 ≤ i ≤ m (1)

wherem is the string length; the supremum of|Γi(jω)| equals
the scalar version of theH∞ norm. Since theH∞ norm
is induced by theL2 norms of the respective signals, this
approach requires theL2 norm‖yi(t)‖L2

to be nonincreasing

di di–1di+1

vi+1

i+1

vi vi–1

wireless
communication

radar

i–1i

Fig. 1. CACC-equipped vehicle platoon.

for increasing indexi. Because of its convenient mathematical
properties, theL2 gain is mostly adopted; nevertheless, ap-
proaches that employ the inducedL∞ norm are also reported
[25]. Regardless of the specific norm that is employed, the
major limitation of the performance-oriented approach is that
only linear systems are considered, usually without consider-
ing the effect of nonzero initial conditions.

Summarizing, string stability appears to be defined in var-
ious ways, focusing on specific properties. Building on these
earlier results, a new generic definition of string stability is
proposed. To this end, the next section will first introduce a
model of a homogeneous vehicle platoon, which motivates the
formal definition of string stability as proposed in SectionIV.

III. PLATOON DYNAMICS

Consider a platoon ofm vehicles, schematically depicted
in Fig. 1, with di being the distance between vehiclei and
its preceding vehiclei − 1, andvi its velocity. The objective
of each vehicle is to follow the preceding vehicle at a desired
distancedr,i according to

dr,i(t) = ri + hvi(t), i ∈ Sm (2)

where h is referred to as the time headway, andri is the
standstill distance.Sm = {i ∈ N | 1 ≤ i ≤ m} is the set of
all vehicles in a platoon of lengthm ∈ N. The spacing policy
(2) is known to improve string stability [18], [19] and safety
[26]. A homogeneous platoon is assumed, soh is the same
for all i. The spacing errorei(t) is then defined as

ei(t) = di(t)− dr,i(t)

= (qi−1(t)− qi(t)− Li)− (ri + hvi(t)) (3)

with qi being the rear-bumper position of vehiclei and
Li its length. The control problem now encompasses two
requirements: the vehicle-following objectivelimt→∞ ei(t) =
0 ∀ i ∈ Sm, and the string stability requirement.

As a basis for controller design, the following vehicle model
is adopted [27], omitting the time argumentt for readability:





ḋi
v̇i
ȧi



 =





vi−1 − vi
ai

− 1
τ ai +

1
τ ui



 , i ∈ Sm (4)

where ai is the acceleration of vehiclei, ui the external
input (desired acceleration), andτ a time constant representing
driveline dynamics, the latter being vehicle-independentbe-
cause of the homogeneity assumption. With different types of
vehicles, as suggested by Fig. 1, homogeneity may be obtained
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by low-level acceleration controllers so as to arrive at identical
vehicle behavior according to (4).

Next, the controller as described in [27] is adopted. This
controller defines a new inputξi such that

hu̇i = −ui + ξi (5)

upon which the control law forξi is chosen as

ξi = K





ei
ėi
ëi



+ ui−1, i ∈ Sm (6)

with K = (kp kd kdd). The feedforward termui−1 is obtained
through wireless communication with the preceding vehicle.

Since string stability is commonly evaluated by analyzing
the amplification in upstream direction of either distance error,
velocity, and/or acceleration, a platoon model is formulated in
terms of these state variables. Using (3)–(6), the following
homogeneous platoon model is thus obtained:








ėi
v̇i
ȧi
u̇i









=









0 −1 −h 0
0 0 1 0
0 0 − 1

τ
1
τ

kp

h −kd

h −kd −
kdd(τ−h)

hτ −kddh+τ
hτ

















ei
vi
ai
ui









+









0 1 0 0
0 0 0 0
0 0 0 0

0 kd

h
kdd

h
1
h

















ei−1

vi−1

ai−1

ui−1









(7)

or, in short,

ẋi = A0xi +A1xi−1, i ∈ Sm (8)

with state vectorxi =
(

ei vi ai ui

)T
, and the matricesA0

andA1 defined accordingly.
The first vehicle in the platoon, not having a preceding ve-

hicle, will follow a so-called virtual reference vehicle (i = 0),
allowing the lead vehicle to employ the same controller as the
other platoon vehicles. Using the above state definition, the
virtual reference vehicle model may be formulated as









