
LPROF: A NON-INTRUSIVE REQUEST FLOW PROFILER FOR DISTRIBUTED SYSTEMS

by

Xu Zhao

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

c⃝ Copyright 2015 by Xu Zhao

Abstract

lprof: A Non-intrusive Request Flow Profiler for Distributed Systems

Xu Zhao

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2015

Applications implementing cloud services, such as HDFS, Hadoop YARN, Cassandra, and HBase, are mostly

built as distributed systems designed to scale. In order to analyze and debug the performance of these systems

efficiently, it is essential to understand the performance behavior of system requests, both in aggregate and indi-

vidually.

lprof is a profiling tool that automatically reconstructs the execution flow of each request in a distributed

application. It infers the execution-flow from logs and binary code and thus does not require any modifications to

the application. lprof first statically analyzes an application’s binary code to infer how logs can be parsed so that

the dispersed and intertwined log entries can be stitched and associated to specific individual requests.

We evaluate lprof on the four widely used distributed services mentioned above. The result shows that lprof ’s

precision in request extraction is 90%, and lprof is helpful in diagnosing 65% of the random sampled real-world

performance anomalies.

ii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Professor Ding Yuan for his support of

my study and research. His motivation, patience and endeavour keeps inspiring me. Secondly, I wish to thank

my committee members, Professor Michael Stumm, Professor Stewart Aitchison and Professor Ashvin Goel, for

their valuable comments and positive feedbacks. They help me realize my real potential and personal value. I

would like to thank my colleagues Yongle Zhang, David Lion and Jenny Ren, for working with them is a joy.

I would never have come this far without supports from my friends and family. I want to express my thanks

towards Dai Qin, Wei Huang and Gang Hu,who cheers me up during my hard time. I would like to thank my

wife Yingxue Zhang for her precious comfort, gentleness and love. Finally, I want to thank my parents for their

supports, both materially and mentally.

iii

Contents

1 Introduction 1

2 Background 6

2.1 Distributed System . 6

2.2 Static Program Analysis . 7

2.3 MapReduce Job . 7

3 Motivating Example 9

4 Overview of lprof 12

4.1 Static Analysis . 13

4.2 Distributed Log Analysis . 15

5 Static Analysis 17

5.1 Parsing Log Printing Statements . 17

5.2 Identifying Request Identifiers . 18

5.3 Partial Order Among Log Points . 20

5.4 Thread Communication . 21

5.5 Summary of Static Analysis . 22

6 Log Analysis 24

6.1 Map: Intra-thread Grouping . 24

6.2 Combine and Reduce: Inter-thread Grouping . 25

6.3 Request Database and Visualization . 26

7 Evaluation 28

7.1 Static Analysis Results . 28

7.2 Request Attribution Accuracy . 29

iv

7.3 Real-world Performance Anomalies . 31

7.4 Time and Space Evaluation . 33

8 Limitations 34

9 Related Work 36

10 Conclusion and Future Work 38

Bibliography 40

v

List of Tables

7.1 The systems and workload we used in our evaluation, along with the number of log messages generated. . . 28

7.2 Static analysis result. : in these two columns we only count the log points that are under the default verbosity

level and not printed in exception handler — indicating they are printed by default under normal conditions. 29

7.3 The accuracy of attributing log messages to requests. 29

7.4 Evaluation of 23 real-world performance anomalies. 31

7.5 The most useful analyses on real-world performance anomalies. The percentage is over the 15 anomalies

where lprof is helpful. An anomaly may need more than one queries to detect and diagnose, so the sum is

greater than 100%. 31

7.6 Log analysis time and memory footprint. For the parallel map and combine functions, numbers are shown

in the form of median/max. 33

vi

List of Figures

1.1 One row of the request table constructed by lprof containing information related to one request. The “node

traversed” column family [9] contains the IP address, the starting and ending timestamp on each node this

request traversed. In this case, the HDFS writeBlock request traverses three nodes. The “log sequence ID”

column contains a hash value that can be used to index into another table containing the sequence of log

printing statements executed by this request. 4

2.1 Part of an HDFS log. Request identifiers are shown in bold. Note that the timestamp of each message is not

shown. 7

3.1 lprof ’s analysis on HDFS’ performance. 10

4.1 Code snippet from HDFS that handles write request. 13

4.2 Overall architecture of lprof . 13

4.3 How “BP-9..9:blk_5..7_1032” is printed. 15

5.1 Request identifier analysis for the HDFS example of Figure 4.1. When analyzing writeBlock(), the re-

quest identifier candidate set (RIC) from its callee receiveBlock() is merged into its own set, so the cu-

mulative count of poolID and blockID is increased to 8, 4 comes from receiveBlock() and 4 comes

from the log points in writeBlock(). Since generationStamp is in setGenerationStamp()’s

modified variable set (MV), it is removed from writeBlock()’s RIC set. 19

5.2 DAG representation of log points. 21

5.3 Output of lprof ’s static analysis. 23

6.1 The grouping of five log messages where four print a subset of request identifier values. 25

6.2 The RAs that combine 9 log messages from 6 threads on 3 nodes belonging to a single write request in HDFS. 25

6.3 The web application that visualizes a request’ latencies over time. 27

vii

7.1 The cumulative distribution function on the number of log messages per unique request. For Cassandra,

the number of nodes each streaming session traverses varies greatly, therefore the number of log messages

in each streaming session request also varies greatly (it eventually reaches 100% with 1060 log messages,

which is not shown in the figure). 30

7.2 Output size after map, combine, and reduce compared to the raw log sizes. The raw log sizes are also shown. 33

viii

Chapter 1

Introduction

Today large companies rely heavily on distributed systems. Distributed systems are software systems whose

components locate on a cluster of computers which can communicate with each other over network [15]. They

can provide higher parallelism because computers can cooperate to finish tasks in parallel. Distributed systems can

easily scale by adding more machines into the cluster. They also have higher reliability because of independent

failure of machines.

Because distributed systems have many advantages, they are widely used in real world production. Google

File System [19], developed by Google, is a distributed storage system working as a part of Google Cloud Plat-

form [18]. Apache Hadoop and its Hadoop Distributed File System (HDFS) [23] is an open source Java imple-

mentation similar to Google File System, which is used many big companies like Facebook, IBM and Twitter [24].

Tools that aid in analyzing performance behaviors of distributed systems are useful. They can trace user

requests to the system and extract profiling information such as user request latency, list of machines that are

involved in processing one user request, and so on. These profiling tools are helpful in that they can make more

efficient use of hardware resources, because optimizing system performance can help reduce the energy and

hardware cost of data centers, which can notably cut costs for large organizations. Also, profiling tools that can

help understand and improve distributed system performance is important because user request latency of the

system has significant business impact. For example, Google found an .5 seconds in search page generation time

dropped traffic by 20% and Amazon found every 100ms of latency cost them 1% in sales [2].

In this thesis, we present the design and implementation of lprof , a novel non-intrusive profiling tool aimed

at analyzing and debugging the performance of distributed systems. lprof is novel in that it does not require

instrumentation or modifications to source code, but instead extracts information from the system logs output

during the course of normal system operation. System logs are append-only files created and maintained by

running distributed systems and they contain system activity information. The format of these logs are defined in

the system code by developers, which is mainly natural language. lprof ’s novelty also appears in its capability of

1

CHAPTER 1. INTRODUCTION 2

automatically identifying each request from the logs and extract per-request profiling information such as request

latency and list of machines related with this request.

We hereby define a request as an independent execution flow in the system. For example, in HDFS [28], a

distributed file system, a daemon thread receives a network message from client instructing it to write a data block

into the distributed file system, which will further trigger multiple threads to be created on different machines. All

these threads triggered by this single client message attribute to one write data block request. Another example of

a request is that in HDFS there is an internal maintenance routine running periodically to check the consistancy

of the distributed file system. This single maintenance thread itself is a request because it is independent of all the

other executions.

Specifically, lprof is capable of reconstructing how each request is processed as it invokes methods, uses

helper threads, and invokes remote services on other nodes. We demonstrate that lprof is easy and practical to

use, and that it is capable of diagnosing performance issues that existing solutions are not able to diagnose without

instrumentation.

The output of lprof is a database table with one line per request as shown in Figure 1.1. Each entry in lprof ’s

output table includes (i) the type of the request, (ii) the starting and ending timestamps of this request, (iii) a list of

nodes the request traversed along with the starting and ending timestamps at each node, and (iv) a list of the major

methods that were called while processing the request. This table can be used to analyze the system’s performance

behavior; for example, it can be SQL-queried to generate gprof -like output [21], to graphically display latency

trends over time for each type of service request, to graphically display average/high/low latencies per node, or to

mine the data for anomalies. Chapter 3 provides a detailed example of how lprof might be used in practice.

Three observations lead us to our work on lprof . First, existing tools to analyze and debug the performance of

distributed systems are limited. For example, IT-level tools, such as Nagios [41], Zabbix [58], and OpsView [44],

capture OS and hardware counter statistics, but do not relate them to higher-level operations such as service

requests. A number of existing profiling tools rely on instrumentation; examples include gprof [21] that profiles

applications by sampling function invocation points; MagPie [3], Project 5 [1], and X-Trace [17] that instrument

the application as well as the network stack to monitor network communication; and commercial solutions such

as Dapper [47], Boundary [5], and NewRelic [42].

As these tools all require modifications to the software stack, the added performance overhead can be problem-

atic for systems deployed in production. A number of other tools have been developed recently that apply machine

learning techniques to analyze logs [40, 53], primarily to identify performance anomalies. Although such tech-

niques can be effective in detecting individual anomalies, they often require separate correct and issue-laden runs,

they do not relate anomalies to higher-level operations, and they are unable to detect slowdown creep.1

1Slowdown creep is an issue encountered in organizations practicing agile development and deployment: each software update might po-
tentially introduce some marginal additional performance overhead (e.g., <1%) that would not be noticeable in performance testing. However,
with many frequent software releases, these individual slowdowns can add up to become significant over time.

CHAPTER 1. INTRODUCTION 3

Our second observation is that performance analysis and debugging are generally given low priority in most

organizations. This makes having a suitable tool that is easy and efficient to use more critical, and we find that

none of the existing tools fit the bill. Performance analysis and debugging are given low priority for a number

of reasons. Most developers prefer generating new functionality or fixing functional bugs. This behavior is also

encouraged by aggressive release deadlines and company incentive systems. Investigating potential performance

issues is frequently deferred because they can often easily be hidden by simply adding more hardware due to the

horizontal scalability of these systems. Moreover, understanding the performance behavior of these systems is

hard because the service is (i) distributed across many nodes, (ii) composed of multiple sub-systems (e.g., front-

end, application, caching, and database services), and (iii) implemented with many threads/processes running

with a high degree of concurrency.

Our third observation is that distributed systems implementing internet services tend to output a lot of log

statements rich with useful information during their normal execution, even at the default verbosity.2 Developers

add numerous log output statements to allow for failure diagnosis and reproduction, and these statements are

rarely removed [57]. This is evidenced by the fact that 81% of all statically found threads in HDFS, Hadoop Yarn,

Cassandra, and HBase contains log printing statements that get executerd at default verbosity in non-exception-

handling code, and by the fact that companies such as Facebook have accumulated petabytes of log data [16]. In

this thesis we reveal that the information in the logs is sufficiently rich to allow the recovering of the inherent

structure of the dispersed and intermingled log output messages, thus enabling useful performance profilers like

lprof .

