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L, String Stability of Cascaded Systems:
Application to Vehicle Platooning

Jeroen Ploeg, Nathan van de Wouw, and Henk Nijmeljelow, IEEE

Abstract—Nowadays, throughput has become a limiting factor
in road transport. An effective means to increase the road
throughput is to employ a small intervehicle time gap using
automatic vehicle-following control systems. String stality, i.e.,
the disturbance attenuation along the vehicle string, is assidered
an essential requirement for the design of those systems. iwever,
the formal notion of string stability is not unambiguous in
literature, since both stability and performance interpretations
exist. Therefore, a novel definition for string stability of nonlinear
cascaded systems is proposed, using input—output propees.
This definition is shown to result in well-known string stability
conditions for linear cascaded systems. The theoretical sailts
are experimentally validated using a platoon of six passergy
vehicles equipped with cooperative adaptive cruise contio

instance induced by velocity variations of the lead vehicle
which would compromise throughput and safety. The distur-
bance propagation along interconnected systems, such as a
vehicle platoon, is covered by the notion of string stayilit

of which a vast amount of literature is available. In [7]-]16

for instance, several types of string stability definiticean®
given, focusing on various aspects of cascaded systems. In
addition, publications that focus on controller designdt¢n
interpret string stability as a performance criterionheatthan

a stability property [17]—-[25]. As a result, the notion ofisg
stability has become rather ambiguous over the years. This
brief, therefore, first aims to formally define string stéhil

Index Terms—Cascaded systems, cooperative adaptive cruiseProviding a rigourous basis for often-used string stapilit

control (CACC), input—output stability, string stability , vehicle
platoons.

I. INTRODUCTION

IMITED highway capacity causes traffic jams, whic
tend to increase over the years with respect to both t
number of traffic jams and their length. An effective means

increase road capacity is to decrease the intervehiclandist

As this would be unsafe in case of human drivers, longitudin
automation will be required. To this end, cooperative aidapt

h

criteria for linear systems, thus including and genena§jzi
existing results. Second, using a test set-up of six vehide
is shown that, using these criteria, controller design fong
stability is not only theoretically, but also practicallgasible.
This brief is organized as follows. Section Il summarizes
ﬁ)éisting string stability concepts. Section Il deriveslatpon
odel that forms the basis for the definition of string siapil
IR Section IV and the analysis thereof for vehicle platoons
in Section V. Section VI presents experimental results of
2 vehicle platoon specifically developed for this purpose.
Section VII summarizes the main conclusions.

cruise control (CACC) can be employed as an automatic
vehicle-following system based on intervehicle data ergea
through wireless communications, in addition to the data

obtained by radar or lidar [1], [2]. CACC is known to allow  zg h0sed to conventional stability notions for dynamical

fo_rt_|me gapT s%mﬂcantly Iless th.?nbll S gem_g the s_tanda(;h systems, that are basically concerned with the evolution of
minimum value for currently available adaptive cruise €oht o qiem states over time, string stability focuses on th@gro
(ACC) systems [3]. Thus, an increase in traffic throughput

Il. STRING STABILITY REVIEW

expected [4], [5]. In addition, the aerodynamic drag is sl

especially for heavy-duty vehicles, thereby decreasing fu

consumption [2], [6].

A leading objective in the design of CACC systems is t
prevent disturbance amplification in upstream directia, f
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tion of system responses along a cascade of systemsaSever
approaches exist regarding string stability, as reviewaddvia
Probably the most formal approach is based on Lyapunov
stability, of which [7] provides an early description, corap
ﬂensively formalized in [8]. In this approach, the notion of
Lyapunov stability is employed, focusing on initial coralit
perturbations. Consequently, string stability is intetpd as
asymptotic stability of interconnected systems [9]. Rélgen
new results appeared in [10], regarding a one-vehicle look-
ahead topology in a homogeneous vehicle platoon. In [10],
the response to an initial condition perturbation of a ®ngl
vehicle in the platoon is considered, thereby conservirg th
disturbance-propagation idea behind string stabilitye @haw-
back of this approach, however, is that only this speciat ¢ais
regarded, ignoring the effect of initial condition pertations
of other vehicles in the platoon, as well as the effect of ek
disturbances to the interconnected system. Consequémly,