ė0
v̇0
ȧ0
u̇0









=









0 0 0 0
0 0 1 0
0 0 − 1

τ
1
τ

0 0 0 − 1
h

















e0
v0
a0
u0









+









0
0
0
1
h









ξ0 (9)

or, in short,
ẋ0 = Arx0 +Brur (10)

with state vectorx0 =
(

e0 v0 a0 u0

)T
, external platoon

input ur = ξ0, and the matricesAr andBr defined accord-
ingly. Consequently, (9) represents a nonminimal realization,
in which e0(t) = e0(0) is a dummy state, having no further
influence since the first column of bothAr and A1 equals
zero. In the remainder of this brief,e0(0) = 0 is chosen.

The equilibrium state of (9) equals̄x0 =
(

0 v̄0 0 0
)T

for ur = 0, wherev̄0 is a constant velocity. This equilibrium
is only marginally stable since the virtual reference vehicle
is in fact an uncontrolled vehicle model. Returning to the
homogeneous platoon model (7), it can be easily established
that xi = x̄0, with i = 1, 2, . . . ,m, is an equilibrium of the
vehicle platoon forx0 = x̄0 andur = 0; in other words, the

platoon equilibrium is characterized by a constant velocity v̄0
of all vehicles. Applying the Routh-Hurwitz stability criterion,
it follows that this equilibrium is asymptotically stable for any
time headwayh > 0, and with any choice forkp, kd > 0,
kdd > −1, such that(1 + kdd)kd > kpτ , thereby fulfilling
the vehicle-following control objective. The second objective,
being string stability, will be addressed in the next section.

IV. STRING STABILITY

In this section, the platoon model is generalized to a non-
linear cascaded state-space system, upon which a new string
stability definition is proposed. This definition appears toserve
as a rigourous basis forL2 andL∞ string stability conditions
commonly used in the performance-oriented approach, and the
relation to the other string stability notions is briefly discussed.

A. Lp String Stability

The homogeneous platoon model (8), (10) is a special, linear
case of the following cascaded state-space system:

ẋ0 = fr(x0, ur) (11a)

ẋi = fi(xi, xi−1), i ∈ Sm (11b)

yi = h(xi), i ∈ Sm (11c)

representing a general, possibly nonlinear, heterogeneous in-
terconnected system with the same interconnection structure
as (8), (10). Here,ur ∈ Rq is the external input,xi ∈ Rn,
i ∈ {0, Sm}, is the state vector, andyi ∈ Rℓ, i ∈ Sm, is the
output. Moreover,fr : Rn ×Rq 7→ Rn, fi : Rn ×Rn 7→ Rn,
i ∈ Sm, andh : Rn 7→ R

ℓ. In the scope of vehicle platooning,
the state is typically defined asxi =

(

ei vi ai . . .
)T

, i ∈
{0, Sm}, indicating a possible extension with additional states,
for instance due to controller dynamics, as in Section III.
Note that heterogenous strings may arise due to nonidentical
(decentralized) controllers [21]. Using the model (11), the
following string stability definition is now proposed.

Definition 1 (Lp string stability). Consider the interconnected
system(11). Let x =

(

xT
0 xT

1 . . . xT
m

)T
be the lumped state

vector and letx̄ =
(

x̄T
0 x̄T

0 . . . x̄T
0

)T
denote the constant

equilibrium solution of (11) for ur = 0. The system(11) is
Lp string stableif there exist classK functions1 α andβ such
that, for any initial statex(0) ∈ R(m+1)n and anyur ∈ Lq

p,

‖yi(t)− h(x̄0)‖Lp
≤ α(‖ur(t)‖Lp

) + β(‖x(0)− x̄‖),

∀ i ∈ Sm and∀m ∈ N.