Extracting the per-request performance information from logs is nevertheless non-trivial. Challenges include:

(i) the log output messages typically consist of unstructured free-form text, (ii) the logs are distributed across the

nodes of the system with each node containing the locally produced output, (iii) the log output messages from

multiple requests and threads are intertwined within each log file, and (iv) the size of the log files is large.

lprof first performs analysis on the system’s bytecode to be able to stitch together the dispersed and inter-

twined log messages of each individual request and then interpret them. It analyzes each log printing statement to

understand how to parse each output message and identifies the variable values that are output by the message. By

further analyzing the data-flow of these variable values, lprof ’s analysis extracts identifiers whose values remain

unchanged in each specific request. Such identifiers can help associate log messages to individual requests. Since

in practice log messages may not contain an identifier or there may not be an identifer that is unique to each

request, the analysis further captures the temporal relationships between log printing statements. Finally, lprof

identifies control paths across different local and remote threads. The information obtained from the analysis is

then used by lprof ’s parallel log processing component, which is implemented as a MapReduce [14] job.

2This is in contrast to single-component servers that tend to limit log output [56]. Distributed systems typically output many log messages,
in part because these systems are difficult to functionally debug, and in part because distributed systems, being horizontally scalable, are less
sensitive to latency caused by the attendant I/O.

CHAPTER 1. INTRODUCTION 4

Request type start timestamp end timestamp

nodes traversed
log sequence ID

writeBlock 2014-04-21

05:32:45,103

2014-04-21

05:32:47,826

172.31.9.26 05:32:45,103 05:32:47,826
172.31.9.28 05:32:45,847 05:32:47,567
172.31.9.12 05:32:46,680 05:32:47,130

41

IP start time. end time.

Figure 1.1: One row of the request table constructed by lprof containing information related to one request. The “node
traversed” column family [9] contains the IP address, the starting and ending timestamp on each node this request traversed.
In this case, the HDFS writeBlock request traverses three nodes. The “log sequence ID” column contains a hash value that can
be used to index into another table containing the sequence of log printing statements executed by this request.

The design of lprof has the following attributes:

• Non-intrusive: It does not modify any part of the existing production software stack. This makes it suitable for

profiling production systems.

• In-situ and scalable analysis: The Map function in lprof ’s MapReduce log processing job first stitches together

the printed log messages from the same request on the same node where the logs are stored, which requires

only one linear scan of each log file. Only summary information from the log file and only from requests that

traverse multiple nodes is sent over the network in the shuffling phase to the reduce function. This avoids the

cost of sending entire logs over the network to a centralized location to perform the analysis, which is unrealistic

in real-world clusters [38].

• Compact representation allowing historical analysis: lprof stores the extracted information related to each

request in a compact form so that it can be retained permanently. This allows historical analysis where current

performance behavior can be compared to the behavior at a previous point of time (which is needed to detect

slowdown creep).

• Loss-tolerant: lprof ’s analysis is not sensitive to the loss of data. If the logs of a few nodes are not available,

lprof simply discards their input. At worst, this leads to some inaccuracies for the requests involving those

nodes, but won’t affect the analysis of requests not involving those nodes.

This thesis makes the following contributions. Firstly, it shows that the standard logs of many systems contain

sufficient information to be able to extract the performance behavior of system requests. Secondly, it presents the

design and implementation of lprof , including the technique details on lprof ’s static analysis and how logs are

processed. Finally, it evaluates lprof on four popular distributed systems, showing its correctness and performance

results.

The rest of this thesis is organized as follows. Chapter 2 provides background materials on distibuted system,

static analysis, and MapReduce job. Chapter 3 introduces a detailed example of the type of information that is

possible to extract from the logs and how it can be used to diagnose and debug performance issues. Chapter 4

provides a high-level overview of lprof , which consists of two components: static analysis part and log analysis

part. Chapter 5 and 6 describe techniques details of lprof ’s two components. Chapter 7 evaluates lprof using four

widely-used distributed systems: HDFS, Hadoop YARN, Cassandra, and HBase. We show that lprof performs

CHAPTER 1. INTRODUCTION 5

and scales well, and that it is able to attribute 90% of all log messages to the correct requests. We discuss the

limitations of lprof in Chapter 8 and close with related work in Chapter 9 and Chapter 10 concludes.

Chapter 2

Background

This chapter introduces three concepts that are critical in this thesis: distributed system, static analysis and MapRe-

duce job. Distributed system is the profiling target of lprof . Static analysis and MapReduce job are two main

techniques of lprof . lprof uses static analysis to extract logging behavior of distributed systems, and lprof ’s log

processing component is implemented as a MapReduce job.

2.1 Distributed System

Distributed systems are software systems that run on a cluster of machines. Each machine in the cluster has both

its own hardware like processor and memory, as well as its own software like operating system. Distributed system

components run as processes on each machine of the cluster and communicate with each other over network.

We will describe Hadoop Distributed File System (HDFS) as an example of distributed systems. HDFS uses

a master/slave architecture. In this architecture, one machine is chosen from the cluster as a master, while other

machines acting in the role of slaves. A typical HDFS cluster has a machine running as a centralized master

called NameNode, while there are a number of DataNodes running as slaves on other nodes of the cluster. The

NameNode manages the metadata of all data blocks, and these data blocks are stored on DataNodes. Each data

block will be replicated multiple times on different DataNodes. The number of replications of each data block is

determined by a configuration parameter called replication factor. For example, when replication factor is set to

three, one data block will be stored on three different DataNodes. The mapping between this data block’s ID and

the location of its replications are stored on the NameNode.

When, for example, a client wants write a new block into HDFS, it will first communicate with Namenode,

which will return the addresses of a list of DataNodes that could store the data block. The client will then

contact the first DataNode from this list to write the data block. The DataNode will further generate a pipeline of

DataNodes to mirror the data block one replication per DataNode.

6

CHAPTER 2. BACKGROUND 7

1 HDFS_READ, blockid: BP-9..9:blk_5..7_1032

2 Receiving block BP-9..9:blk_5..7_1032

3 Received block BP-9..9:blk_5..7_1032

4 Receiving block BP-9..9:blk_4..8_2313

5 PacketResponder: BP-9..9:blk_5..7_1032 terminating

6 opWriteBlock BP-9..9:blk_4..8_2314 received exception

write 1

write 2

read

Figure 2.1: Part of an HDFS log. Request identifiers are shown in bold. Note that the timestamp of each message is not
shown.

During running of a distributed system, its components on each node will create and append a log file con-

taining activity information of the system. These log files are created by the log printing statements in the system

code written by developers.

We show a snippet of such system log file generated by a HDFS DataNode in Figure 2.1. We call each

line of this log an log entry. Each log entry are composed of two parts: string constant part and variable part.

Constant part indicates this part of log message is generated by a string constant in source code, where variable

part is generated by a variable in the corresponding log printing statement. For example, in line 2 of Figure 2.1,

“Receiving block” is the string contant part where “BP-9..9:blk_5..7_1032” is the variable part.

2.2 Static Program Analysis

lprof uses static program analysis technique to extract the logging behavior of a distributed system from its

bytecode. lprof needs to perform two types of static analysis: control flow analysis and data flow analysis.

Control flow analysis is to generate a control flow graph(CFG) [7] from system code. By performing control flow

analysis, we could know the reachability between two code positions of the system. Control flow analysis can

also generate a call graph describing caller and callee relations between two functions. Data flow analysis, on the

other hand, gathers information about the values of variables in the program. lprof requires data flow analysis to

determine whether a variable is being modified in a function.

lprof performs control and data flow analysis on system bytecode. Bytecode is an intermediate representation

used by Java to make Java program portable on multiple platforms. We don’t use source code to perform static

analysis because bytecode already contains enough information to perform the control and data flow analysis.

lprof uses Chord [11] Java static analysis framwork to perform static analysis on bytecode.

2.3 MapReduce Job

We choose to implement lprof ’s log analysis part as a MapReduce job. MapReduce [14] is a programming model

for processing and generating data with a parallel and distributed algorithm on a cluster.

Typically there are two phrases in a MapReduce job: map phrase and reduce phrase. The map phrase takes

a list of key-value pairs as input and perform operations like filtering and sorting on the list. The MapReduce

CHAPTER 2. BACKGROUND 8

algorithm will then group all the key-value pairs with the same key together, where the key is called reduce key.

Each result group is a list of key-value pairs with the same reduce key. Then in reduce phase, the result groups

are passed to the reducer function, which will merge these groups to perform further analysis.

MapReduce has been proved to be an efficient programming model for distributed data processing [14]. In

lprof we use MapReduce because our log data size is too large to fit in memory. Also, lprof is grouping log

messages from the same request, which could be used as a reduce key to apply MapReduce algorithm.

There are many implementations of Mapreduce [14] [54]. In practice, we use Hadoop Yarn [54] to implement

our log analysis because it is open source and easy to acquire and deploy.

Chapter 3

Motivating Example

To illustrate how lprof ’s request flow analysis might be used in practice, we selected a performance issue of

Hadoop Distributed File System (HDFS) [28] reported by a real user [30] and it is reproduced on a 25-node

cluster.

In this case, an HDFS user suspects that the system has become slow after an upgrade. Applying lprof to

analyze the logs of HDFS produces a request table as shown in Figure 1.1. The user can perform various queries

on this table. For example, she can examine trends in request latencies for various request types over time, or she

can count the number of times each request type is processed during a time interval. Figures 3.1 (a) and (b) show

how lprof visualizes these results. 1

Figure 3.1 (a) clearly shows an anomaly with writeBlock requests at around 23:42. A sudden increase in

writeBlock’s latency is clearly visible while the latencies of the other requests remain unchanged. The user might

suspect this latency increase could be caused by a few nodes that are “stragglers” due to an unbalanced workload

or a network problem. To determine whether this is the case, the user compares the latencies of each writeBlock

request after 23:42 across the different nodes. This is shown in Figure 3.1 (c), which suggests no individual node

is abnormal.

The user might then want to compare a few single requests before and after 23:42. This can be done by se-

lecting corresponding rows from the database and comparing the per-node latency between an anomalous request

and a healthy one. Figure 3.1 (d) visualizes the latency incurred on different nodes for two write requests: one

before 23:42 (healthy) and the other after (anomalous). The figure shows that for both requests, latency is highest

on the first node and lowest on the third node. HDFS has each block replicated on three data nodes (DNs), and

each writeBlock request is processed as a pipeline across the three DNs: DN1 updates the local replica, sends it

1We envision that lprof is run periodically to process the log messages generated since its previous run, appending the new entries to the
table and keeping them forever to enable historical analysis and debug problems like performance creep. If space is a concern, then instead
of generating one table entry per request, lprof can generate one table entry per time interval and request type, each containing attendant
statistical information (e.g., count, average/high/low timestamps, etc.).

