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Abstract. The automatic verification of kinship is a challenging problem that

recently attracted much interest in computer vision, the kinship verification has

become an active research field due to its potential applications such as organizing

photo albums and images annotation, recognizing resemblances among humans

and finding of missing children. In this paper, we propose an approach which

takes two images as an input then give kinship result (kinship / non-kinship) as

an output.This approach based on the Local Phase Quantization (LPQ) and Local

directional pattern (LDP) features descriptors and the ML (Multi-Level) represen-

tation for the kinship verification from facial images, this work consists six stages

which are : (i) face preprocessing, (ii) features extraction, (iii) face representation

(iv) pair features representation and normalization, (v) features selection and (vi)

kinship verification. Experiments are conducted on four public databases (Cor-

nell KinFace, UB Kin database, KinFace-I, and KinFace-II). The obtained results

are good compared with state-of-the-art approaches.
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1 Introduction:

Over the past two decades, a large number of face analysis problems have been investi-

gated in the computer vision and pattern recognition community. Facial images convey

many important human characteristics, such as identity, gender, expression, age, eth-

nicity and so on. Kinship verification from facial images is an interesting and challeng-

ing problem, Indeed, there are several types of kinship relationships: father-daughter

relationship (F-D), mother-son (M-S), father-son (F-S) and mother-daughter (M-D).

Nowadays, the recognition of these familial relationships has become an active area

of research and it has much application such as organizing photo albums and images

annotation, recognizing resemblances among humans and finding of missing.

There are many studies have been conducted on kinship verification from facial

images which can be categorized based on the type of feature extraction and the sim-

ilarity algorithms. Fang et al. [5] proposed a system for kinship verification based on

PSM (Pictorial structure model) feature extraction and selection methods and they used

KNN for the classification phase, they obtained a promising result on the Cornell Kin-

Face database. Xia et al. [13] used another database named UB KinFace which contains



the images of the child, young parent and old parent faces, using an extended transfer

subspace learning method to mitigate the enormous divergence of distributions between

children and old parents, and an intermediate distribution was used to close to bridge

and reduce the divergence between the sources distributions.

Another interesting work was proposed by Shao et al. [10] where they used the

version 2 of UB KinFace database to verify the kinship based on robust local Gabor fil-

ters to extract genetic-invariant features. In other words, a metric and transfer subspace

learning were adopted to abridge the discrepancy between children and their old par-

ents. Lu et al. [8] proposed a neighborhood repulsed metric learning (NRML) method

for kinship verification. In addition, they proposed a multi view NRML (MNRML)

method to seek a common metric distance in order to better use of the multiple descrip-

tor features, they applied their method on The KinFaceW-I and KinFaceW-II datasets.

Yan et al. [15] proposed a discriminative multi metric learning method for kin-

ship verification. First, they extracted multiple features using different face descriptors,

then, they jointly learned multiple distance metrics with these multiple extracted fea-

tures under which the probability of a pair of face images where the kinship relation

having a smaller distance than the pair that has not a kinship relation. In this work,

they applied their method on two databases: Cornell KinFace and UB Kin database.

Yan et al. [16] proposed a new prototype-based discriminative feature learning (PDFL)

method for kinship verification, this method aims to learn discriminative mid-level fea-

tures where they constructed a set of face samples with unlabeled kinship relation from

a wild dataset which considered as the reference set. Then, each sample in the training

face kinship dataset is represented as a mid-level feature vector, where each entry is the

corresponding decision value from one SVM, they applied their method on both Cornell

KinFace and UB Kin databases.

Wang et al. [12] proposed a deep kinship verification (DKV) model by integrating

excellent deep learning architecture into metric learning. They employed a deep learn-

ing model which was followed by a metric learning formulation to select nonlinear

features, which can find the appropriate project space to ensure that the margin between

the negative sample pairs (i.e. parent and child without kinship relation) and the pos-

itive sample pairs is larger as possible, they applied their method on The KinFaceW-I

and KinFaceW-II datasets. Zhou et al. [17] proposed an of ensemble similarity learning

(ESL), first they introduced sparse bilinear similarity function to model the relative of

the encoded properties in kin data. The similarity function parameterized by a diago-

nal matrix enjoys the superiority in computational efficiency, making it more practical

for real-world high-dimensional kinship verification applications. Yan [14] proposed

a neighborhood repulsed correlation metric learning (NRCML) method by using the

correlation similarity measure where the kin relation of facial images can be better

highlighted.

The rest of the paper is organized as follows: Our method is introduced in section 2.

Then, the experimental results are presented to demonstrate the efficacy of our proposed

methods in section 3. Finally, we conclude our work in section 4.



2 Proposed method

The kinship verification is the operation of using two persons faces to find if there

is a familial relationship between them. Our proposed method consists of six stages

which are : (i) face preprocessing, (ii) features extraction, (iii) face representation, (iv)

pair features representation and normalization, (v) features selection and (vi) kinship

verification. Fig. 1 illustrates the general structure of the proposed framework.