If, in addition, withx(0) = x̄ it also holds that

‖yi(t)− h(x̄0)‖Lp
≤ ‖yi−1(t)− h(x̄0)‖Lp

,

∀ i ∈ Sm\{1} and∀m ∈ N\{1}

the system(11) is strictly Lp string stablewith respect to its
input ur(t).

1A continuous functionα : [0, a) 7→ [0,∞) is said to belong to classK
if it is strictly increasing andα(0) = 0.
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Remark1. Without principal consequences for Definition 1,
(11) could be further generalized with respect to the intercon-
nection structure (or “topology”), so as to include multiple-
vehicle look-ahead or bidirectional interconnections.

Clearly, Definition 1 takes the external disturbanceur into
account, imposed by the virtual reference vehicle, throughthe
classK function α(‖ur(t)‖Lp

), as well as initial condition
perturbations, through the classK function β(‖x(0) − x̄‖),
where ‖ · ‖Lp

denotes the signalp-norm [28] and ‖ · ‖
denotes any vector norm. It should be mentioned that only
initial condition perturbations are considered for which the
norm ‖x(0) − x̄‖ exists, which limits the allowable class
of perturbations in view of the fact thatx will be infinite-
dimensional form → ∞. Furthermore, Definition 1 obviously
applies to both linear and nonlinear systems, and homogeneous
as well as heterogeneous strings are included, providing, for
instance, a rigourous basis for the string stability analysis of
heterogeneous strings pursued in [29].

It is important to note that Definition 1 closely resembles
the common input–output orLp stability definition as far as
(nonstrict)Lp string stability is concerned, except for the fact
that the norm requirements must holdfor all string lengths
m ≥ 1. This is essential to string stability, indicating that a
string-stable system is scalable [9].

The notion of strictLp string stability, for which not only the
first but also the second inequality in Definition 1 must hold,
has been introduced to accommodate the common requirement
of upstream disturbance attenuation. Note thati = 1 has been
excluded in the requirement for strict string stability since
the virtual reference system (11a) does not have an output
associated with it, which would be practically irrelevant.

B. String Stability Conditions for Linear Systems

In order to derive string stability conditions for linear
systems, the linear, homogeneous version of (11) is considered,
which, in lumped form, can be denoted by










ẋ0

ẋ1

...
ẋm











=











Ar O
A1 A0

. . .
. . .

O A1 A0





















x0

x1

...
xm











+











Br

0
...
0











ur (12)

or, in short,
ẋ = Ax+Bur (13)

with x =
(

xT
0 xT

1 . . . xT
m

)T
, and the matricesA and B

defined accordingly. The matricesA0, A1, Ar, andBr can,
e.g., be chosen identical to those used in (8) and (10). In
addition, consider linear output functions according to

yi = Cix, i ∈ Sm (14)

with output matricesCi. The model (13), (14) can then be
formulated in the Laplace domain as follows:

ŷi(s) = Pi(s)ûr(s) +Oi(s)x(0), i ∈ Sm (15)

with outputsyi(t) ∈ Rℓ and exogenous inputur(t) ∈ Rℓ,
whose Laplace transforms are denoted byŷi(s) and ûr(s),
with s ∈ C, respectively.x(0) ∈ R(m+1)n denotes the initial

condition, whereasPi(s) = Ci(sI − A)−1B and Oi(s) =
Ci(sI − A)−1. In view of the upcoming analysis,Pi(s) is
thus assumed to be square, havingℓ inputs andℓ outputs.
Also, without loss of generality, the equilibrium statēx =
(

x̄T
0 x̄T

0 . . . x̄T
0

)T
= 0 is chosen, henceh(x̄0) = Cix̄ = 0.