1063-6536(C 2013 IEEE —personal version
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practical relevance of this approach is limited, since gk

disturbances, such as velocity variations of the first Jehiic wireless
a platoon, are of utmost importance in practice. ’/\ /_\?"mmumca“"n
The perspective of infinite-length strings of interconeect Vit radar L) v; v,
—

systems [16] also gave rise to a notion of string stabilit \/ <]
described in [11] in the context of a centralized controlksuk ) )mm L@ ) HMM m) 1))
and in [12] for a decentralized controller. Various apgiimas  (+1 iy d; i~ EN

regarding interconnected systems are reported in [13] and

[14], whereas [15] and [16] provide extensive analyzes 6f. 1. CACC-equipped vehicle platoon.

the system properties. In this approach, the system model is

formulated in the state space and subsequently transformed. o ) _ . .
using the bilateral Z-transform. The Z-transform is exedut ' creasing index. Because of its convenient mathematical

over the vehicle index instead of over (discrete) time, ltegy prope;tlesihthte@ glamt;]s r_n(()jstly adopted; nevlerthelessi ‘;p'
in a model formulated in the “discrete spatial frequencyproac es that employ the induced, norm are also reporte

domain [15], related to the subsystem index, as well as in tl‘?eS] R_eg_ard_less of the specific horm that is employgd, the
continuous-time domain. String stability can then be aesbs major limitation of the performance-oriented approacthat t

by inspecting the eigenvalues of the resulting state maisix pnly linear systems are considered, usually without casid

a function of the spatial frequency. Unfortunately, thebity mgSthe Eﬁe.c.t of nonzero ir;i-'i!al conditions, be defined i
properties of finite-length strings, being practicallyengint, ummarizing, string stability appears to be defined in var-

might not converge to those of infinite-length strings agtan ious ways, focusing on specific properties. Building on ¢hes

increases. This can be understood intuitively by recoggiziearller results, a new generic definition of string stapili

that in a finite-length platoon, there will always be a firsdanprOpOSEd' To this end, the ne_xt section will f|rst mtr_oduce a
a last vehicle, whose dynamics may significantly differ fro odel of a homogeneous vehicle platoon, which motivates the

those of the other vehicles in the platoon, depending on t mal definition of string stability as proposed in Sectidh

controller topology. Consequently, the infinite-lengtlatpbn
model does not always serve as a useful paradigm for a finite- [ll. PLATOON DYNAMICS

length platoon as it becomes increasingly long [16].  Consider a platoon ofn vehicles, schematically depicted
_ Finally, a performance-oriented approach for string $itgbi in Fig. 1, with d; being the distance between vehidland
is frequently adopted, since this appears to directly off@g preceding vehicle — 1, andv; its velocity. The objective

tools for controller design for linear cascaded systemss Thof each vehicle is to follow the preceding vehicle at a desire
approach is employed for the control of a vehicle platoafiistanced,.; according to

with and without lead vehicle information in [17], whereas

[18] and [19] apply inter-vehicle communication to obtain dr,i(t) =ri + hvi(t), i€ Sm (2)
information of the preceding vehicle. In [20], a decentedi | 1 oa 7, is referred to as the time headway, andis the
optimal controller is designed by decoupling the intercong - qstill distances,, = {i € N | 1 < i < m} is the set of

nected systems using the so-called inclusion principl€l ag yepicles in a platoon of length € IN. The spacing policy
in [21], optimal decentralized control is pursued by mear&) is known to improve string stability [18], [19] and safet

of nonidentical controllers. Furthermore, [22] extenkivia- [26]. A homogeneous platoon is assumed,/ss the same
vestigates the limitations on performance, whereas in, [23] for all 7. The spacing erroe;(t) is then defined as

controller design methodology is presented. Finally, iAd][2
the performance-oriented approach is adopted to investaa e;(t) = di(t) — dpi(t)

Warr_1ing system for preventin_g head-tail coIIision_s ir! _mixe = (gi—1(t) — qi(t) — L;) — (r; + hui(1)) (3)
traffic. In the performance-oriented approach, string iktab

is characterized by the amplification in upstream directiofith ¢; being the rear-bumper position of vehicie and

of either distance error, velocity, or acceleration, thecific L. its length. The control problem now encompasses two
choice depending on the design requirements at hand. Let fguirements: the vehicle-following objectilien; .« €;(t) =
signal of interest be denoted lyy for vehiclei, and letl’; (jw) 0 Vi € Sy, and the string stability requirement.