9

CHAPTER 3. MOTIVATING EXAMPLE 10

 0

 300

 600

 900

 1200

 1500

13:13:45
23:42:32

10:25:32

(a) Latency (ms) over time

writeBlock
readBlock

100K

200K

300K

400K

verifyBlock

writeBlock
readBlock

rollEditLog

(b) Request count

 0

 300

 600

 900

nodes

(c) Avg. latency per node (ms)

 0

 300

 600

 900

DN1 DN2 DN3

(d) Per-node latency (ms) of 2 req.

anomalous req.
healthy req.

Figure 3.1: lprof ’s analysis on HDFS’ performance.

to DN2, and only returns to the user after DN2’s response is received. Therefore the latency of DN2 includes the

latency on DN3 plus the network communication time between DN2 and DN3.

Figure 3.1 (d) also shows that the latency of one request is clearly higher than the latency of the other request

on the first two DNs. The healthy request is executed before HDFS upgrade while the anomalous request is

from the newer version of HDFS. This leads to the hypothesis that system upgrade is responsible for the latency

increase. The HDFS cluster was indeed upgraded between the servicing of these two requests, from version 2.0.0

to 2.0.2. After locating the problematic code path by using the write request related logging statement, a diff

between the two versions of the related source code reveal that an extra socket write between DNs was introduced

in version 2.0.2. The HDFS developers later fixed this performance issue by combining both socket writes into

one [30].

Figure 3.1 (b) shows another performance anomaly: the number of verifyBlock requests is suspiciously high.

Further queries on the request database suggest that before the upgrade, verifyBlock requests appear once every

5 seconds on every datanode, generating a lot of log messages, while after the upgrade, they appear only rarely.

Interestingly, we noticed this accidentally in our experiments. This turns out to be another performance anomaly

in version 2.0.0 that was fixed by the developers in version 2.0.2 [29], and was accidentally revealed in our

experiment. Clearly lprof is useful in detecting and diagnosing this case as well.

On the other hand, existing log analysis tool could not have helped in this case because they can not group

the logs on the per-request basis. For example, Xu et. al.’s approach [53] requires the latency of each request to

be explicitly logged in order to detect the latency increase. But in this case, the latency of the write request is not

logged and can only be inferred by comparing the timestamps between start and end log messages.

CHAPTER 3. MOTIVATING EXAMPLE 11

Commercial tools such as Splunk [49] or VMWare LogInsight [37] focus on log text searching based on user

provided keywords, and therefore also require that latencies are explicitly logged to be able to detect the anomaly.

Finally, none of these tools can correlate the logs from the same request across different data nodes and provide

per-request profiling information.

Chapter 4

Overview of lprof

In this chapter, before describing lprof ’s design, we first discuss the challenges involved in stitching log messages

together that were output when processing a single request. We will illustrate these challenges using the HDFS

write request example shown in Chapter 3.

Figure 4.1 shows how an HDFS DataNode processes a WriteBlock request. On each DataNode, a DataXceiver

thread uses a while loop to process each incoming request. This request may come from client or upstream

DataNode in the pipeline. If the op-code is WRITE_BLOCK, then writeBlock() is invoked at line 6. At line 15,

writeBlock() sends a replication request to the next downstream datanode in the pipeline. At line 16 - 17, a

new thread associated with PacketResponder is created to receive the response from the downstream datanode

so that it can send its response upstream. Hence, this code might output log messages as shown in Figure 2.1.

These six log messages alone illustrate two challenges we encountered:

1. The log messages produced when processing a single writeBlock request may come from multiple threads,

and multiple requests may be processed concurrently. As a result, the log output messages from different

requests will be intertwined.

2. The log messages do not contain an identifying substring that is unique to a request. For example, block

ID “BP-9..9:blk_5..7” can be used to separate messages from different requests that do not operate on the

same block, but cannot be used to separate the messages of the read and the first write request because

they operate on the same block. Unfortunately, perfect identifiers unique to each request rarely exist in

real-world logs. This is mainly because logging is a common programming practice which is subjective to

developers. In Chapter 8, we further discuss how lprof could be simplified if there were a unique request

identifier in every log message.

To address these challenges lprof first uses static analysis to gather information from the code that will help map

each log message to the processing of a specific request, and help establish an order on the log messages mapped

12

CHAPTER 4. OVERVIEW OF lprof 13

 1 class DataXceiver implements Runnable {

 2 public void run() {

 3 do { //handle one request per iteration

 4 switch (readOpCode()) {

 5 case WRITE_BLOCK: // a write request

 6 writeBlock(proto.getBlock(), ..); break;

 7 case READ_BLOCK: // a read request

 8 readBlock(proto.getBlock(), ..); break;

 9 } //proto.getBlock: deserialize the request

10 } while (!socket.isClosed());

11 }

12 void writeBlock(ExtendedBlock block..) {

13 LOG.info("Receiving block " + block);

14 receiveBlock(upstream);

15 sender.writeBlock(block,..); //send to next DN

16 responder = new PacketResponder(block,..);

17 responder.start(); // create a thread that

18 } // handles the acks

19 }

20 /* PacketResponder handles the ack responses */

21 class PacketResponder implements Runnable {

22 public void run() {

23 ack.readField(downstream); //read ack

24 LOG.info("Received block " + block);

25 replyAck(upstream); //send an ack to upstream

26 LOG.info(myString + " terminating");

27 }

28 }

Figure 4.1: Code snippet from HDFS that handles write request.

1. Log format-string and variable parsing

2. Request entry and identifier analysis

4. Communication pair analysis

3. Temporal order analysis

Figure 4.2: Overall architecture of lprof

to the request. In a second phase, lprof processes the logs using the information obtained from the static analysis

phase; it does this as a MapReduce job.

We now give an overview of lprof ’s static analysis and log processing, depicted in Figure 4.2.

4.1 Static Analysis

lprof ’s static analysis gathers information in four steps.

(1) Parsing the log string format and variables Through this parsing, we are able to obtain the signature of

each log printing statement found in the code. Each log print statement is represented by one or more regular

expressions (e.g., “Receiving block BP-(.*):blk_(.*)_.*”), which are used during the log analysis phase to map

CHAPTER 4. OVERVIEW OF lprof 14

a log message to a set of log points in the code that could print this log message. We use the term log point in

this thesis to refer to a log printing statement in the code. This step also identifies the variables whose values are

contained in the log message.

(2) Request identifier and request entry analysis This stage identifies which variables are modified and which

are not in one request control flow. Those that are not modified are recognized as request identifiers. Request

identifiers are used to separate messages from different requests; that is, two log messages with different request

identifiers are guaranteed to belong to different requests. However, the converse is not true: two messages with

the same identifier value may still belong to different requests (e.g., both of the “read” and the “write 1” requests

in Figure 2.1 have same the block ID).

Identifying request identifiers without domain expertise can be challenging. Consider “BP-9..9:blk_5..7_1032”

in Figure 2.1 that might be considered as a potential identifier. This string contains the values of three types of

variables as shown in Figure 4.3: poolID, blockID, and generationStamp. Only the substring containing

poolID and blockID is suitable as a request identifier for writeBlock. This is because generationStamp can

have different values while processing the write request (as exemplified by the “write 2” request in Figure 2.1),

but generationStamp field will not be modified while processing the read request. Without domain knowledge,

if we treat all three variables as write request identifiers, we may incorrectly separate logs that from the same

write request into different groups.

To infer which log points belong to the processing of the same request, top-level methods are identified by

analyzing when identifiers are modified. We use the term top-level method to refer to the first method of any

thread dedicated to the processing of a single type of request. For example, in Figure 4.1 writeBlock() and

PacketResponder.run() are top-level methods, but DataXceiver.run() is not because it processes multiple

types of requests. We say that method M is log point p’s top-level method if M is a top-level method and p is

reachable from M.

We identify the top-level methods by processing each method in the call-graph in bottom-up order: if a

method M modifies many variables that have been recognized as request identifiers in its callee M’, then M’ is

recognized as a top-level method. For example, because DataXceiver.run() function modifies block variable

which are recognized as request identfiers in writeBlock(), so writeBlock() function is a top-level method

of the log point on line 13. Because lprof can identify readBlock() and writeBlock() as being two top-level

methods for different types of requests, it can separate messages printed by readBlock() from the ones printed

by writeBlock() even if they have the same identifier value.

The intuition behind this design is that: although there is no perfect request identifers logged, in common

practice programmers do naturally log identifiers to help debugging. Perfect request identifers are identifiers that

are unique to each instance of request. The actual logged identifers are not perfect request identifiers, but they

still can be used to group logs from the same request. We observe that these identifiers are frequently logged but

CHAPTER 4. OVERVIEW OF lprof 15

ExtendedBlock.toString()

poolID + ":" + block -> Block.toString()

getBlockName()+ getGenStamp()"_" +

1032

"blk_"+ generationStampblockID

BP-989716475039 : blk_ 520373207 _

block ->

Figure 4.3: How “BP-9..9:blk_5..7_1032” is printed.

rarely modified, and the modification point of these identifers indicates the entry of a specific request.

(3) Temporal order analysis infers the time ordering between logs that come from the same request. For example,

by inferring that line 26 is executed after line 24 in Figure 4.1, lprof can conclude that when two messages appear

in the following order: “... terminating” and “Received block...”, they cannot be from the same request even if

they have the same block ID. This step is needed because there may not exist an identifier that is unique to each

request.

(4) Communication pair analysis identifies threads that communicate with each other. Log messages output by

two threads that communicate could potentially be from processing of the same request. Such communication

could occur through cooperative threads in the same process, or via sockets or RPCs across the network.

After the static analysis, lprof outputs a file that summarize all the static analysis results. This file describes

the log printing behavior of the system, which is further used in the following distributed log analysis stage.

4.2 Distributed Log Analysis

The log analysis phase attributes each log message to a request, which is implemented using a MapReduce job.

The map function groups together all log messages that were output by the same thread while processing the same

request.

Before adding a log message, lprof ’s log parser will first match it to a regular expression and then to the

corresponding log point. If multiple regular expression matches are found, lprof will choose the regular expression

that has more string constants. It is also possble that because two log points are printing logs with similiar formats,

one regular express may map to multiple log points. In this case lprof simply dismiss this log message.

After attributing a log message to a log point. lprof will try to group it with an existing request log group. A

log message is added to a group if (i) they have the same top-level method, (ii) they share the same value for the

same type of request identifier, and (iii) the corresponding log point matches the temporal sequence in the control

flow.

If there’s no existing group satisfies these constraints, lprof will further check if this log message is a request

starting log message. A request starting log message means it is a log message that could be the first log message

that printed in the processing of a request. If it is, lprof will create a new request log group and add this log

CHAPTER 4. OVERVIEW OF lprof 16

message, otherwise lprof simply dismiss this log message.

The reduce function merges request log groups if they represent log messages that were output by differ-

ent threads when processing the same request. Two groups are merged if (i) the two associated threads could

communicate, and (ii) their request identifiers share the same value for the same type of identifier.

Output of the reduce phase is a list of request log groups. For each group it has the name of top-level method

and a list of log entries attributing to this request. For each log entry, lprof records its timestamp, information of

the node where it is printed, and its request identifers.

