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Abstract 

Background: Within the last few years, it has become evident that LPS-preconditioned mesenchymal stromal cells 

(LPS pre-MSCs) show enhanced paracrine effects, including increased trophic support and improved regenerative 

and repair properties. MSCs may release large amounts of exosomes for cell-to-cell communication and maintain a 

dynamic and homeostatic microenvironment for tissue repair. The present study assesses the therapeutic efficacy 

and mechanisms of LPS-preconditioned MSC-derived exosomes (LPS pre-Exo) for chronic inflammation and wound 

healing.

Methods: We extracted exosomes from the supernatant of LPS pre-MSCs using a gradient centrifugation method. In 

vitro, THP-1 cells were cultured with high glucose (HG, 30 mM) as an inflammatory model and treated with LPS pre-

Exo for 48 h. The expression of inflammation-related cytokines was detected by real-time RT-PCR, and the distribution 

of macrophage subtype was measured by immunofluorescence. Next, the miRNA expression profiles of LPS pre-Exo 

were evaluated using miRNA microarray analysis. The molecular signaling pathway responsible for the regenerative 

potential was identified by western blotting. In vivo, we established a cutaneous wound model in streptozotocin-

induced diabetic rats, and LPS pre-Exo were injected dispersively into the wound edge. The curative effects of LPS 

pre-Exo on inflammation and wound healing were observed and evaluated.

Results: LPS pre-Exo have a better ability than untreated MSC-derived exosomes (un-Exo) to modulate the balance 

of macrophages due to their upregulation of the expression of anti-inflammatory cytokines and promotion of M2 

macrophage activation. Microarray analysis of LPS pre-Exo identified the unique expression of let-7b compared with 

un-Exo, and the let-7b/TLR4 pathway served as potential contributor to macrophage polarization and inflammatory 

ablation. Further investigation of the mechanisms that control let-7b expression demonstrated that a TLR4/NF-κB/

STAT3/AKT regulatory signaling pathway plays a critical role in the regulation of macrophage plasticity. Knockdown of 

AKT in THP-1 cells similarly abolished the immunomodulatory effect of LPS pre-Exo. In vivo, LPS pre-Exo greatly allevi-

ated inflammation and enhanced diabetic cutaneous wound healing.

Conclusion: LPS pre-Exo may have improved regulatory abilities for macrophage polarization and resolution of chronic 

inflammation by shuttling let-7b, and these exosomes carry much immunotherapeutic potential for wound healing.
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Background

Impairment of cutaneous wound healing represents a 

serious complication of diabetes and is associated with 

significant morbidity and a massive socioeconomic 

burden [1]. Evidence suggests that chronic cutaneous 

wounds are characterized by an abnormal inflammatory 

state, with prolonged accumulation of macrophages and 

an increased release of pro-inflammatory cytokines [2, 

3]. �erefore, orchestrating the inflammatory response 

might be a promising strategy to promote proper wound 

healing.

As the primary effectors of inflammation in tissue 

injury, macrophages can be polarized into the “classically 

activated” M1 phenotype or the “alternatively activated” 

M2 phenotype according to signals in the microenviron-

ment [4, 5]. �e proinflammatory responses of M1 mac-

rophages depend on Toll-Like Receptors (TLRs) and the 

activation of NFκB, leading to pathogen phagocytosis, 

oxidative burst and intracellular killing. Conversely, acti-

vation of M2 macrophages leads to the recruitment of 

STAT3 or other transcription factors, resulting in damp-

ened inflammation and promoting tissue remodeling. 

Previous studies have shown that in diabetic mouse mod-

els, high glucose can enhance unrestrained M1 cells but 

impair M2 cell polarization, produce a large number of 

pro-inflammatory mediators, and drive chronic inflam-

mation [6]. Furthermore, dysregulated inflammation in 

diabetic mellitus allows for the hyper-induction of M1 

macrophages and the aberrant production of induc-

ible nitric oxide synthase (iNOS), causing de novo tis-

sue destruction and recapitulating chronic wounds [7]. 

�erefore, the appropriate balancing of macrophage 

polarization plays a crucial role in regulating inflam-

mation and subsequently accelerates tissue repair and 

homeostasis.

Regenerative medicine strategies using mesenchymal 

stromal cells (MSCs) are expected to be a hopeful alter-

native approach to the treatment of a wide variety of 

pathological conditions, such as chronic inflammation. 

Pelizzo and colleagues found that MSCs may relieve the 

inflammatory response by inducing the wound’s capac-

ity to progress in regeneration of skin architecture and 

not regress to a chronic wound state, and this biologi-

cal property of MSCs to promote the transition from 

inflammatory to the proliferative phase is very crucial 

for treating wounds where high levels of inflammation 

inhibit healing [8]. Furthermore, MSCs switched from 

infiltration of pro-inflammatory to anti-inflammatory 

macrophages for alleviating inflammation and augment-

ing cardiac regeneration [9]. In a sepsis model, MSCs 

can secrete certain growth factors to increase the per-

centage of reparative M2 macrophages and improve 

organ function [10]. Studies have found that the expo-

sure of MSCs to the pharmacological agent lipopoly-

saccharide (LPS) can increase their trophic effects 

and functional properties to defend against the harsh 

inflammatory environment [11–13]. Liu et al. have con-

firmed that LPS-primed MSCs have a superior thera-

peutic ability to preserve skin flap survival in a diabetic 

rat model compared to unprimed MSCs [14]. However, 

it remains unclear how LPS-preconditioned MSCs (LPS 

pre-MSCs) resolve chronic inflammation and whether 

they may function by accommodating macrophage 

polarization.