Fig. 1: General structure of the proposed Method.

2.1 Face preprocessing

In the face preprocessing, we applied the Haar cascade object detector that uses the

Viola-Jones algorithm [11] in order to detect the face region, then we detected the face

landmarks using Ensemble of Regression Trees (ERT) algorithm [7]. The locations of

the two eyes are used to rectify the face 2D pose by applying a 2D similarity transform

on the original face image [2]. Like in [3], we set the parameters kside = 0 : 5,

ktop = 1 and kbottom = 1 : 75 to crop the face region of interest (ROI).

2.2 Features extraction

In this stage , we extracted the features by using two different texture descriptors (LDP

and LPQ) , and for the face representation we used the ML for increased number of

features

Local Directional Pattern (LDP) : is an eight-bit binary code assigned to each pixel

of an input gray scale image. The pattern is calculated by comparing the relative edge

response value of a pixel in different directions. The eight directional edge response val-

ues of a particular pixel are calculated using Kirsch masks in eight different orientations

(M0 −M7) centered on its own position [6]. These masks are shown in Fig.2.
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Fig. 2: Eight directions Kirsch edge masks

By applying eight masks, eight edge response values will be obtained m0, m1, ...,

m7, each one represents the edge significance in its respective direction. The response

values are not equally important in all directions. In order to generate the LDP code-

words, a k value must be given. Then, the top k values of |mj | are set to 1, and the

rest 8 − k values of |mj | are set to 0. LDP code for each pixel is calculated using the

formulas below:

LDPk =

7
∑

i=0

bi(mi −mk) · 2
i (1)

bi(a) =

{

1 if a ≥ 0
0 otherwise.

(2)

where mk is the k − th most significant directional response. After computing the

LDP code for each pixel (r, c), the histogram H of the image I is represented using this

equation:

H(τ) =

M
∑

r=1

N
∑

c=1

f(LDPk(r, c), τ) (3)

where τ is the ldp code value. The number of ldp histogram bins is calculated as

follow:

Nbins =
8!

k! · (8− k)!
(4)



Fig. 3: Image conversion to LDP and LPQ

Local Phase Quantization (LPQ) : A texture descriptor called LPQ was proposed in

[9]. It is based on the application of STFT. The advantage in STFT is that the phase

of the low frequency coefficients is insensitive to centrally symmetric blur. The spatial

blurring is represented by a convolution between the image intensity and a PSF. The

LPQ descriptor uses the local phase information extracted by the 2-D DFT or, more

precisely, a STFT computed over a rectangular M − by−M neighborhood Nx at each

pixel position x of the image f(x) defined by this formula:

F (u, x) =
∑

y∈Nx

f(x− y)e−j2πuT y = wT
u fx (5)

where wu is the basis vector of the 2-D DFT at frequency u, and fx is another vector

containing all M2 image samples from Nx.

The local Fourier coefficients are computed at four frequency points u1 = [a, 0]T ,

u2 = [0, a]T , u3 = [a, a]T , and u4 = [a,−a]T , where a is a scalar frequency below the

first zero crossing of H(u) that satisfies the condition H(ui) > 0. So a vector obtained

for each pixel, will be built like in this formula:

Fx = [F (u1, x), F (u2, x), F (u3, x), F (u4, x)] (6)

The phase information in the Fourier coefficients is recorded by observing the signs

of the real and imaginary parts of each component in F (x). This is done by using a

simple scalar quantization which presented in this formula:

qj =

{

1 if gj ≥ 0
0 otherwise.

(7)

where gj is the j th component of the vector G(x) = [Re{F (x)}, Im{F (x)}]. The

resulting eight binary coefficients qj represent the binary code pattern. This code will be

converted to decimal number between 0-255. From that, the LPQ histogram will have

256 bins [4].

2.3 Face representations ML (Multi Level) :

The most common face representation in computer vision is a regular grid of fixed size

regions which called MB representation. MB face representation divides the image into



n2 blocks where n is the intended level of MB. Fig. 4 shows the feature extraction

procedure using LPQ descriptor with ML representation, level 4 [1].

Fig. 4: Exemple: Multi-Level Local Phase Quantization level 4

Recently, a similar representation called ML representation used in the age esti-

mation and gender classification topics. ML face representation is a spatial pyramid

representation which constructed by sorted series of ML representations. The ML face

representation level n is constructed from level 1, 2 , ... n ML face representations. Fig.

4 illustrates the ML face representations.

2.4 Pair features representation and normalization:

After extracting the features, we normalized the features of each pair (child / parent)

using the formula given below:

Fnorm =
F

√

∑N

j=1
F (j)

(8)

Then this two feature vectors (child / parent) are presented as one feature vector

using this formula:



F = |Fchild − Fparent| (9)

where F , Fchild, Fparent are the new feature vector, the feature vector of the child and

the feature vector of the parent respectively.