denote the frequency response function describing théarela As a basis for controller design, the following vehicle miode
between the scalar outpyt_, of a preceding vehicle — 1 is adopted [27], omitting the time argumentor readability:
and the scalar outpuy; of the follower vehiclei. Then the

i i i i i dz Vi—1 — U
interconnected system is considered string stable if o | = a, e, @)
; La: + Lo
sup |[Ti(jw)| <1, 2<i<m 1) a; —70i + 2
w

where a; is the acceleration of vehicle, u; the external
wherem is the string length; the supremum |&; (jw)| equals input (desired acceleration), amdh time constant representing
the scalar version of thé{,, norm. Since the*., norm driveline dynamics, the latter being vehicle-independasst
is induced by thel, norms of the respective signals, thisause of the homogeneity assumption. With different tydes o
approach requires thé; norm ||y;(t)||z, to be nonincreasing vehicles, as suggested by Fig. 1, homogeneity may be obtaine
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by low-level acceleration controllers so as to arrive ahtdml platoon equilibrium is characterized by a constant vejoait

vehicle behavior according to (4). of all vehicles. Applying the Routh-Hurwitz stability ceition,
Next, the controller as described in [27] is adopted. Thisfollows that this equilibrium is asymptotically stablerfany
controller defines a new inpy@t such that time headwayh > 0, and with any choice fok,, ks > 0,

kqq > —1, such that(1 + kqa)kq > k,7, thereby fulfilling

i = =i+ & ®) the vehicle-following control objective. The second obies;
upon which the control law fof; is chosen as being string stability, will be addressed in the next settio
€
=K |é | +ui—1, 1€Sy (6) IV. STRING STABILITY
€;

In this section, the platoon model is generalized to a non-

with K = (k,, kq kaa). The feedforward term;_; is obtained linear cascaded state-space system, upon which a new string

through wireless communication with the preceding vehiclestability definition is proposed. This definition appearseove
Since string stability is commonly evaluated by analyzings a rigourous basis faf, and L., string stability conditions

the amplification in upstream direction of either distancere commonly used in the performance-oriented approach, and th

velocity, and/or acceleration, a platoon model is formedan relation to the other string stability notions is briefly dissed.

terms of these state variables. Using (3)—(6), the follgwin

homogeneous platoon model is thus obtained: A. £, String Stability

€ 0 -1 —h 0 €; The homogeneous platoon model (8), (10) is a special, linear
o [0 O 11 (1) v; case of the following cascaded state-space system:
di o 0 0 -7 T a;
U; %’ —k—hd —kg— kddglrh) —kdfjlhff U; il'?o = fr(xo, ur) | (11a)
01 0 0\ [eis &; = fi(zi,xim1), € Sm (11b)
00 0 O i— i = h(x;), L € S,
n Vi1 ) y; = h(x;) 1€8 (11c)
00 0 O ai—1 . . . .
0 ka kaa 1 Wiy representing a general, possibly nonlinear, heterogengsu
_ hooheh terconnected system with the same interconnection steictu
or, in short, as (8), (10). Herey, € R4 is the external inputz; € R™,
= Aozi + A1, i€ S @) i€ {0.Sx}, is the state vector, angi € R, i € Sy, is the

_ . _ output. Moreoverf, : R x R? — R”, f; : R® x R” — R",
with state vectorr; = (e; v a; w;) , and the matricesly ; ¢ §,,, andh : R s R’. In the scope of vehicle platooning,
and A, defined accordingly. the state is typically defined as = (e; v a; ...) i€

The first vehicle in the platoon, not having a preceding vey, 5, 1, indicating a possible extension with additional states,
hicle, will follow a so-called virtual reference vehicle< 0),  for instance due to controller dynamics, as in Section III.
allowing the lead vehicle to employ the same controller &s thyote that heterogenous strings may arise due to nonidéntica
other platoon vehicles. Using the above state definitioa, t{decentralized) controllers [21]. Using the model (11) th

virtual reference vehicle model may be formulated as following string stability definition is now proposed.
?0 00 0 0 €o 0 Definition 1 (£, string stability) Consider the interconnected
ZO = 8 8 _11 2 ZO + 8 & (9) system(1l) Letx = (zj a7 ... mIn)TT be the lumped state
0 00 o 1 0 1 vector and letz = (zj #) ... zj) denote the constant
o “n/ A\ h equilibrium solution of(11) for u, = 0. The systen{11) is
or, in short, L, string stablef there exist clas«C functions « and 3 such
o = Arxo + Bru, (10) that, for any initial statez(0) € R(»*+Y" and anyu, € L,

with state vectorzg = (eg w9 ag ug T, external platoon _ _
input u, = &, and the Snatrice:aﬁlT and)BT defined accord- |41 — 1T, < elur(®lle,) + B(2(0) — ),
ingly. Consequently, (9) represents a nonminimal reatimat Vie Sy andVm e N,
in which eg(t) = eo(0) is a dummy state, having no furtherIf in addition, withz(0) = z it also holds that
influence since the first column of both, and A; equals "’ '
zero. In the remainder of this briefy(0) = 0 is chosen.