Increasing data indicate that MSCs may create an opti-

mal microenvironment for reducing inflammation and 

promote tissue repair through a paracrine mechanism, 

and exosomes play an important role in this process 

[15–17]. Exosomes are small membranous vesicles that 

contain bioactive molecules, including protein, messen-

ger RNAs (mRNAs) and microRNAs (miRNAs), which 

can be transferred between cells and thus modulate cel-

lular activities and reprogram the phenotype in recipi-

ent cells [18, 19]. As master molecular switches, miRNAs 

exchange bio-information between neighboring cells and 

mediate exosomal intercellular communication. Lin and 

colleagues confirmed that MSCs transferred exosomal 

miR-124 to astrocytes, enhanced their anti-inflammatory 

effects, and benefited neurite remodeling and functional 

recovery by increasing the expression of glutamate trans-

porters [20]. Moreover, the induction of miR-146a may 

be protective against lung injury by suppressing TLR4-

induced NF-κB-regulated gene expression and promot-

ing the M2 macrophage phenotype in acute respiratory 

distress syndrome [21]. However, the roles of miRNA in 

exosome-derived LPS pre-MSCs (LPS pre-Exo) for mac-

rophage polarization and suppression of chronic inflam-

mation have not been elucidated.

In the present study, we successfully isolated and iden-

tified LPS pre-Exo. Using microarray analysis, we found 

that let-7b in LPS pre-Exo has dramatic effects on the 

regulation of macrophage plasticity to resolve chronic 

inflammation and enhance cutaneous wound healing. It 

is feasible that innovative ‘exosome-based therapy’ may 

be developed to reduce the difficulties and risks associ-

ated with whole MSC transplantation for the promotion 

of wound healing.

Methods

�is study was approved by the human ethics commit-

tees of the Chinese PLA General Hospital, Beijing, Peo-

ple’s Republic of China, and written informed consent 

was obtained from all subjects before umbilical cord 

collection.
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Isolation, culture and LPS-preconditioning of MSCs

Human umbilical cord MSCs (UC-MSCs) were isolated 

in our laboratory by processing human umbilical cord 

tissue as described by Professor Hou et  al. [22]. �en, 

the cells were routinely resuspended in low-glucose Dul-

becco’s modified Eagle’s medium (DMEM; Gibco Life 

Technologies, USA) supplemented with 10 % fetal bovine 

serum (Hyclone Laboratories, USA) and 100 U/ml peni-

cillin/streptomycin (Gibco Life Technologies, USA). �e 

cultures were maintained at 37 °C in 5 % CO2 and 95 % 

humidity, and cells at the 4th–5th passages were used for 

the subsequent experiments.

For LPS preconditioning, 1.5  ×  106 UC-MSCs per 

15-cm cell culture dish were seeded for 24 h to achieve a 

confluence of 70–80 %. After the medium was aspirated, 

the cells were rinsed three times with PBS and treated 

with LPS (100 ng/ml in serum-free medium, Sigma, USA) 

or serum-free medium alone as a negative control and 

then incubated for 2 days prior to supernatant collection.

Biological properties of LPS pre-MSCs

�e morphology of LPS pre-MSCs was observed under a 

phase-contrast microscope (Olympus IX71). �eir immu-

nophenotype was determined by flow cytometry evaluat-

ing CD11a, CD34, CD73, CD90, CD105, and HLA-DR, 

and their multipotency was confirmed by osteogenic and 

adipogenic differentiation.

Cell viability after LPS treatment was evaluated using an 

Apoptosis Kit following the manufacturer’s instructions 

(BD Biosciences). Briefly, the cells were dyed with Annexin 

V and 7-AAD and analyzed using flow cytometry.

Exosome extraction and identi�cation

Exosomes were harvested from the supernatants of LPS 

pre-MSCs according to the protocol previously described 

[23, 24]. �e cell supernatants were filtered through a 

0.22-µm filter to remove large debris and dead cells, cen-

trifuged at 10,000×g for 30 min to remove cellular debris, 

and then centrifuged at 100,000×g for 3 h at 4 °C. Follow-

ing this step, the pellets primarily contained exosomes. 

�e exosome pellets were resuspended in the appropriate 

buffer for protein or RNA analysis.

�e exosomes were identified by the marker proteins 

CD9, CD63 or CD81 using western blotting [25], as well 

as by using a transmission electron microscope (TEM, 

Hitachi H-7650) to verify the exosome presence. �e 

protein concentration of the exosomal fraction was quan-

tified with the BCA protein assay kit following the manu-

facturer’s instructions (Pierce, USA).