Then lprof will generate final output as a database table shown in Figure 1.1. For each request log group, lprof

will output its top-level method name, timestamp of starting and ending log entry, ip of nodes processing this

request and other information to help user profile system performance. For example, the timestamp information

can help user monitor latencies of a request, while the request related node information can help user locate

problematic nodes while diagnosing a performance anomaly.

Chapter 5

Static Analysis

lprof ’s static analysis works on Java bytecode. Each of the four steps in lprof ’s static analysis is implemented

as one analysis pass on the bytecode of the target system. We use the Chord static analysis framework [11]. For

convenience, we explain lprof using examples in source code. All the information shown in the examples can be

inferred from Java bytecode.

5.1 Parsing Log Printing Statements

This first step identifies every log point in the program. For each log point, lprof (i) generates a regular expression

that matches the output log message, and (ii) identifies the variables whose values appear in the log output.

lprof identifies log points by searching for call instructions whose target method has the name fatal,

error, warn, info, debug, or trace. This identifies all the logging calls if the system uses log4j [36]

or SLF4J [48], two commonly used logging libraries that are used by the systems we evaluated.

To parse the format string of a log point into a regular expression, we use techniques similar to those used by

two previous tools [55, 53]. In both of Wei’s paper [53] and Sherlog [55], schema of logs are extracted by static

analysis on source code. For C-like languages, log schemas are directly extracted from printf variants. When

there are format strings like ‘%s‘ in printf parameters, futher track into related functions are required to obtain

the accurate logging structure. For object-orienting languages like Java, toString() functions of the logged

object need to be parsed in order to know how the object is printed.

In this section, we summarize the challenges we faced in implementing a log parser on real-world systems.

On the surface, parsing line 13 in Figure 4.1 into the regular expression “Receiving block (.*)”, where the

wildcard matches to the value of block, is straightforward. However, identifying the variables whose values

are output at the log point is more challenging. In Java, the object’s value is printed by calling its toString()

method. Figure 4.3 shows how the value of block is eventually printed. In this case, lprof has to parse out

17

CHAPTER 5. STATIC ANALYSIS 18

the individual fields because only poolID and blockID are request identifiers, whereas generationStamp is

modified during request processing. To do this, lprof recursively traces the object’s toString() method and the

methods that manipulate StringBuilder objects until it reaches an object of a primitive type.

For the HDFS log point above, the regular expression identified by lprof will be:

“Receiving block (.*):blk_(\d+)_(\d+)”.

The three wildcard components will be mapped to block.poolID, block.blockID, and block.generationStamp,

respectively.

lprof also needs to analyze the data-flow of any string object used at a log point. For example, mystring at

line 26 in Figure 4.1 is a String object initialized earlier in the code. lprof analyzes its data-flow to identify the

precise value of mystring.

Class inheritance and late binding in Java creates another challenge. For example, when a class and its super

class both provide a toString() method, which one gets invoked is resolved only at runtime depending on the

actual type of the object. To address this, lprof analyzes both classes’ toString() methods, and generates two

regular expressions for the one log point. During log analysis, if both regular expressions match a log message,

lprof will use the one with the more precise match, i.e., the regular expression with a longer constant pattern.

5.2 Identifying Request Identifiers

In this section, we describe how lprof identifies (i) request identifiers and (ii) top-level methods. We implement

the inter-procedural analysis as summary-based analysis [46]. In summary-based analysis, we analyze one method

at a time and stores the result as the summary of that method into disk. The methods are analyzed in bottom-up

order along the call-graph. When we traverse the call-graph, we always first analyze the callee function, save its

analysis result into disk as a summary, and later use this summary when we analyze a caller function. Not being

summary-based would require lprof to store the intermediate representation of the entire program in memory,

which would cause it to run out of memory.

Data-flow analysis for request identifiers: lprof infers request identifiers by analyzing the inter-procedural

data-flow of the logged variables. For each method M, lprof assembles two sets of variables as its summary:

(i) the request identifier candidate set (RIC), which contains the variables whose values are output to a log by M

or its callees and not modified, and (ii) the modified variable set (MV) which contains the variables whose values

are modified. For each method M, lprof first initializes both sets to be empty. It then analyzes each instruction in

M. When it encounters a log point, the variables whose values are printed (as identified by the previous step) are

added to the RIC set. If an instruction modifies a variable v, v is added to the MV set and removed from the RIC

set. If the instruction is a call instruction, lprof first merges the RIC and MV sets of the target method into the

CHAPTER 5. STATIC ANALYSIS 19

DataXceiver.run()

writeBlock()

receiveBlock()

RIC: {poolID:8, blockID:8} count: 16

RIC: {poolID:4,blockID:4,genStamp:4} count: 12

MV: { }

RIC: { }, count: 0 MV: {poolID, blockID}

setGenerationStamp()
RIC: { } count: 0

MV: {genStamp}

readBlock()

RIC: {poolID:7,blockID:7,

 genStamp:7} count: 21

Figure 5.1: Request identifier analysis for the HDFS example of Figure 4.1. When analyzing writeBlock(), the
request identifier candidate set (RIC) from its callee receiveBlock() is merged into its own set, so the cumulative
count of poolID and blockID is increased to 8, 4 comes from receiveBlock() and 4 comes from the log points
in writeBlock(). Since generationStamp is in setGenerationStamp()’s modified variable set (MV), it is re-
moved from writeBlock()’s RIC set.

corresponding sets of the current method, and then, for each variable v in the MV set, lprof removes it from the

RIC set if it contains v.

As an example, consider the following code snippet from writeBlock():

1 void writeBlock(ExtendedBlock block...) {

2 LOG.info("Receiving " + block);

3 sender.writeBlock(block...);

4 block.setGenerationStamp(latest);

5 responder = new PacketResponder(block...);

6 responder.start();

7 }

The setGenerationStamp() method modifies the generationStamp field in block. In bottom-up order,

lprof first analyzes setGenerationStamp() and adds generationStamp to its MV set. Later when lprof

analyzes writeBlock(), it removes generationStamp from its RIC set because generationStamp is in the

MV set of setGenerationStamp().

Furthermore, lprof needs to obtain the type of identifers in RIC. The type of identifier is determined by the

Java class member and the variable it comes from. For example, the identifier block.poolID printed by line

13 of Figure 4.1 comes from the first parameter of function writeBlock() called block, and the identifier

block.poolID printed by line 24 of Figure 4.1 also comes from the same variable. Further more, these two

identifiers are from the same Java class member as ExtendedBlock.poolID, so we will say these two identifiers

have the same type.

Identifying top-level methods: the request identifier analysis stops at the root of the call-graph: either a thread

entry method (i.e., run() in Java) or main(). However, a thread entry method might not be the entry of a service

request. Consider the HDFS example shown in Figure 4.1. The DataXceiver thread uses a while loop to handle

read and write requests. Therefore lprof needs to identify writeBlock() and readBlock() as the top-level

methods instead of run().

lprof identifies top-level methods by observing the propagation of variables in the RIC set and uses the fol-

lowing heuristic when traversing the call-graph bottom-up: if, when moving from a method M to its caller M’, if

CHAPTER 5. STATIC ANALYSIS 20

the number of identifier candidates decrease, then M is identified as a top-level method. Specifically, lprof counts

the number of times each request identifier candidate appears in a log point in each method and accumulates this

counter along the call-graph bottom-up. (See Figure 5.1 for an example.) Whenever this count decreases from

method M to its caller M’, lprof concludes that M is a top-level method. The intuition is that developers naturally

include identifiers in their log printing statements, and modifications to these identifiers are likely outside the

top-level method.

In Figure 5.1, both writeBlock() and readBlock() accumulate a large count of request identifiers, which

drops to zero in run(). Therefore, lprof infers writeBlock() and readBlock() are the top-level methods

instead of run(). Note that although the count of generationStamp decreases when the analysis moves

from setGenerationStamp() to writeBlock(), it does not conclude setGenerationStamp() is a top-level

method because the accumulated count of all request identifiers is still increasing from setGenerationStamp()

to writeBlock().

5.3 Partial Order Among Log Points

In this section, we describe how lprof generates a Directed Acyclic Graph (DAG) for each top-level method

(identified in the previous step) from the method’s call graph and control-flow graph (CFG). This DAG contains

each log point reachable from the top-level method and is used to help attribute log messages to top-level methods.

Each node in the DAG represents one or more log points, and an directed edge from one node to another node

indicates the temporal order between log points. For example, in Figure 5.2, an direct edge from log 1 to log 4

indicates in real world logs, log 1 must appear before log 4.

It is not possible to statically infer the precise order in which instructions will execute. For example, when

multiple log points are in a loop, it is impossible to know the exact temporal sequence of logging during static

analysis. Therefore, lprof takes the liberty of applying a number of simplifications on building the DAG:

1. Only nodes that contain log printing statements are represented in the DAG.

2. All nodes involved in a strongly connected component (e.g., caused by loops) are folded into one node.

This implies that multiple log points may be assigned to a single node in the DAG.

3. Similarly, if there is a strongly connected component due to recursive calls, then those nodes are also folded

into one.

4. Unchecked exceptions are ignored, since they will terminate the execution. Checked exceptions are cap-

tured by the CFG and are included in the DAG.

As an example, Figure 5.2 shows the DAG generated from the code snippet. In this figure, the asterisk (*)

next to log 2 and log 3 indicates that these log points may appear 0 or more times. The loop may cause multiple

CHAPTER 5. STATIC ANALYSIS 21

log 2,3
log 4

exit

entry

log 1

*

LOG.info("Request starts"); // log1

while (not_finished){

 r.process(); // log2 and log 3

}

LOG.info("Request ends"); // log4

Figure 5.2: DAG representation of log points.

log points to be folded into one node. In this case, we do not maintain an ordering of the log points inside this

node.

In practice, we found the DAG particularly useful in capturing the starting and ending log points of a request

— it is a common practice for developers to print a message at the beginning of each request and/or right before

the request terminates.

5.4 Thread Communication

In this step, lprof infers how threads communicate with one another. The output of this analysis is a tuple for

each communication pair: (top-level method 1, top-level method 2, communication type, set of request identifier

pairs), where one end of the communication is reachable from top-level method 1 and the other end is reachable

from top-level method 2. “Communication type” is one of local, RPC, or socket, where “local” is used when

two threads running in the same process communicate. A “request identifier pair” captures the transfer of request

identifier values from the source to the destination; the pair identifies the variables containing the data values at

source and destination.

Threads from the same process: lprof detects two types of local thread communications: (i) thread creation

and (ii) shared memory reads and writes. Detecting thread creation is straightforward because Java has a well

defined thread creation mechanism. If an instruction r.start() is reachable from a top-level method, where

r is an object of class C that extends the Thread class or implements the Runnable interface, and C.run()

is another top-level method, then lprof has identified a communication pair. lprof also infers the data-flow of

request identifiers, as they are mostly passed through the constructor of the target thread object. If the thread

is started by a caller of top-level method, it is not reachable by this top-level method, so we will not establish

communication pairs between the thread and the top-level method. In addition to explicit thread creation, if two

instructions reachable from two top-level methods (i) access a shared object, and (ii) one of them reads and the

other writes to the shared object, then a communication pair is identified.