Since (12) describes a controlled system, the matrixA0

is typically Hurwitz. However, this may not be the case for
the matrixAr, related to the virtual reference vehicle in case
of vehicle following. As indicated by (9), for instance,Ar

has a marginally stable mode associated withv0 (besides the
mode associated with the dummy statee0). Hence, the system
matrix A in (13) is not Hurwitz. In the remainder of this
section, however, it is assumed that the pair(Ci, A) is such that
unstable (including marginally stable) modes are unobservable
by a specific choice ofCi. Consequently, it suffices to only
analyze the output response to the external input in view of
string stability (or, equivalently, to assumex(0) = x̄ = 0), in
accordance with the following remark.

Remark2. Consider the system (11a), (11b), but with a single
output vectoryk = h(xk), 1 ≤ k ≤ m. Then this system is
Lp stable if

‖yk(t)− h(x̄0)‖Lp
≤ αk(‖ur(t)‖Lp

) + βk(‖x(0)− x̄‖)

with classK functions αk and βk. When (11a) and (11b)
represent a linear system, the existence ofαk implies thatβk

exists, provided that unstable and marginally stable modesare
unobservable [30]. Since this statement holds for anyk ∈ Sm,
it also applies toα andβ in Definition 1.

Adopting theL2 signal norm for string stability, it follows
from (15), that, withx(0) = 0,

‖yi(t)‖L2
≤ ‖Pi(jω)‖H∞

‖ur(t)‖L2

≤ max
i∈Sm

‖Pi(jω)‖H∞
‖ur(t)‖L2

, ∀ i ∈ Sm (16)

using the fact that theH∞ norm (orL2 gain)‖Pi(jω)‖H∞
is

induced by theL2 norm on inputs and outputs. It is important
to note that (16) is not conservative, in the sense that there
is always a subsystemi ∈ Sm and a specific signalur(t) for
which the equality holds [28]. According to Definition 1,L2

string stability of the interconnected system (13), (14) thus
requiresmaxi∈Sm

‖Pi(jω)‖H∞
to exist for allm ∈ N, being

a necessary and sufficient condition.
For further analysis, a specific type of interconnection topol-

ogy will be adopted, as mentioned in the following remark.

Remark 3. In the case of a look-ahead topology, such as
described by (12), the interconnection is unidirectional,from
which it directly follows that if the infinite-length stringhas
a bounded output response to a bounded input, then all finite-
length strings as a subset thereof have a bounded response as
well. Therefore, it suffices to only regardm → ∞ for string
stability assessment, implying that the setsi ∈ Sm, m ∈ N,
can be reduced to a single seti ∈ N.

As a result, the interconnected system (13), (14) isL2 string
stable if and only ifsupi∈N ‖Pi(jω)‖H∞

exists. The classK
functionα in Definition 1 can then be chosen as

α(‖ur(t)‖L2
) =

(

sup
i∈N

‖Pi(jω)‖H∞

)

‖ur(t)‖L2
. (17)
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Because of the linear form ofα in (17), this type of string
stability may be referred to as finite-gainL2 string stability,
similar to the notion of finite-gainL2 stability.

The existence of the supremum of theL2 gain can be further
analyzed by factorization, leading to the theorem below. Asa
preliminary to this theorem, thestring stability complementary
sensitivityis introduced first. From (15), it directly follows that
(with x(0) = 0)

ŷi(s) = Γi(s)ŷi−1(s) (18)

with the string stability complementary sensitivity

Γi(s) = Pi(s)P
−1
i−1(s) (19)

assuming functional controllability of (15), i.e.,P−1
i−1(s) exists.

The following theorem can now be stated.

Theorem 1. Let (13), (14) represent a linear unidirectionally
interconnected system for which the input–output behavioris
described by(15). Assume that the pair(Ci, A) is such that
unstable and marginally stable modes are unobservable and
that Pi(s) is square and nonsingular, for alli ∈ N. Then the
system(13), (14) is L2 string stable if

1) ‖P1(jω)‖H∞
exists;

2) ‖Γi(jω)‖H∞
≤ 1, ∀ i ∈ N\{1};

with Γi(s) as in(19). Moreover, the system is strictlyL2 string
stable if and only if conditions 1 and 2 hold.