THP-1 cell culture and treatment

�e human monocytic cell line THP-1 was purchased 

from the American Type Culture Collection (ATCC, 

Manassas, VA, USA). THP-1 cells were cultured in RPMI 

1640 medium (Gibco Life Technologies, CA, USA) sup-

plemented with 10  % FBS. �e cells were grown at a 

density of 3  ×  105–6  ×  105  cells/ml as recommended 

by the ATCC. �en, the THP-1 cells were cultured with 

two concentrations (5 and 30 mM) of glucose in six-well 

plates, and differentiation was induced by treatment 

with phorbol 12-myristate 13-acetate (PMA, 160  ng/

ml, Sigma). After 3  days, the non-adherent cells were 

removed with three rinses with PBS. Adherent cells 

were further incubated with fresh medium containing 

untreated MSC-derived exosomes (un-Exo, 20 µg/ml) or 

LPS pre-Exo (20 µg/ml) for an additional 48 h.

Internalization of LPS pre-Exo into THP-1 cells

To trace LPS pre-Exo by fluorescent microscopy, they 

were labeled with DiI dye (Sigma) and washed in PBS 

with centrifugation at 100,000×g for 1 h at 4 °C. �en, the 

DiI-labeled LPS pre-Exo were co-cultured with THP-1 

cells at a final concentration of 10 µg/ml. After 6 h, the 

cells were stained with Hoechst33342 for 8  min and 

washed with PBS. Finally, the cells were examined and 

photographed with a confocal imaging system (Olympus 

FV1200).

Quantitative real-time polymerase chain reaction (RT-PCR)

Total mRNA was isolated from treated THP-1 cells 

using Trizol reagent (Takara) and reverse transcribed 

into cDNA using a cDNA Synthesis Kit (Takara) accord-

ing to the manufacturer’s protocol. �en, RT-PCR was 

performed using targeted gene primers (Invitrogen, San 

Diego, CA, USA) following the manufacturer’s cycling 

parameters and run on an ABI Prism 7500 Sequence 

Detection System (Applied Biosystems) using SYBR 

Green Mastermix (Toyobo). �e primer sequences are 

shown in Additional file 1: Table S1. Relative fold changes 

in expression were calculated by normalizing to a house-

keeping gene (GADPH) to adjust for loading variation.

Exosomal miRNA isolation, microarray and quanti�cation

RNA was extracted from different exosomes using the 

Total Exosome RNA and Protein Isolation Kit (Invit-

rogen, USA) and mirVana RNA Isolation Kit (Ambion, 

USA) according to the manufacturer’s protocols. Total 

RNA was quantified by the NanoDrop ND-2000 (�ermo 

Scientific) and the RNA integrity was assessed using Agi-

lent Bioanalyzer 2100 (Agilent Technologies).

For microarray analysis, 100  ng of total RNA was 

labeled with pCp-Cy3 using the Agilent miRNA labeling 

reagent and then hybridized with Agilent Human miRNA 

Microarray (Release 19.0, Agilent, CA, USA), which con-

tains 60,000 probes for 1888 human microRNAs (miR-

Base 19.0). �e hybridization signals were detected with 
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the Agilent G2505C Microarray Scanner System, and 

the scanned images were analyzed using Feature Extrac-

tion Software (version10.7.1.1, Agilent Technologies). 

Data analysis was performed using GeneSpring GX 12.5 

software (Agilent Technologies). �e raw data was nor-

malized with the quantile algorithm. �e probes that at 

least one condition out of two conditions have flags in 

“Detected” were chosen for further data analysis. Differ-

entially expressed miRNAs were then identified through 

fold change as well as p value calculated by t test, includ-

ing correction for multiple testing using the False Dis-

covery Rate (FDR) method. �e threshold set for up- and 

down-regulated genes was a fold change ≥2.0 and a p 

value ≤0.05. To confirm the results from microRNA 

profiling, candidate miRNAs were quantified by RT-

PCR using TaqMan microRNA kits (Life Technologies). 

MiRNA relative expression was normalized against U6 

snRNA as an endogenous control.

MiRNA target prediction and pathway enrichment analysis

�e target genes of miRNAs were predicted by the public 

web-based prediction tools TargetScan (http://www.tar-

getscan.org/) and miRanda (http://www.microrna.org). 

�e predicted genes of candidate miRNAs were identi-

fied using DAVID Bioinformatics Database functional-

annotation tools (http://david.abcc.ncifcrf.gov/) for their 

functional annotation clustering analysis. �e predomi-

nant biological pathways for the selected miRNAs were 

identified.

Transfection of miR mimics and inhibitors

THP-1 cells were treated with LPS pre-Exo or un-Exo in 

6-well culture plates and transfected with the indicated 

miRNA mimics, inhibitors or negative controls using 

Lipofectamine 2000 (Invitrogen) according to the manu-

facturer’s instructions. �e cells were harvested after 48 h 

of transfection for subsequent experiments.