As an example, consider the HDFS code in Figure 4.1. lprof generates the following tuple: (writeBlock, Pack-

etResponder.run, local, <DataXceiver.block.poolID, PacketResponder.block.poolID>, ..), indicating that writeBlock()

could communicate with PacketResponder via local thread creation, and poolID is the request identifier used

on both ends for the data value passed between the threads.

Threads communicating across the network: Pairing threads that communicate via the network is more chal-

CHAPTER 5. STATIC ANALYSIS 22

lenging. While Java provides standard socket read and write APIs for network communication, if we naïvely pair

the read to the write on the same socket, we would effectively end up connecting most of the top-level meth-

ods together even though they do not communicate. Consider the HDFS example shown in Figure 4.1. While

readBlock() and writeBlock() do not communicate with each other, they share the same underlying socket.

Instead of pairing socket read and write, we observe that the sender and receiver that actually communicate

both have to agree on the same protocol. Specifically, whenever lprof finds a pair of invoke instructions whose

target methods are the serialization and deserializaition methods from the same class, respectively, the top-level

methods containing these two instructions are paired. Developers often use third-party data-serialization libraries,

such as Google Protocol Buffers [20]. This further eases lprof ’s analysis since they provide standardized seri-

alization/deserialization APIs. Among the systems we evaluated, Cassandra is the only one that does not use

Google Protocol Buffers, but implements its own serialization library. For Cassandra, a simple annotation to pair

C.serialize() with C.deserialize() for any class C is sufficient to correctly pair all of the communicating

top-level methods. lprof also parses the Google Protocol Buffer’s protocol annotation file to identify the RPC

pairs, where each RPC is explicitly declared.

Improvements: To improve the accuracy of “log stitching”, we add two refinements when pairing communi-

cation points. First, even when a thread does not contain any log point (which means it does not contain any

top-level method), it will still be included in a communication pair if it communicates with a top-level method. In

this case, its run() method will be used as the communication end point. The reason is that such a thread could

serve as a link connecting two communicating top-level methods A and B. Not including the communication pair

would prevent lprof from grouping the log messages from A and B.

The second improvement is to infer the number of times a top-level method can occur in a communication

pair. For example, a communication pair “(M1, M2*, local, ..)”, where M2 is followed by an asterisk, means that

method M1 could communicate with multiple instances of method M2 in the same request. The log analysis uses

this property to further decide whether it can stitch messages from multiple instances of M2 into the same request.

The inference of such a property is straightforward: if the communication point to M2 is within a loop in M1’s

CFG, then M2 could occur multiple times.

5.5 Summary of Static Analysis

The output of lprof ’s static analysis is a file that contains the log printing behavior of the system. Figure 5.3 shows

a snippet of the output file for HDFS. It consists of the following four segments:

1. Top-level methods: a list of tuples with (i) the name of the top-level method, (ii) an index into the DAG

representation of the log points, and (iii) a list of request identifiers;

CHAPTER 5. STATIC ANALYSIS 23

(DataXceiver.writeBlock, DAG#1, [id1,id2..])Top-level

methods: (DataXceiver.readBlock, DAG#2, [id1,id2..])

DAGs:
entry log1

[log2, log3]*

log4 exit

Regex:
<log1, "Receiving block (.*):blk_(\d+)_\d*",

 id1:block.poolID, id2:block.block.blockID>

Comm.

pairs:

(writeBlock, PktRsp.run, local, <id1,id1>, ..)
(writeBlock, writeBlock, socket, <id1,id1>,..)

Figure 5.3: Output of lprof ’s static analysis.

2. DAGs: the DAG for each top-level method;

3. Log point regex: the regular expressions for each log point and the identifier for each wildcard;

4. Communication pairs: a list of tuples that identify the communication points along with the identifiers for

the data being communicated.

To speedup log analysis, this output file also contains a number of indexes, including: (i) an index of regular

expressions (to speedup the matching of each log message to its log point) and (ii) an index mapping log points

to top-level methods. This output file is sent to every machine in the cluster whose log is analyzed.

Chapter 6

Log Analysis

The log analysis phase is implemented as a MapReduce job to group together information from all the log mes-

sages printed by each request. The map and reduce functions use a common data structure, called a request

accumulator (RA), for gathering information related to the same request. Each RA may contain multiple top-

level methods, because communication pairs may connect multiple top-level methods as one request. Each RA

contains: (i) a vector of top-level methods that are grouped into this RA; (ii) the value of each request identifier;

(iii) a vector of log point sequences. each sequence comes from one top-level method and contains a list of log

points that is printed in this top-level method; (iv) a list of nodes traversed, with the earliest and latest timestamp.

The map and reduce functions will iteratively accumulate the information of log messages from the same

request into the RAs. In the end, there will be one RA per request that contains the information summarized from

all its log messages.

6.1 Map: Intra-thread Grouping

The map function is run on each node to process local log files. There is one map task per node, and all the map

tasks are performed run in parallel. Each map function scans the log file linearly. Each log message is parsed

to identify its log point and the values of the request identifiers using regular expression matching. If multiple

regular expression matches one single log message, lprof will use the regular expression with the longest string

constant. We also heuristically parse the timestamp associated with each message.

Thus a parsed log message is added to an existing RA entry if and only if: (i) their top-level methods match,

(ii) their identifiers value do not conflict, and (iii) the log point matches the temporal sequence in the control flow

as represented by the DAG. Here we say two identifers’ value conflict if they have the same type but different

value, where the type of identifier is obtained from static analysis in Section 5.2.

A new RA is created (and appropriately initialized) if the log message cannot be added to an existing RA.

24

CHAPTER 6. LOG ANALYSIS 25

Figure 6.1: The grouping of five log messages where four print a subset of request identifier values.

05:32:45,103 Receiving block 9..9:blk_5..7_1032

05:32:45,115 Received block 9..9:blk_5..7_1032

05:32:47,826 PacketResponder 9..9:blk_5..7_1032 terminating

node 1: 172.13.9.26

node 2: 172.13.9.28

node 3: 172.13.9.12

req. acc.2: ([PktRsp.run], {<id1:"9..9">, <id2:"5..7">},

 [[LP2,LP3]], [<172.31.9.26:"05:32:45,115 - 05:32:47,826">])

req. acc.1: ([writeBlock], {<id1:"9..9">, <id2:"5..7">},

 [[LP1]], [<172.31.9.26:"05:32:45,103 - N/A">])

req.acc.3: ({writeBlock,PktRsp.run}, {<id1:"9..9">, <id2:"5..7">},

 [[LP1],[LP2,LP3]], [<172.31.9.26:"05:32:45,103 - 05:32:47,826">])

req.acc.4: ([writeBlock,PktRsp.run], {<id1:"9..9">, <id2:"5..7">},

 [[LP1],[LP2,LP3]], [<172.31.9.28:"05:32:45,847 - 05:32:47,567">])

req.acc.6: ({writeBlock,writeBlock,writeBlock,PktRsp.run,

 PktRsp.run,PktRsp.run}, {<id1:"9..9">, <id2:"5..7">},

 [[LP1],[LP1],[LP1],[LP2,LP3],[LP2,LP3],[LP2,LP3]],

 [<172.31.9.26:"05:32:45,103 - 05:32:47,826">,

 <172.31.9.28:"05:32:45,847 - 05:32:47,567">,

 <172.31.9.12:"05:32:46,680 - 05:32:47,130">])

req.acc.5:([writeBlock, PktRsp.run], {<id1: "9..9">, <id2:"5..7">},

 [[LP1],[LP2,LP3]], [<172.31.9.28:"05:32:45,847 - 05:32:47,567">])

Request accumulators after map

Request accumulators after combine

Request accumulators after reduce

Figure 6.2: The RAs that combine 9 log messages from 6 threads on 3 nodes belonging to a single write request in HDFS.

Therefore, since communication pairs are not considered at map stage, each RA output by the map function

contains exactly one top-level method.

Note that a sequence of log messages can be added to the same RA even when each contains the values of a

different subset of request identifiers. Figure 6.1 shows an example. The 5 log messages in this figure can all be

grouped into a same RA entry even though 4 of them contain the values of a subset of the request identifiers, and

one does not contain the value of any request identifier but is captured using the DAG.

6.2 Combine and Reduce: Inter-thread Grouping

The combine function performs the same operation as the reduce function, but does so locally first. It combines

two RAs into one if there exists a communication pair between the two top-level methods in these two RAs, and

the request identifier values do not conflict. Moreover, as a heuristic, we do not merge RAs if the difference

between their timestamps is larger than a user-configurable threshold. Such a heuristic is necessary because

two RAs could have the same top-level methods and request identifies, but represent the processing of different

requests (i.e., two writeBlock operations on the same block). This value is currently set to one minute, but

should be adjusted depending on the networking environment. In an unstable network environment with frequent

congestion this threshold should have a larger value.

After the combine function, lprof needs to assign a shuffle key to each RA, and all the RAs with the same

CHAPTER 6. LOG ANALYSIS 26

shuffle key must be sent to the same reducer node over the network. Therefore the same shuffle key should be

assigned to all of the RAs that need to be grouped together. We do this by considering communication pairs. At

the end of the static analysis, if there is a communication pair connecting two top-level methods A and B, A and B

are jointed together into a connected component (CC). We iteratively merge more top-level methods into this CC

as long as they communicate with any of the top-level methods in this CC. In the end, all of the top-level methods

in a CC could communicate, and their RAs are assigned with the same shuffle key.

However, this approach could lead to the assignment of only a small number of shuffle keys and thus a poor

distribution in practice. Hence, we further implement two improvements to the shuffling process. First, if all of

the communicating top-level methods have common request identifiers, the identifier values will be used to further

differentiate shuffle keys.1 Secondly, if an RA cannot possibly communicate with any other RA through network

communication, we do not further shuffle it, but instead we directly output the RA into the request database.

Finally, the reduce function applies the same method as the combine function. Figure 6.2 provides an exam-

ple that shows how the RAs of log messages in the HDFS writeBlock request are grouped together. After the

map function generates req.acc.1 and 2 on node 1, the combine function groups them into req.acc.3, because

writeBlock() and PacketResponder.run() belong to the same communication pair, and their request iden-

tifier values match. Node 2 and node 3 run the map and combine functions in parallel, and generate req.acc.4 and

5. lprof assigns the same shuffle key to req.acc.3, req.acc.4, and req.acc.5. The reduce function further groups

them into a final RA req.acc.6.

6.3 Request Database and Visualization

Information from each RA generated by the reduce function is stored into a database table. The database schema

is shown in Figure 1.1. It contains the following fields: (i) request type, which is simply the top-level method with

the earliest time stamp; (ii) starting and ending time stamps, which are the MAX and MIN in all the timestamps of

each node; (iii) nodes traversed and the time stamps on each node, which are taken directly from the RA; (iv) log

sequence ID (LID), which is a hash value of the log sequence vector field in the RA. For example, as shown in Fig-

ure 6.2, the vector of the log sequence of a writeBlock request is “[[LP1],[LP1],[LP1],[LP2,LP3],[LP2,LP3],[LP2,LP3]]”.