2.5 Features selection:

For the feature selection, we used a linear discriminant approach based on Fisher’s

score, which quantifies the discriminating power of features. This score is given by:

Wi =
Nk(mk − m̄)2 +Nn(mn − m̄)2

Nk.σ
2

k +Nn.σ2
n

(10)

where Wi is the weight of feature i, m̄ is the feature mean, NX is the number of

samples in the kinship class (k → kin / n → non-kin), mX and σ2

X are the mean and the

variance of the kinship class in the intended feature. The features are sorted according

to their weight.

2.6 Kinship verification:

Support vector machines (SVM) constructs a hyperplane or set of hyperplanes in a

high- dimensional space, which can be used for classification, regression. Intuitively, a

good separation is achieved by the hyperplane that has the largest distance to the nearest

training-data point of any class (so-called functional margin), since in general the larger

the margin the lower the generalization error of the classifier. We used the binary SVM

to train and test our proposed approach; the two binary classes are either there is a

kinship relationship or not which are represented by 1 and 0 respectively.

3 Experiments

To evaluate the performance of the proposed method, we used four publicly available

databases (Cornell KinFace, UB Kin database, KinFace-I, and KinFace-II).

3.1 Experimental Settings:

The Cornell KinFace database was created by Fang et al. [5]. It consists of 286 images

and 143 positive pairs. The pairs are distributed as follows: 67 F-S (Father-Son), 32 F-D

(Father-Daughter), 18 M-S (Mother-Son), and 26 M-D (Mother-Daughter).

The UB KinFace database was created by Shao et al. [10], and it has two versions

(Ver1.0 and Ver2.0). The Ver2.0 contains 600 images and 400 positive pairs. Those

pairs are a composition of 180 F-S, 159 F-D, 22 M-S, and 39 M-D.

Lu et al. [8] provided the researchers with two databases called: KinFaceW-I and

KinFaceW-II. The KinFaceW-I contains 1066 images and 533 positive pairs with the

following distribution : 156 F-S, 134 F-D, 116 M-S, and 127 M-D. On the other hand,



KinFaceW-I has 2000 images and 1000 positive pairs. It has a balanced pairs distribu-

tion with 250 pairs for each kin relationship.

The negative pairs which used in these experiments are selected randomly taking

into consideration the distribution of the relationships. Also, the 5 folds are selected

randomly take into account the distribution of the relationships.

3.2 Experimental Results:

The experimental results on the used databases are summarized on Fig. 5a, which shows

that the accuracy proportionally related with the increase of the number of the selected

until an optimal value, then the accuracy decreases and finally stabilizes. The expla-

nation of these transitions is: in the first hand the selected features are very few and

each time we add more selected features the accuracy becomes better until the optimal

features number. The phenomena of the decreasing accuracy after the optimal features

number is because of the adding less relevant features decreases the accuracy. From

other hand, the use of ML-LPQ outperforms the use of ML-LDP with the varying of

the number of selected features for all of the used databases. The difference between

the two descriptors is very huge for both UB and Cornell databases, which is about 20

% and 33 % for UB, and Cornell databases ,respectively.

The Figure (5b) shows the different training speed for each database using the two

feature extraction methods (ML-LPQ and ML-LDP). We can notice two notes from

the results; first, the training time increases with the number of the selected features.

Secondly, the databases that contains more samples takes more time in the training

phase.
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Table 1: A comparison of the proposed approach with other kinship verification ap-

proaches

Year Approach
Databases

Cornell KinFace UB KinFace KinFace W-I KinFace W-II

2010 PSM[5] 70.67 % - -

2011
TL[13] - 60.00 % - -

TSL[10] - 69.67 % - -

2014

PDFL [16] 71.90 % 67.30 % - -

DML [15] 73.50 % 74.50 % - -

MNRML [8] - - 69.90 % 76.5 %

2015 DKV [12] - - 66.90 % 69.50 %

2016 ESL [17] - - 74.10 % 74.30 %

2017 NRCML [14] - - 65.80 % 65.80 %

2018
Proposed

LPQ ML
82.86 % 73.25 % 75.98 % 77.20 %

The comparisons of our proposed approach with the state of art methods are summa-

rized on Table (1). From that Table we observe that our approach (ML-LPQ) performs

better than the state of the art methods for the Cornell, Kinface W-I, and Kinface W-II

databases. However, for the UB database, our proposed approach has the second best

accuracy, and the difference with the best method is very small.

The Fig. (6) is an example of testing our method to verify the kinship between the

persons on the picture.

Fig. 6: Example of kinship verification application

4 Conclusion:

In this paper, we described a novel approach for kinship verification based on the de-

scriptors LDP and LPQ with ML representation. The experimental results showed that

our approach provides a better performance than previous approaches. As a future work,

we propose to use of other descriptors with PML representation. Also, we envision the

use of other pair feature representations as well performing different scenarios of ex-

periments such as cross-database experiments.
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