Diabetic cutaneous wound preparation

All procedures were performed according to the Chinese 

PLA General Hospital Animal Care and Use Commit-

tee’s guidelines for the principles of animal care. Diabetic 

cutaneous wounds were prepared as described by Profes-

sor Hao et al. [26]. �e animals were divided into the fol-

lowing four groups (n = 6): (1) the Normal group (Nor), 

(2) the Diabetic group (Dia), (3) the Diabetic +  un-Exo 

group (Dia + un-Exo), and (4) the Diabetic + LPS pre-

Exo group (Dia + LPS pre-Exo).

Histology

Cutaneous wound bed tissues at 3  days were excised 

and fixed in 4  % phosphate-buffered formalin (pH 7.4), 

embedded in paraffin, sectioned at 5  µm, and mounted 

on adhesive glass slides. �en, the sections were stained 

with hematoxylin and eosin (H&E) using standard proce-

dures and observed under a light microscope (Olympus 

BX53).

Immuno�uorescence

After fixation with paraformaldehyde and permeabi-

lized with 0.1 % Triton X-100, THP-1 cells or cutaneous 

excised tissues were incubated with the desired primary 

antibodies against the M1 marker iNOS (Abcam) and the 

M2 marker Arg-1 (Abcam) overnight at 4  °C and with 

Alexa Fluor-conjugated IgG secondary antibodies (1:300; 

Santa) for 60  min at room temperature, followed by 

counter-staining of the nucleus with Hoechst33342 dye 

(Sigma) for 5  min. Finally, the cells were examined and 

photographed with a confocal imaging system (Olympus 

FV1200). For quantification, 10 different fields from each 

sample preparation were randomly selected, and then the 

iNOS-, Arg-1- and Hoechst-positive areas were gener-

ated using Image-Pro Plus software (Media Cybernet-

ics). �e presence of various macrophage subtypes was 

expressed as the ratio between iNOS-/Arg-1-positive 

areas and Hoechst-positive regions.

Western blotting

Proteins were isolated from treated THP-1 cells or cuta-

neous excised tissues using radioimmunoprecipitation 

buffer with protease inhibitors (Sigma). Protein concen-

trations were determined by a Bradford assay (Pierce). 

�e total protein (30 µg) of each sample was subjected 

to SDS-PAGE and immunoblotting with the desired anti-

bodies against TLR4 (Abcam), STAT3 (Cell Signaling), 

p-STAT3 (Cell Signaling), AKT (Cell Signaling), p-AKT 

(Cell Signaling), NF-κB (Cell Signaling), p-P65 (Cell Sign-

aling) and β-actin (Abcam), as previously described [27].

Statistical analysis

All results are presented as the mean ±  standard devia-

tion from at least three independent experiments. Data 

analysis was performed using SPSS version 14.0.1 for 

Windows. Statistical significance was determined by Stu-

dent’s t tests or one-way analysis of variance to evaluate 

the LPS pre-Exo treatment effect. Generally, group differ-

ences at the level of p < 0.05 were considered statistically 

significant.

Results

Characterization of LPS pre-MSCs

Previous studies have shown that LPS precondition-

ing of MSCs enhanced the paracrine ability to improve 

the therapeutic potentiality [28]. We first evaluated the 

characteristics of LPS pre-MSCs. UC-MSCs were iso-

lated from human umbilical cord tissue and pretreated 

http://www.targetscan.org/
http://www.targetscan.org/
http://www.microrna.org
http://david.abcc.ncifcrf.gov/
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with 100 ng/ml LPS for 2 days. After LPS treatment, UC-

MSCs exhibited a spindle-shaped morphology and were 

positive for CD73, CD90 and CD105 and negative for 

CD11a, CD34, and HLA-DR by FACS analysis (Fig. 1a, c). 

Additionally, LPS pre-MSCs were found to be capable of 

differentiating into osteoblasts and adipocytes (Fig.  1b). 

Annexin V/7-AAD staining showed that no significant 

induction of apoptosis occurred in MSCs upon exposure 

to LPS (Fig. 1d). �ese data confirm that LPS pre-MSCs 

have a similar pattern regarding the extent and level of 

original MSC features.

Validation of LPS pre-Exo

Because exosomes derived from MSCs have a vital role 

in orchestrating wound healing, we extracted exosomes 

from the supernatants of LPS pre-MSCs using a gradi-

ent centrifugation method. LPS pre-Exo were identi-

fied as small vesicles ranging from 40 to 90  nm in a 

cup-shaped form and expressed exosomal markers such 

as CD9, CD63 and CD81 (Fig.  2a, b). �en to estimate 

levels of exosome release, the protein concentration of 

purified preparations were assessed by BCA methods 

and normalized to the number of manipulated cells. In 

our experiments, we routinely isolated approximately 

410 µg protein equivalent of exosomes from 80 ml of the 

supernatants collected from cultures of 5 × 107 LPS pre-

MSCs. And we found a significantly greater level (37 %) 

of total proteins in LPS pre-Exo than in un-Exo, implying 

that LPS stimulation increased the secretion of exosomes 

from UC-MSCs (Fig.  2c). Additionally, DiI-exosomes 

were internalized in THP-1 cells and localized in the 

cytoplasm, as visualized by confocal microscopy (Fig. 2d). 