In this vector, each element is a log sequence from a top-level method (e.g., “[LP1]” is from top-level method

writeBlock() and “[LP2,LP3]” is from PacketResponder.run()). Here the order in this vector does not

matter because it contains logs from multiple nodes, where we don’t make any assumption on the synchroniza-

tion of clock among different nodes. Note the LID captures the unique type and number of log messages, their

order within a thread, as well as the number of threads. However, it does not preserve the timing order between

threads. Therefore, in practice, there are not many unique log sequences; for example, in HDFS there are only

1Note that if a request identifier is not shared by all of the communicating top-level method, it cannot be used in the shuffle key because
different communicating RAs might have different request identifier (e.g., one RA only has poolID while the other RA has blockID).

CHAPTER 6. LOG ANALYSIS 27

Figure 6.3: The web application that visualizes a request’ latencies over time.

220 unique log sequences on 200 EC2 nodes running a variety of jobs for 24 hours. We also generate a separate

table that maps each log sequence ID to the sequence of log points to enable source-level debugging. We use

MongoDB [39] for our current prototype.

We built a web application to visualize lprof ’s analysis result using the Highcharts [31] JavaScript charting

library. We automatically visualize (i) requests’ latency over time; (ii) requests’ counts and their trend over time;

and (iii) average latency per node. Figure 6.3 shows our latency-over-time visualization.

One challenge we encountered is that the number of requests is too large when visualizing their latencies.

Therefore, when the number of requests in the query result is greater than a threshold, we perform down-sampling

and return a smaller number of requests. We used the largest triangle sampling algorithm [50], which first divides

the entire time-series data into small slices, and in each slice it samples the three points that cover the largest

area. To further hide the sampling latency, we pre-sample all the requests into different resolutions. Whenever the

server receives a user query, it examines each pre-sampled resolution in parallel, and returns the highest resolution

whose number of data points is below the threshold.

Chapter 7

Evaluation

We answer four questions in evaluating lprof : (i) How much information can our static analysis extract from the

target systems’ bytecode? (ii) How accurate is lprof in attributing log messages to requests? (iii) How effective is

lprof in debugging real-world performance anomalies? (iv) How fast is lprof ’s log analysis?

We evaluated lprof on four, off-the-shelf distributed systems: HDFS, Yarn, Cassandra, and HBase. We ran

workloads on each system on a 200 EC2 node cluster for over 24 hours with the default logging verbosity level.

Default verbosity is used to evaluate lprof in settings closest to the real-world. HDFS, Cassandra, and YARN

use INFO as the default verbosity, and HBase uses DEBUG. A timestamp is attached to each message using the

default configuration in all of these systems.

For HDFS and Yarn, we used HiBench [33] to run a variety of MapReduce jobs, including both real-world

applications (e.g., indexing, pagerank, classification and clustering) and synthetic applications (e.g., wordcount,

sort, terasort). Together they processed 2.7 TB of data. For Cassandra and HBase, we used the YCSB [13]

benchmark. In total, the four systems produced over 82 million log messages (See Table 7.1).

System LOC workload # of msg.
HDFS-2.0.2 142K HiBench 1,760,926
Yarn-2.0.2 101K HiBench 79,840,856
Cassandra-2.1.0 210K YCSB 394,492
HBase-0.94.18 302K YCSB 695,006

Table 7.1: The systems and workload we used in our evaluation, along with the number of log messages generated.

7.1 Static Analysis Results

Table 7.2 shows the results of lprof ’s static analysis. On average, 81% of the statically inferred threads contain

at least one log point that would print under normal conditions, and there are an average of 20 such log points

reachable from the top-level methods inferred from the threads that contain at least one log point. This suggests

28

CHAPTER 7. EVALUATION 29

System
Threads Top-lev. Log points

tot. ≥ 1 log* meth. ≥ 1 id. per DAG*
HDFS 44 95% 167 79% 8
Yarn 45 73% 79 66% 21
Cass. 92 74% 74 45% 21
HBase 85 80% 193 74% 30
Average 67 81% 129 66% 20

Table 7.2: Static analysis result. : in these two columns we only count the log points that are under the default verbosity level
and not printed in exception handler — indicating they are printed by default under normal conditions.

System Correct Incomplete Incorrect Failed
HDFS 97.0% 0.1% 0.3% 2.6%
Yarn 79.6% 19.2% 0.0% 1.2%
Cassandra 95.3% 0.1% 0.0% 4.6%
HBase 90.6% 2.5% 3.5% 3.4%
Average 90.4% 5.7% 1.0% 3.0%

Table 7.3: The accuracy of attributing log messages to requests.

that logging is prevalent. In addition, 66% of the log points contain at least one request identifier, which can be

used to separate log messages from different requests. This also suggests that lprof has to rely on the generated

DAG to group the remaining 34% log points. lprof ’s static analysis takes less than 2 minutes to run and 868 MB

of memory for each system.

7.2 Request Attribution Accuracy

With 82 million log messages, we obviously could not manually verify whether lprof correctly attributed each

log message to the right request. Instead, we manually verified each of the log sequence IDs (LID) generated by

lprof . Recall from Chapter 6 that the LID captures the number and the type of the log points of a request, and

the partial orders of those within each thread (but it ignores the thread orders, identifier values, and nodes’ IPs).

Only 784 different LIDs are extracted out of a total of 62 million request instances. We manually examined the

log points of each LID and the associated source code to understand its semantics. The manual examination took

four authors one week of time.

Table 7.3 shows lprof ’s request attribution accuracy. A log sequence A is considered correct if and only if

(i) all its log points indeed belong to this request, and (ii) there is no other log sequence B that should have been

merged with A. All of the log messages belonging to a correct log sequence are classified as “correct”. If A and B

should have been merged but were not then the messages in both A and B are classified as “incomplete”. If a log

message in A does not belong to A then all the messages in A are classified as “incorrect”. The “failed” column

counts the log messages that were not attributed to any request.

Overall, 90.4% of the log messages are attributed to the correct requests.

5.7% of the log messages are in the “incomplete” category. In particular, 19.2% of the messages in Yarn

CHAPTER 7. EVALUATION 30

0 %

20 %

40 %

60 %

80 %

100 %

 0 5 10 15 20 25 30 35 40

of

 u
ni

qu
e

re
qu

es
ts

of log messages

HDFS
Yarn
HBase
Cassandra

Figure 7.1: The cumulative distribution function on the number of log messages per unique request. For Cassandra, the
number of nodes each streaming session traverses varies greatly, therefore the number of log messages in each streaming
session request also varies greatly (it eventually reaches 100% with 1060 log messages, which is not shown in the figure).

were mistakenly separated because of only 2 unique log points that print the messages in the following pattern:

“Starting resource-monitoring for container_1398” and “Memory usage of container-id container_1398..”. lprof

failed to group them because the container ID was first passed into an array after the first log point and then

read from the array when the second message was printed. lprof ’s conservative data-flow analysis failed to track

the complicated data-flow and inferred that the container ID was modified between the first and the second log

points, thus attributing them into separate top-level methods. A similar programming pattern was also the cause

of “incomplete” log messages for HBase and HDFS. Cassandra’s 0.1% “incomplete” log messages were caused

by a few slow requests with consecutive log messages whose intervals were over one minute.

1.0% of the log messages are attributed to the wrong requests, primarily because they do not have identifiers

and they are output in a loop so that the DAG groups them all together. This could potentially be addressed with

a more accurate path-sensitive static analysis.

3.0% of the log messages were not attributed to any request because they could not be parsed. We manually

examined these messages and the source code, and found that in these cases, developers often use complicated

data-flow and control-flow to construct a message. For example, there is a log printing statement only prints one

string variable that indicates all environment variables used by the system. The string is constructed differently

based on the environment. However, we observe that these messages are mostly generated in the start-up or

shut-down phase of the systems and thus likely do not affect the quality of the performance analysis.

Inaccuracy in lprof ’s request attribution could affect users as follows: since the “incomplete requests” are

caused by two log sequences A and B that should have been merged but were not, lprof would over-count the

number of requests. For the same reason, timing information separately obtained from A and B would be underes-

timations of the actual latency. The “incorrect requests” are the opposite; because they should have been split into

separate requests, “incorrect requests” would cause lprof to under-count the number of requests yet overestimate

the latencies. Note that administrators should quickly realize the “incorrect requests” because lprof provides the

sequence of log messages along with their source code information. The information about the “failed” messages,

however, will be lost.

Number of messages per request: Figure 7.1 shows the cumulative distribution function on the number of

CHAPTER 7. EVALUATION 31

Category example tot. helpful
Unnecessary
operation

Redundant DNS lookups
(should have been cached)

15
13
(87%)

Synch-
ronization

Block scanner holding
lock for too long, causing
other threads to hang

4 1 (25%)

Unoptimized
operation

Used a slow read method 2 0 (0%)

Unbalanced
workload

A particular region server
serves too many requests

1
1
(100%)

Resource
leak

Secondary namenode
leaks file descriptor

1 0 (0%)

Total - 23
15
(65%)

Table 7.4: Evaluation of 23 real-world performance anomalies.

Analysis helpful
Request clustering to identify bottleneck 73%
Log printing methods (inefficiencies are in

67%
the same method as the log point)

Request latency analysis 33%
Per-node request count 7%

Table 7.5: The most useful analyses on real-world performance anomalies. The percentage is over the 15 anomalies where
lprof is helpful. An anomaly may need more than one queries to detect and diagnose, so the sum is greater than 100%.

messages printed by each unique request, i.e., the one with the same log sequence ID. In each system, over 44%

of the request types, when being processed, print more than one messages. Most of the requests printing only one

message are system’s internal maintenance operations.

7.3 Real-world Performance Anomalies

To evaluate whether lprof would be effective in debugging realistic anomalies, we randomly selected 23 user-

reported real-world performance anomalies from the bugzilla databases associated with the systems we tested.

This allows us to understand, via a small number of samples, what percentage of real-world performance bugs

could benefit from lprof . For each bug, we carefully read the bug report, the discussions, and the related code

and patch to understand it. We then reproduced each one to obtain the logs, and applied lprof to analyze its

effectiveness. This is an extremely time-consuming process. The cases are summarized in Table 7.4. We classify

lprof as helpful if the anomaly can clearly be detected through queries on lprof ’s request database.

Overall, lprof is helpful in detecting and diagnosing 65% of the real-world failures we considered. Next, we

discuss when and why lprof is useful or not-so-useful.

Table 7.5 shows the features of lprof that are helpful in debugging real-world performance anomalies we

considered. The “request count” analysis is useful in 73% of the cases. In these cases, the performance problems

are caused by an unusually large number of requests, either external ones submitted by users or internal operations.

CHAPTER 7. EVALUATION 32

For example, the second performance anomaly we discussed in Chapter 3 belongs to this category, where the

number of verifyBlock operations is suspiciously large. In these cases, lprof can show the large request number

and pinpoint the particular offending requests.