Proof: Using (15), (18), and (19), the input–output rela-
tion for a specific subsystemi ≥ 2 can be formulated as

ŷi(s) = Pi(s)ûr(s) =

(

i
∏

k=2

Γk(s)

)

P1(s)ûr(s). (20)

Having factorizedPi(s) in this way, the submultiplicative
property dictates that

‖Pi(jω)‖H∞
≤

(

i
∏

k=2

‖Γk(jω)‖H∞

)

‖P1(jω)‖H∞
. (21)

Consequently, under the conditions 1 and 2 in Theorem 1,
supi∈N ‖Pi(jω)‖H∞

exists. Because it is also assumed that
unstable and marginally stable modes are unobservable for all
i ∈ N, the linear system isL2 string stable, according to
Definition 1 and Remark 2, while using (17). Moreover, from
(18) and condition 2, it follows that

‖yi(t)‖L2
≤ ‖yi−1(t)‖L2

, ∀ i ∈ N\{1} (22)

which yields the interconnected system strictlyL2 string
stable. The necessity of the conditions 1 and 2 for strictL2

string stability is immediate.
It is noted that condition 2 closely resembles the well-known

string stability criterion (1). As such, Definition 1 together with
Theorem 1 provide a rigorous basis for this criterion. The fact
that Theorem 1 only yields sufficient conditions forL2 string
stability is basically due to the submultiplicative property. In
specific cases, however, the conditions become also necessary,
as shown below.

Remark4. Whenur ∈ R andyi ∈ R, i ∈ N\{1}, andΓ(s) =
Pi(s)P

−1
i−1(s), i ∈ N\{1}, is independent ofi, then

‖Pi(jω)‖H∞
= sup

ω

{

|Γ(jω)|i−1|P1(jω)|
}

(23)

due to (20). Consequently,‖Pi(jω)‖H∞
exists for all i ∈

N\{1}, if and only if |P1(jω)| < ∞ and |Γ(jω)| ≤ 1 for
all ω, rendering the interconnected system strictlyL2 string
stable. Note that the necessity of these conditions only holds
in the absence of poles ofP1(s) on the imaginary axis, being
canceled by zeros ofΓ(s) since, in that case,supω |P1(jω)|
is unbounded whereassupω |Γ(jω)i−1P1(jω)| may not be.

It thus follows that for linear unidirectionally coupled ho-
mogeneous systems with scalar input and output,L2 string
stability and strictL2 string stability are equivalent.

Until now, only L2 string stability has been considered.
Physically, this can be motivated by the requirement of energy
dissipation along the string. Obviously, the inducedL∞ norm
can be used instead. In the scope of vehicle following, the
motivation for using this norm would be traffic safety, since
the L∞ norm is directly related to maximum overshoot. The
conditions forL∞ string stability can be derived as follows.
Let pi(t) denote the impulse response matrix, corresponding
to the transfer functionPi(s). Then, from linear system theory

‖pi(t)‖L1
= max

ur 6=0

‖yi(t)‖L∞

‖ur(t)‖L∞

. (24)

Consequently, the interconnected system isL∞ string stable
if and only if supi∈N ‖pi(t)‖L1

exists. The classK function
α in Definition 1 can then be chosen as

α(‖ur(t)‖L∞
) =

(

sup
i∈N

‖pi(t)‖L1

)

‖ur(t)‖L∞
. (25)

This leads to the following theorem.

Theorem 2. Let (13), (14) represent a linear unidirectionally
interconnected system for which the input–output behavioris
described by(15). Assume that the pair(Ci, A) is such that
unstable and marginally stable modes are unobservable and
that Pi(s) is square and nonsingular, for alli ∈ N. Then the
system(13), (14) is L∞ string stable if

1) ‖p1(t)‖L1
exists;

2) ‖γi(t)‖L1
≤ 1, ∀ i ∈ N\{1};

wherep1(t) andγi(t) are the impulse responses corresponding
to P1(s) andΓi(s), respectively, withΓi(s) according to(19).
Moreover, the system is strictlyL∞ string stable if and only
if conditions 1 and 2 hold.