�ese data showed that we successfully obtained LPS 

pre-Exo.

LPS pre-Exo converted in�ammatory THP-1 cells to M2 

polarization

Because high glucose induces macrophage into a 

pro-inflammatory state [29], we examined the influ-

ence of LPS pre-Exo on THP-1 cells in a high-glucose 

Fig. 1 Characterations of LPS pre-MSCs. a Representative photomicrographs of UC-MSCs and LPS pre-MSCs in culture displaying similar spindle 

shaped morphology. Scale bar 100 µm. b LPS pre-MSCs differentiation into adipocytes and chondrocytes. c Immunophenotype of LPS pre-MSCs 

by flow cytometry. d After appropriate LPS stimulation, UC-MSCs apoptosis didn’t show clearly change by flow cytometry analysis of Annexin V and 

7-AAD staining. Data are presented as the mean ± SEM of three separate experiments
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environment. �e RT-PCR results showed that after LPS 

pre-Exo treatment, THP-1 cells dramatically produced 

more anti-inflammatory cytokines (IL-10, TGF-β) and 

M2 macrophages surface marker CD163, and less pro-

inflammatory cytokines, including IL-1, IL-6, and TNFα 

at 48 h (p < 0.05) (Fig. 3a). Furthermore, immunofluores-

cence staining showed that the density and distribution 

of M2 macrophages was significantly increased and M1 

macrophages were markedly reduced in the LPS pre-Exo 

group, especially at 48 h (Fig. 3b). Taken together, these 

data indicate that LPS pre-Exo are a homeostatic regula-

tor of macrophage polarization and facilitate the differen-

tiation of macrophages to M2, but not M1.

Unique expression pattern of miRNA in LPS pre-Exo

However, LPS pre-Exo have a better effect than un-Exo 

on the modulation of macrophages plasticity. And exo-

some-mediated miRNA transport has been proposed 

to be an essential mechanism that regulates target gene 

expression for cell-to-cell communication [30], we sug-

gested LPS stimulation may change the composition of 

MSC exosomes cargo, and some unique miRNA in LPS 

pre-Exo account for its superior immune-modulatory 

and regenerative property. So the miRNA expression 

profiles of LPS pre-Exo were performed using miRNA 

microarray analysis. Following probe screening and data 

normalization, we found 40 significantly differentially 

expressed miRNAs in LPS pre-Exo compared to un-Exo. 

Differences in miRNA patterns were visualized in a hier-

archical clustering plot (heatmap) generated using TIGR 

multiple experimental viewer software (Fig. 4a). Among 

them, five miRNAs (let-7b, miR-1180, miR-183, miR-

550b, and miR-133a) were only present in LPS pre-Exo. 

�ese results were further validated by RT-PCR. Further-

more, we found let-7b has the highest expression level 

in the five unique miRNAs presented in LPS pre-Exo 

(Fig. 4b).

Next, to investigate the specific miRNAs and their tar-

gets that may be potentially associated with macrophage 

polarization and inflammation, we used the available 

databases to search for potential miRNA-targeted genes. 

�en, we subjected the plausible targets to KEGG path-

way enrichment analysis using DAVID tools. According to 

the Reactome Database, targets of LPS exosomal-specific 

miRNAs were statistically enriched in genes and proteins 

participating in cell differentiation, immune regulation, 

cell proliferation and inflammation (Additional file 1: Table 

S2). Notably, the let7b/TLR4 pathway has been shown to 

Fig. 2 Identification of LPS pre-Exo. a Transmission electron micrograph of exosomes derived from diverse processing MSCs. Scale bar 100 nm. b 

Detection of CD9, CD63, and CD81 expression in MSC derived exosomes by western blotting. c UC-MSCs showed enhanced exosome secretion 

after LPS preconditioning. Data are presented as the mean ± SEM of three separate experiments. d Fluorescence microscopy detection of the 

uptake of Dil-labeled exosomes (red) by THP-1 cells (Hoechst blue) for 6 h. Scale bars 50 µm
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be the most critical cellular pathway related to the modula-

tion of the immune system and inflammation, and it has 

been shown to play an important role in both monocyte 

activation and differentiation after tissue injury [31, 32].

According to the above analysis results, we considered 

that let-7b maybe play a key role in the M1 to M2 shift 

in macrophages induced by LPS pre-Exo. Subsequently, 

we evidenced that THP-1 cells that took up LPS pre-Exo 

Fig. 3 LPS pre-Exo converted inflammatory THP-1 cells to M2 polarization. a Pro-inflammatory cytokines (IL-1, IL-6, TNF-α), anti-inflammatory 

cytokines (IL-10, TGF-β) and M2 macrophages surface marker CD163 expression in THP-1 cells after culturing with LPS pre-Exo for various times. 

mRNA expression of interest genes is normalized to GADPH and given as relative change. Data are presented as the mean ± SEM of three separate 

experiments. *Compared with Con, p < 0.05; #compared with HG, p < 0.05. b Immunofluorescence analysis of macrophage phenotype, and iNOS 

(M1 green) or Arg1 (M2 red) were expressed in THP-1 cells (Hoechst blue). Scale bar 50 µm
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expressed significantly higher levels of let-7b and low 

levels of TLR4, but no significant changes in these two 

genes were observed in THP-1 cells taking up un-Exo 

(Fig.  4c, d). �ese data indicated that let-7b is abun-

dantly expressed in LPS pre-Exo, and performs its active 

function through TLR4 in the course of macrophage 

polarization.

