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Abstract— We discuss Kalman filtering and LQ optimal
control of a networked control system (NCS) whose sensors
and actuators exchange information with a remote controller
over a shared communication medium. Access to that medium
is governed by a pair of periodic communication sequences.
Under the proposed model, the controller and plant handle
communication disruptions by “ignoring” sensors and actuators
that are not actively communicating. We show that Kalman
filtering and LQ optimal control for NCSs can be formulated
as a standard LQG problem for an equivalent periodic system.
Moreover, under mild conditions, there always exist periodic
communication sequences that preserve the detectability and
observability of the NCS and thus make it possible to guarantee
the existence of a stabilizing LQG controller.

I. INTRODUCTION

This paper presents an LQG (Linear Quadratic Gaussian)
design approach for Networked Control Systems (NCSs) in
which sensors and actuators of an MIMO plant exchange
information with a remote controller via a shared communi-
cation medium. In contrast to traditional control systems,
NCSs are subject to medium access constraints because
of the limited capacity provided by the communication
medium. Consequently, any controller must be accompanied
by a Medium Access Control (MAC) policy that deter-
mines which sensors and actuators gain access to the shared
medium at any given time.

A well known MAC policy for NCS ([1], [2]) is to
schedule access for the different sensors and actuators off-
line, according to a periodic communication sequence. The
task of designing effective communication sequences is quite
challenging, despite their intuitive appeal. Previously pro-
posed methods [3], [4], [5] only handle simple NCSs that
consist of a number of “uncoupled” plants, or assume that
medium access constraints exist for input or output signals,
but not for both. With regard to feedback stabilization in
particular, the question of whether a stabilizing constant-
gain feedback controller exists, is NP-hard (see [2] and
references therein), even if the communication sequence is
fixed in advance. Likewise, the complexity of LQ optimal
control problems involving NCS is significant; the cases
studied [5], [6] involve simple NCS configurations and rely
on dynamic programming or exhaustive search in order to
identify optimal sequences.
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It will become apparent in the sequel that the difficulties
encountered in these works are partly due to the use of a zero
order hold (ZOH) at the “receiving end” of a communication
medium (i.e. at the plant’s and controller’s input stages).
Doing so has the effect of greatly increasing the system’s
complexity because it introduces time-varying delays and
leads to closed-loop dynamics in which communication and
control are tightly coupled (see, for example, the “extensive
form” in [2]). Moreover, holding input (output) signals whose
actuators (sensors) are not actively communicating may not
necessarily improve performance.

The contribution of this paper is to propose an alternative
NCS architecture, whereby the plant and controller forgo
the use of a ZOH and instead choose to “ignore” (in a
manner to be made precise) the actuators and sensors that
are not actively communicating. We are motivated by recent
work on NCS stabilization, that has shown [7] that a similar
choice leads to a decoupling of the design of communication
sequences from that of a feedback controller, and reduces
the complexity of the problem to a level that is amenable
to analysis. Here, we investigate state estimation and LQ
optimal control of NCS under periodic communication. We
show that by avoiding the use of ZOH elements: i) the com-
munication sequences that govern controller-plant interaction
can be designed easily and separately from the controller,
and ii) by proper choice of communication, the problem of
state estimation and LQ optimal control for a NCS is no
more complicated than a standard LQG problem, which can
be addressed by composing existing results. To the authors’
knowledge, this work is the first to provide a solution to the
LQG problem under medium access constraints. For related
work on state estimation for simple NCS configurations see
[8], [9], and [10].

The proposed approach avoids the complexity associated
with previously proposed models and addresses MIMO NCS
whose dynamics are “fully coupled”. Furthermore, the esti-
mation error covariance and optimal feedback gain associated
with the Kalman filter and LQ controller used to steer
the NCS, converge to periodic solutions. Thus, the LQG
controller can be easily implemented in practice.

The remainder of this paper is structured as follows: In
Section II we show that under periodic communication, a
MIMO NCS can be modeled as a periodic time varying
system with a reduced number of inputs and outputs. The
stabilizability and detectability of a NCS can be preserved
by properly choosing communication sequences. Section III,
discusses an LQG problem for NCSs, including a discussion
of sufficient conditions that ensure the convergence of the
Kalman filter and the optimal LQ gains associated with the
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LQG controller. A numerical example is given in Section IV.

II. MODELING NCSS
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Fig. 1. A Networked Control System with medium access constraints

We begin with a deterministic model for NCSs with
medium access constraints. This model, inspired by [7], will
be generalized to a stochastic setting in Section III.