Proof: Applying Young’s inequality for convolutions, the
proof is similar to that of Theorem 1.

Again, Theorem 2 only provides sufficient conditions for
L∞ string stability. Note that, using a Lyapunov-stability ap-
proach for linear systems, [31] discusses the relation between
L∞ and L2 string stability, the main results of which can
be extended to the new framework by defining the output
yi to contain all statesxi (subject to the remark in the next
subsection), while focussing on initial condition perturbations.
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C. Discussion

From the previous section, it is clear that the performance-
oriented approach to string stability [17]–[25] is captured
by Definition 1 as a special case for linear, unidirectionally
interconnected systems. In addition, the Lyapunov-stability
approach [7]–[10] is captured as well by the inclusion of
initial condition perturbations in the definition. An apparent
difference, however, is that the Lyapunov-stability approach
focusses on the system states, whereas Definition 1 regards
the outputs. Nevertheless, there is no essential limitation in
choosing the output so as to include all states, albeit that
the string stability complementary sensitivity can no longer
be computed using (19). In the framework of infinite-length
interconnected systems [11]–[16], string stability requires the
states to (exponentially) decay both over time and system
index as a result of initial condition perturbations. As such,
it can be argued that such behavior corresponds to strict string
stability as in Definition 1. Summarizing, while the existing
definitions are adequate, Definition 1 encompasses those.

V. STRING STABILITY OF VEHICLE PLATOONS

In order to analyzeL2 string stability of the platoon model
(7), (9),P1(jω) andΓi(jω) need to be determined. To this end,
the frequency-domain model of a controlled platoon vehicle
is formulated first by introducing the vehicle transfer function
G(s) = q̂i(s)/ûi(s), according to:

G(s) =
1

s2(τs+ 1)
(26)

which follows from
...
q i = − 1

τ q̈i +
1
τ ui, see (4), thespacing

policy transfer functionH(s) = ξ̂i(s)/ûi(s) derived from (5):

H(s) = hs+ 1 (27)

and the feedback lawK(s) with input êi(s), defined in (6):

K(s) = kp + kds+ kdds
2. (28)

A controlled vehiclei is then represented by the block scheme
as shown in Fig. 2. The occurrence ofH(s) in the feedback
loop can be readily explained by consideringq̃i as depicted in
the block scheme, which equals, using (27),

q̃i(t) = Li + ri + qi(t) + hvi(t). (29)

Consequently,̃qi can be interpreted as the “virtual control
point” of vehicle i, that must converge to the actual position
qi−1 of the preceding vehiclei − 1. Furthermore, since the
frequency-domain approach allows for the inclusion of a
latency θ induced by the wireless communication network,
the block scheme also includes a time delayD(s) = e−θs.

The virtual reference vehicle (9) is now described by the
series connection ofH−1(s) and G(s), indicated in Fig. 2
by “vehicle 0,” with ur(t) = ξ0(t) as external input. Conse-
quently, the vehicle platoon has a scalar inputur, upon which a
scalar output needs to be selected according to Theorem 1. To
this end,yi(t) = ai(t) is chosen since the acceleration is phys-
ically relevant on the one hand, and guarantees the existence of
‖P1(jω)‖H∞

on the other, as will be shown later. Moreover,
with this output, the marginally stable mode associated with

qi−1 qi

−

ui−1 ui

ξiei

Li + ri

ui

D

K

H

G

q̃i

vehicle 0

H−1

Fig. 2. Block scheme of a controlled platoon vehiclei ≥ 1 and of the virtual
reference vehicle, indicated by the index 0.

the reference vehicle appears to be unobservable. Using the
block scheme in Fig. 2, the string stability complementary
sensitivityΓi(s) = Γ(s) (independent ofi) now satisfies

Γ(s) = âi(s)/âi−1(s) =
1

H(s)

K(s)G(s) +D(s)

1 +K(s)G(s)
. (30)

Because of the specific choice for the virtual reference
vehicle model,Γ(s) also equals the transfer function from
â0(s) to â1(s). It therefore follows that, using (9),