Let-7b regulates macrophage polarization via TLR4/NF-κB/

STAT3/AKT signaling

We further analyzed the molecular mechanism whereby 

let-7b transferred by LPS pre-Exo participates in mac-

rophage plasticity. Western blot analyses revealed that 

after LPS pre-Exo treatment, the levels of TLR4 and p-P65 

expression were significantly decreased. Meanwhile, the 

expression levels of p-STAT3 and p-AKT were clearly 

upregulated in a time-dependent manner compared with 

the control groups at 24 and 48 h (Fig. 5). Furthermore, 

overexpression of let-7b could augment the regulatory 

functions of LPS pre-Exo or un-Exo, and inhibition of let-

7b in the LPS pre-Exo group had exactly the reverse effect 

(Fig. 6; Additional file 2: Fig. S1). Remarkably owing to the 

entire restraint of STAT3 activation in presence of let-7b 

inhibitor, it is probably let-7b as a key trigger for STAT3 

mediated transformation of LPS pre-Exo treated THP-1 

cells. We also found that the AKT inhibitor LY294002 pre-

vented the effects of LPS pre-Exo on THP-1 cells (Fig. 6), 

further indicating that LPS pre-Exo mediate the modula-

tion of macrophage polarization through let-7b via TLR4/

NF-κB/STAT3/AKT regulatory signaling.

Fig. 4 Unsupervised hierarchical cluster analysis of miRNA expression in LPS pre-Exo uncovers let-7b as a regulator of TLR4 in macrophage polariza-

tion. a miRNA expression profiling on total RNA isolated from un-Exo (n = 3) and LPS pre-Exo (n = 3). A heatmap was generated after supervised 

hierarchical cluster analysis. Differential miRNA expression is shown by red (upregulation) versus green (downregulation) intensity (LPS pre-Exo 

versus un-Exo, twofold change, p < 0.05). b Validation of unique miRNAs in LPS pre-Exo using real-time RT-PCR. c Real-time RT-PCR analysis of let-7b 

expression in treated THP-1 cells at 48 h. Data are presented as the mean ± SEM of three separate experiments. *Compared with Con, p < 0.05; 
#compared with HG, p < 0.05. d Immunofluorescence staining displayed TLR4 activity in treated THP-1 cells at 48 h
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LPS pre-Exo relieve in�ammation and promote wound 

healing in diabetic wounds

�e in vivo curative effects of LPS pre-Exo on inflamma-

tion and wound healing were observed and evaluated. We 

established a cutaneous wound model in streptozotocin-

induced diabetic rats, and 60 µg total protein of diverse 

processing MSCs-generated exosomes (un-Exo or LPS 

pre-Exo) in 0.5 ml PBS were injected dispersively into the 

wound edge. �e results showed that LPS pre-Exo appar-

ently decreased inflammatory cell infiltration and pro-

moted the appearance of new small capillaries and wound 

healing (Fig.  7). �ere appeared to be a high expression 

level of M2 macrophages and less M1 macrophages in 

the wound sites at day 3 (Fig.  8a). Western blot analy-

ses revealed low levels of TLR4 and p-P65 expression, 

but more levels of p-STAT3 and p-AKT, in the wound 

sites (Fig.  8b). Collectively, these data strongly indicated 

that LPS pre-Exo can resolve inflammation and enhance 

wound healing by regulating macrophage polarization.

Discussion

Recently, LPS preconditioning of MSCs has been an 

attractive therapeutic approach for the treatment of 

inflammatory diseases and tissue injury. �ere is growing 

evidence that LPS preconditioning obviously enhances 

the paracrine protective effects and regenerative and 

repair properties of MSCs [28, 33]. MSCs may release 

large amounts of exosomes to exchange bio-informa-

tion between neighboring cells and maintain a dynamic 

and homeostatic microenvironment for tissue repair 

[34]. In this paper, we discovered that LPS stimulation 

increased the production of exosomes from UC-MSCs. 

Moreover, LPS pre-Exo possessed an apparent advantage 

for the switch of macrophages to an M2-like profile in 

Fig. 5 LPS pre-Exo regulated proteins expression in the TLR4/NF-κB/STAT3/AKT signaling pathway. a THP-1 cells were pretreated with high 

gluscose (30 nM) and then cultured with LPS pre-Exo for 48 h. Cell lysates were subjected to Western blot analysis with specific antibody to TLR4, 

p-P65, NF-κB, p-STAT3, STAT3, p-AKT, AKT, and β-actin. b The band intensities were assessed by scanning densitometry. Data are presented as the 

mean ± SEM of three separate experiments. *Compared with Con, p < 0.05; #compared with HG, p < 0.05
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inflammatory conditions, and let-7b, distinctively shut-

tled by LPS pre-Exo, might participate in macrophage 

polarization by targeting TLR4 to better resolve inflam-

mation and maintain tissue homeostasis. In vivo, LPS 

pre-Exo greatly alleviated inflammation and enhanced 

diabetic cutaneous wound healing.