Another useful feature of lprof is its capability to associate a request’s log sequence to the source code. This

can significantly reduce developers’ efforts in searching for the root cause. In particular, among the cases where

lprof is helpful, 67% of the bugs that introduced inefficiencies were in the same method that contained one of the

log points involved in the anomalous log sequence.

lprof ’s capability of analyzing the latency of requests is useful in identifying the particular request that is

slow. The visualization of request latency is particularly useful in analyzing performance creep. For example,

the anomaly to HDFS’s write requests discussed in Chapter 3 can result in performance creep if not fixed. In

addition, lprof can further separate the requests of the same type by their different LIDs which corresponds to

different execution paths. For example, in an HBase performance anomaly [27], there was a significant slow-down

in 1% of the read requests because they triggered a buggy code path. lprof can separate these anomalous reads

from other normal ones.

In practice, the user might not identify the root cause in her first attempt, but instead will have to go through

a sequence of hypotheses validations. The variety of performance information that can be SQL-queried makes

lprof a particularly useful debugging tool. For example, an HBase bug caused an unbalanced workload — a few

region servers were serving the vast majority of the requests while others were idle [26]. The root cause is clearly

visible if the administrator examines the number of requests per node. However, she will likely first notice the

request being slow (via a request latency query), isolate particularly slow requests, before realize the root cause.

In the cases where lprof was not helpful, most (75%) were because the anomalous requests did not print any

log messages. For example, a pair of unnecessary memory serialization and deserialization in Cassandra would

not show up in the log. While theoretically one can add log messages to the start and end of these operations, in

practice, this may not be realistic as the additional logging may introduce undesirable slowdown. For example, the

serialization operation in Cassandra is an in-memory operation that is executed on every network communication,

and adding log messages to it will likely introduce slowdown. In another case, the anomalous requests would only

print one log message, so lprof cannot extract latency information by comparing differences between multiple

timestamps. Finally, there was one case where the checksum verification in HBase was redundant because it was

already verified by the underlying HDFS. Both verifications from HBase and HDFS were logged, but lprof cannot

identify the redundancy because it does not correlate logs across different applications.

If verbose logging had been enabled, lprof would have been able to detect an additional 8.6% of the real-world

performance anomalies that we considered since the offending requests print log messages under the most verbose

level. However, enabling verbose logging will likely introduce significant performance overhead.

CHAPTER 7. EVALUATION 33

0 %

20 %

40 %

60 %

80 %

100 %

HDFS Yarn HBase Cassandra

O
ut

pu
t s

iz
e

(%
)

55
6

M
B

23
 G

B

18
1

M
B

80
 M

B

raw log combine out. reduce out.

Figure 7.2: Output size after map, combine, and reduce compared to the raw log sizes. The raw log sizes are also shown.

System
Time (s) Memory (MB)

map+comb. reduce map+comb. reduce
HDFS 14/528 21 185/348 1,901
Yarn 412/843 1131 1,802/3,264 7,195
Cassandra 4/9 17 90/134 833
HBase 3/7 2 74/150 242

Table 7.6: Log analysis time and memory footprint. For the parallel map and combine functions, numbers are shown in the
form of median/max.

7.4 Time and Space Evaluation

The map and combine functions ran on each EC2 node, and the reduce function ran on a single server with 24

2.2GHz Intel Xeon cores and 32 GB of RAM.

Figure 7.2 shows the size of intermediate result. On average, after map and combine, the intermediate result

size is only 7.3% of the size of the raw log. This is the size of data that has to be shuffled over the network for the

reduce function. After reduce, the final output size is 4.8% of the size of the raw log.

Table 7.6 shows the time and memory used by lprof ’s log analysis. lprof ’s map and combine functions finish

in less than 6 minutes for every system exception for Yarn, which takes 14 minutes. Over 80% of the time is spent

on log parsing. We observe that when a message can match multiple regular expressions, it takes much more time

than those that match uniquely. The memory footprint for map and combine is less than 3.3GB in all cases.

The reduce function takes no more than 21 seconds for HDFS, Cassandra, and HBase, but currently takes 19

minutes for Yarn. It also uses 7.2GB of memory. Currently, our MapReduce jobs are implemented in Python

using Hadoop’s streaming mode, which may be the source of the inefficiency. (Profiling Yarn’s reduce function

shows that over half of the time is spent in data structure initializations.) Note that we run the reduce job on a

single node using a single thread. The reducer could and should be parallelized in real-world usage.

Chapter 8

Limitations

We outline the limitations of lprof in five aspects. We also provide discussions on how lprof could be extended

to overcome these limitations.

(1) lprof requires good logging practice to achieve greatest usefulness. The output of lprof , and thus its usefulness,

is only as good as the logs output by the system. In particular, the following properties will help lprof to be

most effective: (i) attached timestamps from a reasonably synchronized clock; (ii) output messages in those

requests that need profiling (multiple messages are needed to enable latency related analysis); (iii) the existence

of a reasonably distinctive request identifier, and (iv) not printing the same message pattern in multiple program

locations.

Note that these properties not only will help lprof , but also are useful for manual debugging. lprof naturally

leverages such existing best-practices. Furthermore, lprof ’s static analysis can be used to suggest how to improve

logging. It identifies which threads do not contain any log printing statements. These are candidates for adding

log printing statements. lprof can also infer the request identifiers for developers to log.

(2) Currently lprof only works on Java bytecode. Our implementation relies on Java bytecode and hence is

restricted to Java programs (or other languages that use Java bytecode, such as Scala). Similar analysis can be

done on LLVM bytecode [35], but this would most likely require access to the C/C++ source code so it can be

compiled to LLVM bytecode.

(3) Performance of lprof could be a concern for online profiling. While the map phase is executed in parallel on

each node that stores the raw log, the reduce phase may not be evenly distributed. This is because all of the RAs

that contain top-level methods that might communicate with each other need to be shuffled to the same reducer.

This can result in unbalanced load. For example, in Yarn, 75% of the log messages are printed by one log point

during the heartbeat process, and their RAs have to be shuffled to the same reducer node. This node becomes the

bottleneck even if there are other idle reducer nodes.

34

CHAPTER 8. LIMITATIONS 35

(4) If a unique per-request ID exists, lprof’s static analysis part may become not very useful. If a unique per-

request ID exists in every log message, then there would be no need to infer the request identifier. The log string

format parsing could also be simplified since now our log parser only needs to match a message to a log printing

statement, but does not need to precisely bind the values to variables. However, the other components are still

needed. DAG and communication pairs are still needed to infer the order dependency between different log

messages, especially if we want to perform per-thread performance debugging. The MapReduce log analysis is

still needed. If such an ID exists, then the accuracy of lprof will increase significantly, and we can better distribute

the workload in the reduce function by using this ID as part of the shuffle key.

(5) lprof requires redeploy when there are code changes. A system upgrade requires lprof to perform static

analysis on the new version. The new model produced by the static analysis should be sent to each node along

with the new version of the system. In practice, we compare two files generated from Hadoop versions 2.0.0 and

2.2.0. Nevertheless, we don’t find significant differences between their static analysis result.

Chapter 9

Related Work

Using machine learning for log analysis: Several tools apply machine learning on log files to detect anoma-

lies [4, 40, 53]. Xu et al., [53] also analyzes the log printing statements in the source code to parse the log. lprof

is different and complementary to these techniques. First, these tools target anomaly detection and do not identify

request flows as lprof does. Analyzing request flows is useful for numerous applications, including profiling,

and understanding system behavior. Moreover, the different goals lead to different techniques being used in our

design. Finally, these machine learning techniques can be applied to lprof ’s request database to detect anomalies

on a per-request, instead of per-log-entry, basis.

Semi-automatic log analysis: SALSA [51] and Mochi [52] also identify request flows from logs produced by

Hadoop. However, unlike lprof , their models are manually generated. By examining the code and logs of HDFS,

they identify the key log messages that mark the start and the end of a request, and they identify request identifiers,

such as block ID. The Mystery Machine [12] extracts per-request performance information from the log files of

Facebook’s production systems, and it can correlate log messages across different layers in the software stack to

infer the performance critical path. To do this, it requires developers to attach unique request identifiers to each

log message. Commercial tools like VMWare LogInsight [37] and Splunk [49] index the logs, but require users

to perform keyword-based searches.

Single thread log analysis: SherLog [55] analyzes the source code and a sequence of error messages to recon-

struct the partial execution paths that print the log sequence. Since it is designed to debug functional bugs in

single-threaded execution, it uses precise but heavy-weight static analysis to infer the precise execution path. In

contrast, lprof extracts less-precise information for each request, but it analyzes all the log outputs from all the

requests of the entire distributed system.

Instrumentation-based profiling: Instrumentation-based profilers have been widely used for performance de-

bugging [8, 10, 21, 22, 34, 43, 45]. Many, including Project 5 [1], MagPie [3], X-Trace [17], and Dapper [47],

36

CHAPTER 9. RELATED WORK 37

just to name a few, are capable of analyzing request flows by instrumenting network communication, and they can

profile the entire software stack instead of just a single layer of service. G2 [22] further models all the events into

an execution graph that can be analyzed using LINQ queries and user-provided programs. In comparison, lprof is

non-intrusive. It also provides source-level profiling information. However, it cannot provide any information if

requests do not output log messages.

Chapter 10

Conclusion and Future Work

This thesis presented lprof , which is, to the best of our knowledge, the first non-intrusive request flow profiler for

distributed services. lprof is non-intrusive because it can stitch together the dispersed and intertwined log mes-

sages generated by the system, which means it does not require instrumenting into the system to get performance

information. lprof is a request flow profiler because it can group log messages from the same request flow based

on the information from off-line static analysis on the system’s code.

The key insight behind lprof is that although there is no perfect request identifers, but the actual logged

identifiers can still be used to group logs from the same request. These identifiers are frequently logged but rarely

modified. The modification point indicates the entry of a specific request.

We have designed lprof as two parts: the static analysis part and log analysis part. The static analysis part

will generate a file describing the logging behavior of the system, while the log analysis part uses this file to stitch

logs from the same request into the same group. Finally lprof outputs a database table with one line per request,

helping people understand performance behavior of distributed systems.

Our evaluation shows that lprof can accurately attribute 90% of the log messages from widely-used, production-

quality distributed systems: HDFS [28], Yarn [54], Cassandra [6] and HBase [25]. Out evaluation also shows that

lprof is helpful in debugging 65% of the sampled real-world performance anomalies.

We have several plans for future work. While lprof can provide per-request level grouping of system logs, it

only works on Java bytecode hence can only be applied on JVM-based distributed systems. Since lprof requires

data flow information to do the static analysis, it will be hard to directly apply lprof ’s static analysis on binary

executables. However, we plan to apply lprof on LLVM or other SSA-based representations. It will help us

understand more about the feasibility of lprof ’s static analysis on these intermediate representations.

Finally, although lprof can stitch logs generated by one single distributed system, it cannot infer correlations

among logs from different system components. Nowadays distributed system stack is becoming more heteroge-

nous. For example, a user submits a SQL request to Hive [32] will trigger numerous of jobs processed by Yarn

38

CHAPTER 10. CONCLUSION AND FUTURE WORK 39

and MapReduce, which is further handled by underlying HDFS and operating system. We plan to further explore

how to infer log correlation on different system components.