â1(s) = Γ(s)â0(s) =
Γ(s)

H(s)

1

τs+ 1
ûr(s)

:= P1(s)ûr(s) (31)

from which it directly follows that‖P1(jω)‖H∞
exists when

‖Γ(jω)‖H∞
exists, due to the submultiplicative property of

the H∞ norm and the fact thatH−1(s)(τs + 1)−1 is a
stable transfer function (provided thath ≥ 0). It follows
from (30) that without delay (D(s) = 1), ‖Γ(jω)‖H∞

exists,
since ‖Γ(jω)‖H∞

= supω |H−1(jω)| = 1. According to
Theorem 1, the system without delay is thus strictlyL2 string
stable for any choice of controller gains and time headway.

Note that, if ur = 0 and the virtual reference vehicle
has a constant velocitȳv0, the states of all vehicles in
the platoon will asymptotically converge to the equilibrium
state x̄0 =

(

0 v̄0 0 0
)T

; see Section III. In other words,
limω→0 (v̂i(jω)− v̂i−1(jω)) = 0. Hence,

lim
ω→0

|Γ(jω)| = 1 ⇒ ‖Γ(jω)‖H∞
≥ 1 (32)

which is why the strictLp string stability inequality in Defini-
tion 1 includes the equality. As a consequence, however, string
stability robustness with respect to, e.g., model uncertainties,
may be poor in case these uncertainties cause|Γ(jω)| to
increase in the lower frequency region.

As already mentioned, wireless communications exhibit
latency, which in general increases with increasing commu-
nication load. This time delay compromises string stability
[32], as illustrated in Fig. 3(a), showing the gain|Γ(jω)| for
various values of the time delayθ. Here,τ = 0.1 s, kp = 0.2,
kd = 0.7, kdd = 0, andh = 0.5 s, yielding asymptotic stability
of the platoon; see also Section VI.

Fig. 3(b) illustrates the influence of the time headway on
string stability in the presence of a communication delay,
showing the maximum communication delayθmax that yields
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communication delay (solid black)θ = 0 s, (dashed black)θ = 0.15 s,
(grey) θ = 0.3 s, and (b) maximum delayθmax as a function of headwayh.

|Γ(jω)| ≤ 1, as a function of time headwayh. This result is
calculated by taking a fixed value forθ and then searching for
the smallest value ofh such that‖Γ(jω)‖H∞

= 1. The given
system falls into the category as mentioned in Remark 4, since,
first, yi, ur ∈ R ∀ i ∈ N, second,Γ(jω) does not depend
on the vehicle indexi, and, third, it follows from (31) that
P1(s) does not have poles on the imaginary axis that might
be canceled by zeros in the productΓ(s)P1(s). Consequently,
‖P1(jω)‖H∞

< ∞ and |Γ(jω)| ≤ 1 together form necessary
and sufficient conditions for (strict)L2 string stability.

RegardingL∞ string stability, applying the inverse Laplace
transform to (31) to obtain the impulse response, and subse-
quently using Young’s inequality for convolutions, it can be
shown that‖p1(t)‖L1

exists when‖γ(t)‖L1
exists, similar to

the result obtained for the existence of‖P1(jω)‖H∞
. Since

Γ(s) = H−1(s) without communication delay, the impulse
response equalsγ(t) = h−1e−t/h. Hence ‖γ(t)‖L1

= 1,
rendering the system strictlyL∞ string stable for all time
headways and controller parameters according to Theorem 2.

Again, communication delay compromisesL∞ string stabil-
ity. Using the same parameter values as before, Fig. 4(a) shows
the impulse responseγ(t) for various values of the delayθ,
calculated using the inverse Fourier transform ofΓ(jω) from
(30). It appears that‖γ(t)‖L1

is an increasing function ofθ,
the effect of which is illustrated in Fig. 4(b), showing the max-
imum communication delayθmax that yields‖γ(t)‖L1

≤ 1, as
a function of the time headwayh. Apparently,‖γ(t)‖L1

≤ 1
is a more stringent criterion than‖Γ(jω)‖H∞

≤ 1, requiring
a significantly larger time headway. This could be expected
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]

Fig. 5. String stability complementary sensitivity magnitude |Γ(jω)|: (solid
black) CACC measured, (solid grey) CACC theoretical, (dashed black) ACC
measured, (dashed grey) ACC theoretical.

since, from linear system theory,‖Γ(jω)‖H∞
≤ ‖γ(t)‖L1

.