It has become possible to regulate macrophage polar-

ization using interventions that might orchestrate 

Fig. 6 Let-7b is involved in LPS pre-Exo modified macrophage polarization by the TLR4/NF-κB/STAT3/AKT signaling pathway. THP-1 cells were 

treated with LPS pre-Exo and transfected with the let-7b mimics, let-7b inhibitor or the AKT inhibitor, LY294002. a Levels of TLR4, p-P65, NF-κB, 

p-STAT3, STAT3, p-AKT, AKT protein were detected by western blotting with the respective antibodies. b The distribution of macrophage subtype 

M1 (iNOS green) and M2 (Arg1 red) were measured by immunofluorescence. Scale bar 50 µm

Fig. 7 The progression in healing of cutaneous wounds in diabetic rats. a Appearances of wounds in different groups at various time points. b 

Histological analyses of cutaneous injury in diabetic rats at 3 days. There are apparently decreased inflammatory cell infiltration (black arrows) and 

promoted the appearance of new small capillaries (white arrows) in the Dia + LPS pre-Exo group. Scale bar 200 mm
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inflammation and optimize wound repair [35, 36]. Mac-

rophages produce a plethora of mediators to balance the 

inflammatory response in response to environmental 

stimuli and play an integral role in the successful heal-

ing process. Cho et  al. demonstrated that MSCs benefit 

cardiac repair by preferentially polarizing macrophages 

toward the M2 anti-inflammatory phenotype [37]. Zhu 

et  al. confirmed that human MSC-derived exosomes 

reduced inflammation and had a similar therapeutic 

effect on acute lung injury as MSCs [38]. We also found 

that after treatment of inflammatory THP-1 cells with 

LPS pre-Exo, they expressed more anti-inflammatory 

and less pro-inflammatory cytokines. Meanwhile, immu-

nofluorescence also provides evidence that LPS pre-

Exo favor broader activation of M2 macrophages in the 

inflammatory state. �erefore, we suggest that LPS pre-

Exo have a superior ability to modulate the balance of 

M1/M2 macrophages and facilitate wound healing.

Exosomes contain several effective genetic molecules 

and act as a cell–cell communication vehicle to influence 

gene expression in recipient cells. Data have shown that 

the secretion of exosomes is enhanced in cells exposed 

to a stress environment, and the exosomal contents 

such as proteins and miRNAs will change distinctively 

[39]. Given the essential role of the miRNA processing 

machinery in immune cell development, we revealed 

that LPS pre-MSCs may secrete exosomes that carry 

unique “marker signature” of let-7b by microarray analy-

sis and contribute to how the macrophages reach a fully 

reprogrammed stage. Researches have evidenced that 

appropriate LPS engagement could reshape the immu-

nomodulation action of MSCs via the TLR4 pathway 

[40]. Moreover, TLR4 is by now one of the identified tar-

get genes of let-7b [41]. Pobezinsky et al. discovered that 

the let-7 miRNA is pivotal for the terminal differentiation 

and cytokine effector function of natural killer T cells 

[42]. So we speculated MSCs expressed moderate TLR4 

after LPS stimulation. As a feed-forward loop, LPS pre-

MSCs produced let-7b which directly regulates TLR4 

expression to maintain a relative homeostasis. �en let-

7b was selectively packaged into exosome and transferred 

to macrophages, negatively regulate TLR4 expression and 

orchestrate macrophage plasticity, thus fine-tuning the 

inflammatory response and wound healing.

�e let-7 family was the second miRNA family identified 

as a regulator of developmental timing and cell prolifera-

tion; however, it is becoming more apparent that they also 

mediate immune responses and adjust inflammation [41]. 

Guo et al. have reported that let-7b, a member of the let-7 

family, has differential expression patterns in inflamed tis-

sues compared with healthy controls [43]. In gastric epi-

thelial cells, overexpression of let-7b attenuates NF-κB 

Fig. 8 Effects of LPS pre-Exo on wound inflammation in diabetic rats for 3 days. a Macrophage phenotype distribution of the wound sites. Immu-

nofluorescence staining for iNOS (M1 green), Arg1 (M2 red), and nucleus (blue). Scale bar 50 µm. b Western blotting analysis for the TLR4/NF-κB/

STAT3/AKT signal pathway
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activity and then regulates downstream genes related 

to the inflammatory and immune responses by target-

ing TLR4 [44]. Notably, silencing of the key mediators of 

TLR4 signaling may provide an important technique for 

understanding the development of LPS tolerance. �ere 

is evidence that LPS priming reprograms TLR4 signaling, 

whereby NFκB activity is suppressed, anti-inflammatory 

cytokines are upregulated, and the body is conferred a 

protective status [45]. Our results are in agreement with 

these studies, indicating that after LPS preconditioning, 

MSC-derived exosomes transfer let-7b to THP-1 cells and 

modulate their behavior through the inhibition of TLR4.