Bibliography

[1] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha Muthitacharoen.

Performance debugging for distributed systems of black boxes. In Proceedings of the 19th ACM Symposium

on Operating Systems Principles, SOSP’03, pages 74–89, 2003.

[2] Amazon found every 100ms of latency cost them 1% in sales. http://blog.gigaspaces.com/

amazon-found-every-100ms-of-latency-cost-them-1-in-sales/.

[3] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using magpie for request extraction

and workload modelling. In Proceedings of the 6th Symposium on Opearting Systems Design and Imple-

mentation, OSDI’04, pages 259–272, 2004.

[4] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D. Ernst. Leveraging exist-

ing instrumentation to automatically infer invariant-constrained models. In Proceedings of the 19th ACM

Symposium on Foundations of Software Engineering, FSE’11, pages 267–277, 2011.

[5] Boundary: Modern IT operation management. http://boundary.com/blog/2012/11/19/

know-your-iaas-boundary-identifies-performance-lags-introduced-by-cloud/.

[6] Apache cassandra. http://cassandra.apache.org/.

[7] Control flow graph. https://en.wikipedia.org/wiki/Control_flow_graph.

[8] Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel. Whodunit: Transactional profiling for multi-tier

applications. In Proceedings of the 2nd ACM European Conference on Computer Systems, EuroSys’07,

pages 17–30, 2007.

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar

Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a distributed storage system for structured data.

In Proceedings of the 7th Symposium on Operating Systems Design and Implementation, OSDI’06, pages

205–218, 2006.

40

http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
http://boundary.com/blog/2012/11/19/know-your-iaas-boundary-identifies-performance-lags-introduced-by-cloud/
http://boundary.com/blog/2012/11/19/know-your-iaas-boundary-identifies-performance-lags-introduced-by-cloud/
http://cassandra.apache.org/
https://en.wikipedia.org/wiki/Control_flow_graph

BIBLIOGRAPHY 41

[10] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer. Pinpoint: Problem determi-

nation in large, dynamic internet services. In Proceedings of the International Conference on Dependable

Systems and Networks, DSN’02, pages 595–604, 2002.

[11] Chord: A program analysis platform for java. http://pag.gatech.edu/chord.

[12] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch. The mystery machine:

End-to-end performance analysis of large-scale internet services. In Proceedings of the 11th Symposium on

Operating Systems Design and Implementation, OSDI’14, pages 217–231, 2014.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Benchmark-

ing cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing,

SoCC’10, pages 143–154, 2010.

[14] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters. In Proceed-

ings of the 6th Symposium on Opearting Systems Design and Implementation, OSDI’04, pages 137–149,

2004.

[15] Distributed systems. https://en.wikipedia.org/wiki/Distributed_computing/.

[16] Moving an elephant: Large scale hadoop data migration at facebook. https://www.facebook.com/

notes/paul-yang/moving-an-elephant-large-scale-hadoop-data-migration-at-facebook/

10150246275318920.

[17] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. X-trace: a pervasive

network tracing framework. In Proceedings of the 4th USENIX Conference on Networked Systems Design

and Implementation, NSDI’07, pages 271–284, 2007.

[18] Google cloud platform. https://en.wikipedia.org/wiki/Google_Cloud_Platform.

[19] Google file system. https://en.wikipedia.org/wiki/Google_File_System.

[20] Google protocol buffers. https://developers.google.com/protocol-buffers/.

[21] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph execution profiler. In

Proceedings of the SIGPLAN Symposium on Compiler Construction, SIGPLAN’82, pages 120–126, 1982.

[22] Zhenyu Guo, Dong Zhou, Haoxiang Lin, Mao Yang, Fan Long, Chaoqiang Deng, Changshu Liu, and Lidong

Zhou. G2: A graph processing system for diagnosing distributed systems. In Proceedings of the 2011

USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’11, pages 299–312, 2011.

[23] Apache hadoop. http://hortonworks.com/hadoop/.

http://pag.gatech.edu/chord
https://en.wikipedia.org/wiki/Distributed_computing/
https://www.facebook.com/notes/paul-yang/moving-an-elephant-large-scale-hadoop-data-migration-at-facebook/10150246275318920
https://www.facebook.com/notes/paul-yang/moving-an-elephant-large-scale-hadoop-data-migration-at-facebook/10150246275318920
https://www.facebook.com/notes/paul-yang/moving-an-elephant-large-scale-hadoop-data-migration-at-facebook/10150246275318920
https://en.wikipedia.org/wiki/Google_Cloud_Platform
https://en.wikipedia.org/wiki/Google_File_System
https://developers.google.com/protocol-buffers/
http://hortonworks.com/hadoop/

BIBLIOGRAPHY 42

[24] Hadoop powered companies. https://wiki.apache.org/hadoop/PoweredBy.

[25] Apache hbase. http://hbase.apache.org/.

[26] HBase bug 2399. https://issues.apache.org/jira/browse/HBASE-2399.

[27] HBase bug 3654. https://issues.apache.org/jira/browse/HBASE-3654.

[28] Hadoop distributed file system. http://hortonworks.com/hadoop/hdfs/.

[29] HDFS-3194 datanode block scanner running too frequently. https://issues.apache.org/jira/

browse/HDFS-3194.

[30] HDFS performance regression on write requests. https://issues.apache.org/jira/browse/

HDFS-4049.

[31] Highcharts: interactive JavaScript charts for your webpage. http://www.highcharts.com/.

[32] Apache hive. https://hive.apache.org/.

[33] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The HiBench benchmark suite: Char-

acterization of the MapReduce-based data analysis. In 26th International Conference on Data Engineering

Workshops (ICDEW), pages 41–51, 2010.

[34] Eric Koskinen and John Jannotti. Borderpatrol: Isolating events for black-box tracing. In Proceedings of the

3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, Eurosys’08, pages 191–203,

2008.

[35] The LLVM compiler infrastructure. http://llvm.org/.

[36] log4j: Apache log4j, a logging library for Java. http://logging.apache.org/log4j/2.x/.

[37] VMware vCenter Log Insight: Log management and analytics. http://www.vmware.com/ca/en/

products/vcenter-log-insight.

[38] Dionysios Logothetis, Chris Trezzo, Kevin C. Webb, and Kenneth Yocum. In-situ mapreduce for log pro-

cessing. In Proceedings of the 2011 USENIX Annual Technical Conference, pages 115–129, 2011.

[39] Mongodb. http://www.mongodb.org/.

[40] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured comparative analysis of systems logs

to diagnose performance problems. In Proceedings of the 9th USENIX Conference on Networked Systems

Design and Implementation, NSDI’12, pages 353–366, 2012.

https://wiki.apache.org/hadoop/PoweredBy
http://hbase.apache.org/
https://issues.apache.org/jira/browse/HBASE-2399
https://issues.apache.org/jira/browse/HBASE-3654
http://hortonworks.com/hadoop/hdfs/
https://issues.apache.org/jira/browse/HDFS-3194
https://issues.apache.org/jira/browse/HDFS-3194
https://issues.apache.org/jira/browse/HDFS-4049
https://issues.apache.org/jira/browse/HDFS-4049
http://www.highcharts.com/
https://hive.apache.org/
http://llvm.org/
http://logging.apache.org/log4j/2.x/
http://www.vmware.com/ca/en/products/vcenter-log-insight
http://www.vmware.com/ca/en/products/vcenter-log-insight
http://www.mongodb.org/

BIBLIOGRAPHY 43

[41] Nagios: the industry standard in IT infrastructure monitoring. http://www.nagios.org/.

[42] NewRelic: Application performance management and monitoring. http://newrelic.com/.

[43] OProf - A system profiler for Linux. http://oprofile.sourceforge.net/.

[44] OpsView - enterprise IT monitoring for networks. http://www.opsview.com/.

[45] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A. Shah, and Amin Vahdat.

Pip: Detecting the unexpected in distributed systems. In Proceedings of the 3rd Conference on Networked

Systems Design and Implementation, NSDI’06, pages 115–128, 2006.

[46] Micha Sharir and Amir Pnueli. Two approaches to interprocedural analysis. Program Flow Analysis, Theory

and Applications, 1981.

[47] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver,

Saul Jaspan, and Chandan Shanbhag. Dapper, a large-scale distributed systems tracing infrastructure. Tech-

nical report, Google, Inc., 2010.

[48] Simple logging facade for Java (SLF4J). http://www.slf4j.org/.

[49] Splunk log management. http://www.splunk.com/view/log-management/SP-CAAAC6F.

[50] Sveinn Steinarsson. Downsampling time series for visual representation. M.Sc thesis. Faculty of Industrial

Engineering, Mechanical Engineering and Computer Science, University of Iceland, 2013.

[51] Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and Priya Narasimhan. Salsa: Analyzing logs

as state machines. In the 1st USENIX Workshop on Analysis of System Logs, WASL’10, San Diego, CA,

December 2008.

[52] Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and Priya Narasimhan. Mochi: Visual log-analysis

based tools for debugging hadoop. In the Workshop on Hot Topics in Cloud Computing, HotCloud’09, San

Diego, CA, June 2009.

[53] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. Detecting large-scale system

problems by mining console logs. In Proc. of the ACM 22nd Symposium on Operating Systems Principles,

SOSP’09, pages 117–132, 2009.

[54] Hadoop yarn. http://hortonworks.com/hadoop/yarn/.

[55] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy. SherLog: error

diagnosis by connecting clues from run-time logs. In Proceedings of the 15th Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS’10, pages 143–154, 2010.

http://www.nagios.org/
http://newrelic.com/
http://oprofile.sourceforge.net/
http://www.opsview.com/
http://www.slf4j.org/
http://www.splunk.com/view/log-management/SP-CAAAC6F
http://hortonworks.com/hadoop/yarn/

BIBLIOGRAPHY 44

[56] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Mihnjong Lee, Yuanyuan Zhou, and Stefan Savage. Be

conservative: Enhancing failure diagnosis with proactive logging. In Proceedings of the 10th USENIX

Symposium on Operating System Design and Implementation, OSDI’12, pages 293–306, 2012.

[57] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterising logging practices in open-source software. In

the 34th International Conference on Software Engineering, ICSE’12, Zürich, Switzerland, June 2012.

[58] Zabbix - an enterprise-class open source monitoring solution. http://www.zabbix.com/.

http://www.zabbix.com/

	Introduction
	Background
	Distributed System
	Static Program Analysis
	MapReduce Job

	Motivating Example
	Overview of lprof
	Static Analysis
	Distributed Log Analysis

	Static Analysis
	Parsing Log Printing Statements
	Identifying Request Identifiers
	Partial Order Among Log Points
	Thread Communication
	Summary of Static Analysis

	Log Analysis
	Map: Intra-thread Grouping
	Combine and Reduce: Inter-thread Grouping
	Request Database and Visualization

	Evaluation
	Static Analysis Results
	Request Attribution Accuracy
	Real-world Performance Anomalies
	Time and Space Evaluation

	Limitations
	Related Work
	Bibliography