Consider a NCS (Fig. 1) in which the dynamics of the
plant are given by the discrete-time linear time-invariant
(LTI) system

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Cx(k)

where x = [x1, · · · , xn]T ∈ R
n, u = [u1, · · · , um]T

∈ R
m, and y = [y1, · · · , yp]

T ∈ R
p are the plant’s states,

inputs, and outputs, respectively. Suppose that outputs are
transmitted to the remote controller via a communication
medium which can only carry wσ signals, with 1 ≤ wσ < p.
That is, only wσ of the p outputs can be sent to the controller
at any one time, while others must wait. Similarly, at the
plant’s input stage, the communication medium can only
accommodate wρ (1 ≤ wρ < m) signals, with only wρ of
the m inputs being updated by the controller at any time k.

A. Communication sequences and the Extended Plant

For i = 1, · · · , p, let the binary-valued function σi(k)
denote the medium access status of the i-th output yi at time
k, i.e., σi(k) : Z �→ {0, 1}, where 1 means “accessing” and
0 means “not accessing”. The medium access status of all p
outputs will be represented by a “ p-to-wσ communication
sequence” [2], [7],

σ(k) = [σ1(k), · · · , σp(k)]T .

Definition 1: Let M,N ∈ N with N ≤ M . An M -to-N
communication sequence is a map, σ(k) : Z �→ {0, 1}M ,
satisfying ‖σ(k)‖2 = N , ∀k.

As we have previously indicated, the controller is to
choose plant inputs based only on the wσ output elements
which have been granted medium access at any time k.
All other outputs will be effectively ignored. Let the output
information received by the controller at time k be denoted
by ỹ(k) = [ỹ1(k), · · · ỹwσ

(k)]T . For all k, ỹ(k) contains
those elements from y(k) for which σi(k) = 1. To establish
the relationship between y(k) and ỹ(k), we will make use
of the following definition:

Definition 2: Let η(k) be an M -to-N communication
sequence. Then, for all k ∈ N, the N × M matrix µη(k)
is obtained by removing the M − N all-zero rows from the
M × M matrix diag(η(k)).

Example 1: Let η(1) = [1, 1, 0, 1]T , then

µη(1) =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 0 1

⎤
⎦ .

Using the last definition, we can express ỹ(k) as

ỹ(k) = µσ(k)y(k), (2)

where σ(k) is the output communication sequence.
Similarly, the medium access status of the plant’s m inputs

is represented by an m-to-wρ communication sequence ρ(k).
When an input uj loses its access to the communication
medium, the plant ignores that input until the corresponding
actuator regains medium access. This is equivalent to setting
uj = 0 while ρj = 0. Let ũ(k) = [ũ1(k), · · · ũwρ

(k)]T

denote the elements of u(k) whose actuators were granted
medium access and received updated values from the con-
troller at time k. Under the protocol outlined above,

u(k) = µρ(k)T
ũ(k). (3)

Combining (1)-(3), we obtain a linear time-varying system
with wρ inputs and wσ outputs:

x(k + 1) = Ax(k) + Bµρ(k)T
ũ(k) (4)

ỹ(k) = µσ(k)Cx(k).

These equations describe the NCS “from the controller’s
point of view”. We call (4) the extended plant; it incorporates
the dynamics of the plant together with the access status of
the communication medium. In the sequel, ρ and σ will
be referred to as the “input” and “output” communication
sequences, respectively.

We remark that the choice of “removing” the ZOH el-
ements which were included in previous NCS models has
the effect of avoiding any “enlargement” of the state vector
and leaves us with a LTV system whose parameters are a
function of the input and output communication sequences.
This situation is to be compared with those in [1], [2], among
others. Also, the choice of representation for the signals ũ(k)
and ỹ(k) as well as the sequences µρ(k), µσ(k) differs from
that in [7]. It will become clear in Sections III-A, III-B, that
the new model is necessary in order to avoid singularities
that would arise when solving the matrix Riccati equations
associated with the LQG problem.

Designing an effective NCS controller requires the selec-
tion not only of an output-to-input map, but also of the input
and output communication sequences, as they are the ones
that determine the kinds of time-variation that will be present
in the dynamics of the extended plant. In previous works, this
coupling has proved to be a significant problem, especially
if one requires optimality with respect to the control and
communication policies jointly. Here, we will not attempt
to solve the joint problem, but instead will identify classes
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of communication sequences which make the extended plant
suitable for the application of existing design tools from LTV
systems theory. This task is made straightforward by our
choice of protocol for controller-plant interaction and will
be discussed next.