VI. EXPERIMENTAL VALIDATION

To validate the theoretical results and to demonstrate its
technical feasibility, CACC has been implemented in six
passenger vehicles [27], equipped with IEEE 802.11p-based
wireless communication, allowing for communication of the
desired vehicle acceleration at an update rate of 10 Hz.

The test vehicle model has been identified as [27]:

G(s) =
1

s2(τs+ 1)
e−φs (33)

with τ = 0.1 s and φ = 0.2 s, the latter leading to an
adaptation of (26) so as to include this time delay. Considering
stability of the dynamics (7), speed of response, and comfort,
suitable controller gains were found to bekp = 0.2 and
kd = 0.7, with kdd = 0 to avoid feedback of the jerk, which
is in practice unfeasible. The communication delay appeared
to be θ ≈ 0.15 s. Using the analysis presented in Section V,
h = 0.7 s is chosen, just achieving strictL2 string stability.

Focussing onL2 string stability, a test is carried out using
a prescribed acceleration profilea0(t), as described in [27],
based on which the inputur(t) has been calculated through
differentiation, employing the dynamic inverse of (9). The
measured response has subsequently been used to determine
|Γ(jω)|, employing Welch’s averaged periodogram method
[33]. The result is depicted in Fig. 5 for two cases:with
the communicated desired accelerationui−1 of the preceding
vehicle andwithout (i.e.,ui−1 = 0), referred to as CACC and
ACC, respectively. Also the theoretical gain (30) is shown.
The benefit of CACC in view ofL2 string stability is clearly
illustrated, validating the theoretical analysis in Section IV.
Another important observation is that string stability maynot
always be easy to assess in practice, since|Γ(jω)| will be close
to 1 for low frequencies, see (32), as a result of which esti-
mation inaccuracy may compromise the second string stability
criterion from Theorem 1. In this experiment, estimation errors
also cause the impulse response function, computed using the
inverse Fourier transformation, to be inaccurate. Therefore,
L∞ string stability is not further investigated here.

In addition to the time responses shown in [27], Fig. 6 shows
the velocity response to a constant acceleration of the lead
vehicle for both ACC and CACC, which clearly illustrates
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Fig. 6. Measured velocity response at startup (black–lightgrey: vehicle 1–6):
(a) ACC and (b) CACC.

string stability in case of CACC and the lack thereof for ACC.
Noteworthy is the observation that with ACC, the last vehicle
starts to accelerate after 15.5 s, whereas with CACC, this is
already after 8.5 s, showing that CACC may also be effective
at traffic lights.

VII. C ONCLUSION

A novel string stability definition was proposed, on the basis
of the notion ofLp stability, which applies to both linear
and nonlinear systems, while accommodating initial condition
perturbations as well as external disturbances, independent
of the interconnection topology. The definition appeared to
provide a rigorous basis for well-knownL2 and L∞ string
stability conditions for linear, unidirectionally interconnected
systems.

Next, the string stability properties of CACC for vehicle
platoons were analyzed, showing that time gaps well below
1 s were admissible. To assess string stability in practice and
to demonstrate the technical feasibility of CACC, experiments
were conducted using a test fleet of six passenger vehicles.
As a result, a time headway of 0.7 s appeared to yield strict
L2 string-stable behavior, in accordance with the theoretical
analysis, which also indicated that time gaps down to 0.3 s
are feasible when minimizing the latency of the wireless link.
Such small time headways, however, will require insight into
the string stability margins in the presence of uncertainties or
unknown disturbances, which will be the subject of further
research.
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