The equilibrium state of (9) equalgy = (0 v 0 O)T
for u,. = 0, wherewg is a constant velocity. This equilibrium
is pnly marginally stable since the virtual referen_ce vighicy o systen(11) is strictly £, string stablewith respect to its
is in fact an uncontrolled vehicle model. Returning to thﬁ’lput up(t).
homogeneous platoon model (7), it can be easily established

thatlxi = Zo, With i = 1,2,...,m, is an equilibrium of the 14 continuous functiona : [0, a) — [0, 00) is said to belong to clask
vehicle platoon forxg = o andu,. = 0; in other words, the if it is strictly increasing andx(0) = 0.

lyi(t) — h(Zo)llz, < yi-1(t) — h(Zo)lz,:
Vie S,\{1} andVm € IN\{1}



4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Remarkl. Without principal consequences for Definition 1gondition, whereasP;(s) = C;(sI — A)~'B and O;(s) =
(11) could be further generalized with respect to the imterc C;(sI — A)~*. In view of the upcoming analysis?;(s) is
nection structure (or “topology”), so as to include mukipl thus assumed to be square, havihgnputs and/ outputs.
vehicle look-ahead or bidirectional interconnections. Also, without loss of generality, the equilibrium state =

Clearly, Definition 1 takes the external disturbangeinto (zh @ ... @) =0is chosen, henck(zo) = C;z = 0.
account, imposed by the virtual reference vehicle, thrahgh ~ Since (12) describes a controlled system, the matfix
class K function a(||u,(t)|z,), as well as initial condition IS typlca_lly Hurwitz. However,_ this may not be the case for
perturbations, through the clags function 3(||z(0) — z||), the mgtrler, rel_ated to t_he_thual reference v_ehlcle in case
where || - ||z, denotes the signap-norm [28] and || - | of vehicle fpllowmg. As indicated by (9), er mstgncelr
denotes any vector norm. It should be mentioned that orfk2S & marginally stable mode associated witt{besides the
initial condition perturbations are considered for whidte t Mmode associated with the dummy stagg. Hence, the system
norm ||z(0) — z|| exists, which limits the allowable classmatrix A in (13) is not Hurwitz. In the remal_nder of this
of perturbations in view of the fact that will be infinite- S€ction, however, itis assumed that the @y, A) is such that
dimensional fom — co. Furthermore, Definition 1 obviously Unstable (including marginally stable) modes are unolzssev
applies to both linear and nonlinear systems, and homogeneBY @ specific choice ot’;. Consequently, it suffices to only
as well as heterogeneous strings are included, providarg, gnalyze the output response to the external input in view of
instance, a rigourous basis for the string stability arialg§ String stability (or, equivalently, to assumg0) = z = 0), in
heterogeneous strings pursued in [29]. accordance with the following remark.

It is important to note that Definition 1 closely resembleRemark2. Consider the system (11a), (11b), but with a single
the common input—output of,, stability definition as far as output vectory, = h(xy), 1 < k < m. Then this system is
(nonstrict)£,, string stability is concerned, except for the fact, stable if
that the norm requirements must hdlor all string lengths i i
m > 1. This is essential to string stability, indicating that a ly(t) = h(@o)lle, < arlllur(®)lle,) + Bi(llz(0) — z[)
string-stable system is scalable [9]. with class K functions oy, and ;. When (11a) and (11b)

The notion of strictC,, string stability, for which not only the represent a linear system, the existencexpfiimplies that3,
first but also the second inequality in Definition 1 must holaxists, provided that unstable and marginally stable mades

has been introduced to accommodate the common requirem@ibservable [30]. Since this statement holds for famyS,.,,
of upstream disturbance attenuation. Note thatl has been it also applies tax and 8 in Definition 1.

echuded in the requirement for strict string stability cgn Adopting theL, signal norm for string stability, it follows
the V|_rtual re_fer(_ence _system (11a) doe_s not _have an outpu (15), that, withz(0) = 0,
associated with it, which would be practically irrelevant.
lyi (Ol 2. < 1P (o) llaea lur (E)]] 2.
B. String Stability Conditions for Linear Systems < max |12 (GG | |wr (E)] 2,5 Vi € Spy (16)

In order to derive string stability conditions for linear
systems, the linear, homogeneous version of (11) is coresigle
which, in lumped form, can be denoted by

using the fact that thé{,, norm (or s gain) || P;(jw)||#., is
induced by theCs norm on inputs and outputs. It is important
to note that (16) is not conservative, in the sense that there