�e well-timed transition from a proinflammatory M1 

into an alternative M2 state is beneficial for the resolution 

of chronic inflammation. In this study, high glucose time-

dependently induced THP-1 cells to an M1-like state, while 

LPS pre-Exo switched these M1-like THP-1 cells to anti-

inflammatory M2 activation then limited inflammation 

or boosted tissue repair and regeneration. Several studies 

have suggested that macrophage polarization is efficiently 

regulated by various signaling pathways in a strict tem-

poral pattern [46]. A network of various factors, such as 

multifunctional cytokines, different transcription factors, 

protein kinases, and receptor signaling, underlies the differ-

ent forms of macrophage activation. It has been reported 

that the reciprocal inhibitory crosstalk between NF-κB and 

STAT3 can modulate the M1/M2 balance and coordinate 

responses to different microenvironments; NF-κB acti-

vation can induce an inflammatory M1 phenotype, and 

STAT3 activation is important for an anti-inflammatory 

M2 conversion [47]. �e inhibition of NF-κB has also been 

recently shown to contribute to the process of tolerance 

and M2 macrophage activation by negatively polarizing 

M1 macrophages [48]. In addition, STAT3 operates as a 

pivotal transcriptional repressor that prevents excessive 

TLR4-driven inflammatory responses. During the anti-

inflammatory process, the STAT3 pathway is an impor-

tant homeostatic mechanism that governs the degree and 

duration of inflammation, and it can promote the expres-

sion of effector genes (IL-10) associated with an M2-like 

phenotype [49]. �erefore, we examined the activated form 

of NF-κB and STAT3 then found that LPS pre-Exo treated 

THP-1 cells have higher expression of p-STAT3, accompa-

nied by lower expression of p-P65. �ere exists a similar 

condition in unstimulated THP-1 cells. And the results of 

western blot are just compatible with the analytical data of 

macrophage polarization in the LPS pre-Exo treated and 

unstimulated THP-1 cells. �e AKT pathway is another 

critical or compensatory pathway that can comprise nega-

tive feedback loops and establish tolerance in TLR4-medi-

ated immune responses [50]. Androulidaki and colleagues 

found that AKT can monitor macrophage responsiveness 

to LPS tolerance by controlling the expression of different 

miRNAs [51]. In vivo, vasoactive intestinal peptide, an 

anti-inflammatory neuropeptide, directly reduced TLR4 

activities via the AKT pathway and suppressed pro-inflam-

matory cytokine expression by macrophages [52]. How-

ever, to date, there remains minimal data to reveal the role 

of the AKT pathway in macrophage polarization. Signifi-

cantly, it has been reported the AKT pathway can suppress 

TLR4/NF-κB activation and the subsequent inflammatory 

response [53]. STAT3 can induce AKT activation to influ-

ence immune homeostasis and regulate cell differentia-

tion [54]. �us, we speculate that LPS pre-Exo may involve 

signaling pathways that directly or indirectly lead to AKT 

activation via STAT3 and/or to the inhibition of the nuclear 

translocation of NF-κB, and we found that AKT is indeed 

highly activated in the LPS pre-Exo-treated group. Further-

more, inhibition of the AKT pathway eliminated the effects 

of LPS pre-Exo on THP-1 cells. Taken together, we con-

sider that TLR4/NF-κB/STAT3/AKT signaling is an essen-

tial pathway for the regulation of macrophage polarization 

and wound healing via LPS pre-Exo-shuttled let-7b.

In conclusion, we found that LPS pre-Exo have better 

regulatory properties for macrophage polarization and 

the resolution of chronic inflammation. Furthermore, the 

exosome-specific let-7b released from LPS pre-MSCs can 

concomitantly activate feedback inhibitory mechanisms 

that restrain the magnitude of inflammatory responses to 

promote proper wound healing. Identifying the molecu-

lar mechanisms suggests that the MSC-mediated transfer 

of exosomes is a very promising tool for future regenera-

tive and repair therapies.

Conclusions

In summary, the present study demonstrates MSCs may 

release plenty of exosomes with superior regulatory and 

regenerative abilities for the balance of macrophages and 

the resolution of chronic inflammation after LPS treat-

ment. LPS pre-Exo possessed an apparent advantage 

for the switch of macrophages to an M2-like profile in 

inflammatory conditions by shuttling let-7b, and these 

exosomes carry much immunotherapeutic potential for 

wound healing.
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THP-1 cells were treated with un-Exo and transfected with the let-7b 

mimics. Levels of TLR4, p-P65, NF-κB, p-STAT3, STAT3, p-AKT, AKT protein 
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the distribution of macrophage subtype M1 (iNOS, green) and M2 (Arg1, 

red) were measured by immunofluorescence. Scale bar = 50 µm.
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