B. Choosing effective communication sequences

Clearly, the controllability and observability of the ex-
tended plant (4) are both crucial when it comes to estimation
and control of the underlying NCS. For a related NCS
model [7], it has been shown that the controllability and
observability of the extended plant can be preserved by
properly choosing communication sequences ρ(·) and σ(·).
These results can be easily applied to the NCS model in (4).

To simplify the analysis, we assume that the matrix A in
(4) is invertible. This can be guaranteed if A is obtained
by sampling a continuous-time plant, and implies that the
controllability and reachability of (4) are equivalent, as are
observability and reconstructability. The case where A is sin-
gular will not be included here because of space constraints.

Definition 3: The system (4) is controllable on [k0, kf ] if,
given any x0, there exists a control signal ũ(·) that steers
(4) from x(k0) = x0 to the origin at time kf . We say that
(4) is controllable if, for any k, there exists a positive integer
l such that (4) is controllable on [k, k + l] .

Definition 4: The system (4) is observable on [k0, kf ] if
any initial condition at k0 can be uniquely determined by the
corresponding response ỹ(k) for k ∈ [k0, kf ]. We say that
(4) is observable if, for any k, there exists a positive integer
l such that (4) is observable on [k, k + l] .

Theorem 1: Let A be invertible and the pair (A,B) be
controllable. For any integer 1 ≤ wρ < m, there exist inte-
gers l, N > 0 and an N-periodic1 m-to-wρ communication
sequence ρ(·) such that the extended plant (4) is controllable
on [k, k + l] for all k, and thus controllable.

Proof: Let

R = [AN−1
Bµ

T
ρ (0), AN−2

Bµ
T
ρ (1), · · · , Bµ

T
ρ (N − 1)]. (5)

The system (4) is controllable on [0, N ] iff rank(R) =
n. Notice that, at each step k, µT

ρ (k) has the effect of
“selecting” wρ columns from the m columns of the term
AN−k−1B on the RHS of (5). Also notice that the ma-
trices Γi = [Ani+n−1B,Ani+n−2B, · · · , AniB], contain n
linearly independent columns, for all i = 0, 1, · · · , because
A is invertible and (A,B) is controllable. Let γ0

i , · · · , γn−1

i

be any n linearly independent columns from Γi and let

Li
�
= {γ0

i , · · · , γn−1

i }. Then, ρ(·) can be designed using
the following algorithm:

1) Let L = L0.
2) Replace γ1

0 in L by a column from L1 while maintain-
ing rank(L) = n. Such a replacement can always be
found because rank(L1) = n.

3) For i = 2, · · · , n − 1, replace γi
0 in L by a column

from Li while keeping the rank of L fixed.

1A discrete-time communication sequence σ(·) is called N-periodic if
σ(k) = σ(k + N) for all k.

The resulting L has one column from each Γi (i =
0, · · · , n − 1) and has rank n. The algorithm ensures that it
is possible to select n linearly independent columns as long
as one can select one column from each Γi. Notice that,
for a m-to-wρ communication sequence ρ(·), on the RHS
of (5), µT

ρ (·) selects a total of n · wρ columns from each
Γi. Therefore, there always exists a µT

ρ (·) (equivalently, a
sequence ρ(·)) that selects n independent columns from the
RHS of (5) for some N ≤ n2.

The algorithm described above yields a communication
sequence ρ(k), for k = 0, · · · , N − 1, such that (4) is
controllable on [0, N ]. Now, extend ρ(k) for k ≥ N by
setting ρ(k + N) = ρ(k), ∀k. It can be shown ( Th. 1 and
Cor. 1 in [7]) that this choice of ρ makes (4) controllable on
[k, k + l] for all k, provided that l ≥ 2N − 1.

The bound for kf in Th. 1 is conservative and, as one can
observe in practice, a set of linearly independent columns
can be found in far fewer steps. If optimality is required,
it may be possible to find the minimum kf by searching
(off-line) over all possible communication sequences ρ(·) in

the interval k =
[⌈

n
wρ

⌉
,
⌈

n
wρ

⌉
· n

]
, when computationally

feasible. The search can be expedited through the use of a
number of heuristics that will not be detailed here because
of space constraints.

By switching from column manipulations to row manipu-
lations, the duality of controllability and observability gives
the following result whose proof is similar to that of Th. 1.

Theorem 2: Let A be invertible and the pair (A,C) be
observable. For any integer 1 ≤ wσ < p, there exist
integers l, N > 0 and an N -periodic p-to-wσ communication
sequence σ(·) such that the system (4) is observable on
[k, k + l] for all k, and thus observable.