Zo Ay 9 Zo B, is always a subsystere S, and a specific signat,.(t) for
Ty A1 Ao Ty 0 which the equality holds [28]. According to Definition L
o o B B (12) string stability of the interconnected system (13), (14)sth
i o A 4] \a,, 0 requiresmax;eg,, HPi(:jo.J)HHm to .e_xist for allm € IN, being
_ a necessary and sufficient condition.
or, in short, For further analysis, a specific type of interconnectiorotop
= Ar + Bu, (13) ogy will be adopted, as mentioned in the following remark.
with = = (xg P I]n)T, and the matricesdA and B Remark3. In the case of a look-ahead topology, such as

defined accordingly. The matrice$,, A;, A4,, and B, can, described by (12), the interconnection is unidirectiofraim
e.g., be chosen identical to those used in (8) and (10). Which it directly follows that if the infinite-length stringas

addition, consider linear output functions according to a bounded output response to a bounded input, then all finite-
, length strings as a subset thereof have a bounded response as
yi=Ciz, 1€ Sp (14)  well. Therefore, it suffices to only regard — oo for string
with output matricesC;. The model (13), (14) can then beStability assessment, implying that the sets Sy, m € IN,
formulated in the Laplace domain as follows: can be reduced to a single set IN.

. B . . As a result, the interconnected system (13), (14)4sstring
gi(s) = Pi(s)in(s) + Oi(s)2(0), 1€ Sm  (15)  gapie if and only ifsup; e || Pi(jw)||.. exists. The clasg

with outputsy;(t) € R’ and exogenous inpui,(t) € R, function « in Definition 1 can then be chosen as

whose Laplace transforms are denotedgys) and ..(s), )

with s € C, respectivelyz(0) € R(™*+Y" denotes the initial alllur(®)lle.) = (52§|Pi(3w)”%oo) lur@ll .- (A7)
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Because of the linear form af in (17), this type of string Remarkd. Whenu,. € R andy; € R, i € N\{1}, andI'(s) =
stability may be referred to as finite-gaify string stability, P;(s)P, " (s), i € N\{1}, is independent of, then
similar to the notion of finite-gairC, stability. }
The existence of the supremum of the gain can be further 1 Pi(jw) |7 = sup {|L(jw)|"~" [Py (jw)|} (23)
analyzed by factorization, leading to the theorem belowaAs v
preliminary to this theorem, thetring stability complementary due to (20). Consequently,P;(jw)|#.. exists for alli €
sensitivityis introduced first. From (15), it directly follows thatiIN\ {1}, if and only if |P; (jw)| < oo and |T'(jw)| < 1 for
(with z(0) = 0) all w, rendering the interconnected system striafly string
. . stable. Note that the necessity of these conditions onlgshol
9i(s) = Ti(s)i-1(s) (18) in the absence of poles @t (s) on the imaginary axis, being
canceled by zeros df(s) since, in that casesup,, | P (jw)|
is unbounded whereasip, |T'(jw)'~! P;(jw)| may not be.

Li(s) = Pi(s) B (s) (19) It thus follows that for linear unidirectionally coupled ho
mogeneous systems with scalar input and outgygt,string
stability and strictC, string stability are equivalent.

Until now, only Lo string stability has been considered.
Theorem 1. Let (13), (14) represent a linear unidirectionally Physically, this can be motivated by the requirement of gyer
interconnected system for which the input—output behasiordissipation along the string. Obviously, the induegd norm
described by(15). Assume that the paifC;, A) is such that can be used instead. In the scope of vehicle following, the
unstable and marginally stable modes are unobservable anwtivation for using this norm would be traffic safety, since
that P;(s) is square and nonsingular, for alle IN. Then the the L., norm is directly related to maximum overshoot. The

with the string stability complementary sensitivity

assuming functional controllability of (15), i.e2* (s) exists.
The following theorem can now be stated.

system(13), (14) is L. string stable if conditions forL., string stability can be derived as follows.
1) ||P(jw)|s. exists; Let p;(t) denote the impulse response matrix, corresponding
2) HD(]’W)IIHOO <1, Vie N\{l}; to the transfer functiod; (s). Then, from linear system theory
with Fi(s) as in(19). Morepyer, the system is strictlis string (6. = s ()] 2o (24)
stable if and only if conditions 1 and 2 hold. Pilt)lle, = ey [ar )z

Proof: Using (15), (18), and (19), the input—output reIaConsequentIy

. o ) the interconnected systentjs string stable
tion for a specific subsysterin> 2 can be formulated as

if and only if sup;cp [|pi(t)|| 2, exists. The clas& function
i « in Definition 1 can then be chosen as
9i(s) = Pi(s)ir(s) = (H Fk(s)> Pi(s)ir(s).  (20)
= ol lle.) = (sup IOl )l Olee. @5

Having factorizedP;(s) in this way, the submultiplicative )
property dictates that This leads to the following theorem.

i Theorem 2. Let (13), (14) represent a linear unidirectionally
12 (G |3 < <H ||Fk(jw)||?-[x> |P1(jw)|%... (21) interconnected system for which the input—output behagior
k=2 described by(15). Assume that the paifC;, A) is such that

Consequently, under the conditions 1 and 2 in Theorem L%nstable and marginally stable modes are unobservable and
t

sup;en || Pi(jw)||n.. €xists. Because it is also assumed tha! . . .
unstable and marginally stable modes are unobservabld forSXSten(B)' (14) 'S_ Lo string stable if
i € N, the linear system i€, string stable, according to 1) [[p1(t)llz, exists;

Definition 1 and Remark 2, while using (17). Moreover, from 2) [vi(t)llz, <1, Vie N\{1};

at P;(s) is square and nonsingular, for alle IN. Then the

(18) and condition 2, it follows that wherep (t) and~; (t) are the impulse responses corresponding
. to P;(s) andT;(s), respectively, with'; (s) according to(19).
i@l < lyimr@)lco,  Vie N\{1} (22)  Moreover, the system is strictl§l, string stable if and only
which yields the interconnected system stricty string f conditions 1 and 2 hold.
stable. The necessity of the conditions 1 and 2 for stfigt Proof: Applying Young’s inequality for convolutions, the
string stability is immediate. B proof is similar to that of Theorem 1. [ ]

Itis noted that condition 2 closely resembles the well-know  Again, Theorem 2 only provides sufficient conditions for
string stability criterion (1). As such, Definition 1 togettwith  ~_string stability. Note that, using a Lyapunov-stability- ap
Theorem 1 provide a rigorous basis for this criterion. Thet faproach for linear systems, [31] discusses the relation eetw
that Theorem 1 only yields sufficient conditions 65 string o and £, string stability, the main results of which can
stability is basically due to the submultiplicative progein pe extended to the new framework by defining the output
specific cases, however, the conditions become also negessa 1o contain all states; (subject to the remark in the next

as shown below. subsection), while focussing on initial condition periatibns.
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C. Discussion Ui_1 U;

From the previous section, it is clear that the performance-
oriented approach to string stability [17]-[25] is captlre

. - - P B I I vehicle 0 -
by Definition 1 as a special case for linear, unidirectignall ‘ ‘ : ‘ veee o A
interconnected systems. In addition, the Lyapunov-stabil %i-1 G K i g1 i G l 4,
approach [7]-[10] is captured as well by the inclusion of — w

initial condition perturbations in the definition. An appat i T T T T T T T T
difference, however, is that the Lyapunov-stability ammio
focusses on the system states, whereas Definition 1 regards
the outputs. Nevertheless, there is no essential limitaito
choosing the output so as to include all states, albeit th@é. 2. Block scheme of a controlled platoon vehi¢le: 1 and of the virtual

the string stability complementary sensitivity can no leng reference vehicle, indicated by the index 0.

be computed using (19). In the framework of infinite-length

interconnected systems [11]-[16], string stability regsithe

states to (exponentially) decay both over time and systdRf reference vehicle appears to be unobservable. Using the
index as a result of initial condition perturbations. As lsuc Plock scheme in Fig. 2, the string stability complementary
it can be argued that such behavior corresponds to striogstrsensitivityI';(s) = I'(s) (independent of) now satisfies

stal_)il_it_y as in Definition 1. ng_marizing, while the exigfin X R 1 K(s)G(s) + D(s)

definitions are adequate, Definition 1 encompasses those. L(s) = ai(s)/ai-1(s) = H(s) 1+ K(5)G(6) (30)

V. STRING STABILITY OF VEHICLE PLATOONS Because of the specific choice for the virtual reference

In order to analyzets string stability of the platoon modelvehicle model,I'(s) also equals the transfer function from
2 _ _ do(s) t0 @y (s). It therefore follows that, using (9),

(7), (9), P, (jw) andl’;(jw) need to be determined. To this end(,lo(s) 0 a1 (s) erefore follows that, using (9)

the frequency-domain model of a controlled platoon vehicle i (s) = T(s)éio(s) = I'(s) 1 i (s)
is formulated first by introducing the vehicle transfer ftioo ne O T H) s+ 17
G(s) = ¢i(s)/14(s), according to: := Py(s)dip(s) (31)
G(s) = _ (26) from which it directly follows that|| P, (jw)||~.. exists when
s2(ts+1) o

IT(jw)||n.., exists, due to the submultiplicative property of
which follows from ¢; = —1§; + Lu;, see (4), thespacing the H., norm and the fact that?—'(s)(rs + 1)~' is a
policy transfer functionH (s) = &;(s)/;(s) derived from (5): stable transfer function (provided that > 0). It follows
from (30) that without delayD(s) = 1), [|[T'(jw)||#.. €xists,
H(s) = hs +1 (27)  since IT(jw)|l%. = sup, |H '(jw)] = 1. According to
and the feedback lak (s) with input é(s), defined in (6):  Theorem 1, the system without delay is thus strigtlystring
) stable for any choice of controller gains and time headway.
K(s) = kp + kas + kaas™. (28) Note that, if u, = 0 and the virtual reference vehicle

A controlled vehicle is then represented by the block schem@@S @ constant velocityy, the states of all vehicles in
as shown in Fig. 2. The occurrence Hf(s) in the feedback the p[atoon W|Il_asymptTot|caIIy converge to the equilibriu
loop can be readily explained by considerifycas depicted in ;tate:vo N _(O Yo 0 O,) ; see Section Il In other words,
the block scheme, which equals, using (27), ime—0 (0i(jw) — 0i-1(jw)) = 0. Hence,

Gi(t) = Li + i + i (t) + hog(t). (29) Jim [T(jw)[ = 1= [[T(jw) . > 1 (32)

Consequentlyg; can be interpreted as the “virtual controlwhich is why the strictC,, string stability inequality in Defini-
point” of vehiclei, that must converge to the actual positiotion 1 includes the equality. As a consequence, howevargstr
qi—1 of the preceding vehicleé — 1. Furthermore, since the stability robustness with respect to, e.g., model unasiits,
frequency-domain approach allows for the inclusion of may be poor in case these uncertainties cal¥gw)| to
latency 6 induced by the wireless communication networkincrease in the lower frequency region.
the block scheme also includes a time delafs) = e~%%. As already mentioned, wireless communications exhibit
The virtual reference vehicle (9) is now described by thatency, which in general increases with increasing commu-
series connection off ~(s) and G(s), indicated in Fig. 2 nication load. This time delay compromises string stabilit
by “vehicle 0, with u,(t) = £ (¢) as external input. Conse-[32], as illustrated in Fig. 3(a), showing the gaii(jw)| for
quently, the vehicle platoon has a scalar inputupon which a various values of the time deld#y Here,7 =0.1s, k, = 0.2,
scalar output needs to be selected according to Theorem 14fc= 0.7, k4q = 0, andh = 0.5 s, yielding asymptotic stability
this endy;(t) = a;(t) is chosen since the acceleration is phyf the platoon; see also Section VI.
ically relevant on the one hand, and guarantees the exestédfnc  Fig. 3(b) illustrates the influence of the time headway on
||P1(jw)|l#., on the other, as will be shown later. Moreoverstring stability in the presence of a communication delay,
with this output, the marginally stable mode associatedh wishowing the maximum communication del@y., that yields
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Fig. 3. Lo string stability properties: (a) string stability complentary
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as a function of headwaj.
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Fig. 4. L string stability properties: (a) impulse responsét) for
communication delay (solid black) = 0s, (dashed blackp = 0.15s,
(grey) 6 = 0.3 s, and (b) maximum delagmax as a function of headwaj.
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Fig. 5. String stability complementary sensitivity magui¢ |I'(jw)|: (solid
black) CACC measured, (solid grey) CACC theoretical, (édshlack) ACC
measured, (dashed grey) ACC theoretical.

since, from linear system theorT"(jw)||x.. < 17(®)]z,-

V1. EXPERIMENTAL VALIDATION

To validate the theoretical results and to demonstrate its
technical feasibilityy, CACC has been implemented in six
passenger vehicles [27], equipped with IEEE 802.11p-based
wireless communication, allowing for communication of the
desired vehicle acceleration at an update rate of 10 Hz.

The test vehicle model has been identified as [27]:

1
52(7'5—1-1)6
with 7 = 0.1s and ¢ = 0.2s, the latter leading to an
adaptation of (26) so as to include this time delay. Consider

G(s) = e (33)

IT'(jw)| < 1, as a function of time headway. This result is stability of the dynamics (7), speed of response, and cdmfor
calculated by taking a fixed value férand then searching for suitable controller gains were found to g = 0.2 and
the smallest value ot such thafl|T'(jw)||.. = 1. The given k; = 0.7, with k4 = 0 to avoid feedback of the jerk, which
system falls into the category as mentioned in Remark 4esings in practice unfeasible. The communication delay apgkare
first, y;,u, € R Vi € N, second,I'(jw) does not depend to bed ~ 0.15s. Using the analysis presented in Section V,
on the vehicle index, and, third, it follows from (31) that h = 0.7s is chosen, just achieving strict string stability.

Py (s) does not have poles on the imaginary axis that might Focussing onZ, string stability, a test is carried out using
be canceled by zeros in the prodlick) P, (s). Consequently, a prescribed acceleration profilg(¢), as described in [27],

| P1(jw)|n. < oo and|I'(jw)| < 1 together form necessarybased on which the input,(t) has been calculated through

and sufficient conditions for (strict], string stability.

differentiation, employing the dynamic inverse of (9). The

Regardingl., string stability, applying the inverse Laplacemeasured response has subsequently been used to determine
transform to (31) to obtain the impulse response, and sub$efjw)|, employing Welch's averaged periodogram method
quently using Young'’s inequality for convolutions, it cap b[33]. The result is depicted in Fig. 5 for two casesith
shown that||p,(t)||z, exists when||v(t)||z, exists, similar to the communicated desired acceleratign; of the preceding
the result obtained for the existence |pP; (jw)||#... Since vehicle andwithout (i.e.,u; 1 = 0), referred to as CACC and
I'(s) = H~!(s) without communication delay, the impulseACC, respectively. Also the theoretical gain (30) is shown.

response equalg(t) = h~'e~/". Hence|y(t)]z, = 1,

The benefit of CACC in view ofZ, string stability is clearly

rendering the system strictlf., string stable for all time illustrated, validating the theoretical analysis in SewtilV.

headways and controller parameters according to TheoremAlother important observation is that string stability nrapt
Again, communication delay compromisés, string stabil- always be easy to assess in practice, sjii¢gv)| will be close

ity. Using the same parameter values as before, Fig. 4(ashdo 1 for low frequencies, see (32), as a result of which esti-

the impulse response(t) for various values of the delag,
calculated using the inverse Fourier transfornT'¢jw) from
(30). It appears that~(t)||z, is an increasing function o,
the effect of which is illustrated in Fig. 4(b), showing thexa
imum communication dela#,. that yields||y(¢)||z, <1, as
a function of the time headwaly. Apparently,||v(¢)|z, <1
is a more stringent criterion thal" (jw)|l%.. < 1, requiring

mation inaccuracy may compromise the second string stabili
criterion from Theorem 1. In this experiment, estimatioroes
also cause the impulse response function, computed using th
inverse Fourier transformation, to be inaccurate. Theegfo
L~ string stability is not further investigated here.

In addition to the time responses shown in [27], Fig. 6 shows
the velocity response to a constant acceleration of the lead

a significantly larger time headway. This could be expecteghicle for both ACC and CACC, which clearly illustrates
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Fig. 6. Measured velocity response at startup (black—lkighy: vehicle 1-6):
(a) ACC and (b) CACC.
[12]

string stability in case of CACC and the lack thereof for AC 13]
Noteworthy is the observation that with ACC, the last vehicl
starts to accelerate after 15.5s, whereas with CACC, this is
already after 8.5, showing that CACC may also be effectiV¥!
at traffic lights.
[15]
VIl. CONCLUSION

A novel string stability definition was proposed, on the basj16]
of the notion of £, stability, which applies to both linear
and nonlinear systems, while accommodating initial cooit [17;
perturbations as well as external disturbances, indepgnde
of the interconnection topology. The definition appeared to
provide a rigorous basis for well-knowf, and £, string 18]
stability conditions for linear, unidirectionally intevnnected
systems.

Next, the string stability properties of CACC for vehicld®®!
platoons were analyzed, showing that time gaps well below
1s were admissible. To assess string stability in practick a
to demonstrate the technical feasibility of CACC, experitse (20]

were conducted using a test fleet of six passenger vehicles.

As a result, a time headway of 0.7s appeared to yield striet]
Lo string-stable behavior, in accordance with the theorktica
analysis, which also indicated that time gaps down to O.
are feasible when minimizing the latency of the wirelesk.lin
Such small time headways, however, will require insight int
the string stability margins in the presence of uncertamtr
unknown disturbances, which will be the subject of further

research.
[24]
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