The above results can be generalized to stabilizable and
detectable systems. The construction of the extended plant
(4) ensures that its stabilizability and detectability do not
change under change of coordinates is stabilizable. Suppose
that its Kalman canonical decomposition has the form:[

Ac Ā′
c

0 Āc

]
,

[
Bc

0

]
, where (Ac, Bc) is the controllable

part of (A,B). Then, any m-to-wρ communication sequence
ρ(·) that preserves the controllability of the subsystem
(Ac, Bc) will also guarantee the stabilizability of the ex-
tended plant (4). The same holds for detectability.

III. PROBLEM FORMULATION AND SOLUTION

Consider a NCS whose plant is described by the discrete-
time stochastic LTI system:

x(k + 1) = Ax(k) + Bu(k) + v(k) (6)

y(k) = Cx(k) + w(k), k = 0, 1, · · ·N − 1

where x ∈ R
n, u ∈ R

m, y ∈ R
p. The disturbances, v(·),

w(·), are both taken to be Gaussian, iid, with v(·) ∼ N(0, G)
and w(·) ∼ N(0, Ip×p), where Ip×p is the p × p identity
matrix and G is a positive definite n×n matrix. Let the initial
condition x(0) be Gaussian as well, with x(0) ∼ N(x0,Σ0).
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As before, suppose that the communication medium con-
necting the plant and the controller provides wρ (1 ≤ wρ <
m) input channels, and wσ (1 ≤ wσ < p) output channels.
Using the model presented in the previous Section,

x(k + 1) = Ax(k) + B̃(k)ũ(k) + v(k) (7)

ỹ(k) = C̃x(k) + w̃(k),

where B̃(k) = Bµρ(k)T , C̃ = µσ(k)C, and w̃(k) =
µσ(k)w(k). Suppose that the m-to-wρ communication se-
quence ρ(·), and the p-to-wσ communication sequence σ(·)
have been selected off-line, so that the stabilizability and
detectability of (6) are preserved in (7). This can be accom-
plished using the algorithm given in the proof of Th. 1.

Problem 1: Design an optimal controller for (7), such that
the quadratic cost function

J = E

{
x

T (N)Qx(N) +

N−1∑
k=0

x
T (k)Qx(k) + ũ

T (k)ũ(k)

}
(8)

is minimized.

Notice that if σ(·) is determined off-line, w̃(0), · · · w̃(N−
1),x(0), v(0), · · · v(N−1) are independent random variables
because w̃(k) is a sub-vector of w(k) for all k. Moreover,
because of the linearity of µσ(k), w̃(k) is Gaussian, with
w̃(k) ∼ N(0, Iwσ×wσ

) for all k. Thus, the optimal control
of the NCS described in Section II becomes a standard LQG
problem for the stochastic extended plant (7). It is well
known (e.g., [11]) that the solution to this LQG problem
has two components:

1) A Kalman filter that gives the optimal state estimate
x̂(k) based on the outputs ỹ(·).

2) An LQ optimal feedback gain L(k), obtained by
solving a deterministic LQ problem with perfect state
information and without the presence of noise v(·) and
w(·).

The separation principle ensures that the two subproblems
can be solved independently. The resulting optimal controller
that minimizes J is given by the feedback law

ũ
∗(k) = −L(k)x̂(k)

In the following, we give analytical expressions for the
Kalman filter and optimal control law; the proofs of these
results can be found in most stochastic control textbooks
(e.g., [11]).

A. Kalman filtering

The optimal estimator for the extended plant (7) is the dis-
crete time Kalman filter, described in the following recursive
steps, with x̂(0) = x0, Σ(0) = Σ0:

1) Time update

x̂(k−) = Ax̂(k − 1) + B̃(k − 1)ũ(k − 1) (9)

P (k) = AΣ(k − 1)AT + G, (10)

where x̂(k−) is the conditional mean of state variable
x(k) prior to the measurement of ỹ(k), and P (k) is
the variance of the prediction error.

x̂(k−) � E{x(k)|ỹ(0) · · · ỹ(k − 1)},

P (k) � E{(x(k) − x̂(k−))(x(k) − x̂(k−))T }.

2) Measurement update

H(k) = P (k)C̃T (k)(C̃(k)P (k)C̃T (k) + I)−1 (11)

x̂(k) = x̂(k−) + H(k)(ỹ(k) − C̃(k)x̂(k−)) (12)

Σ(k) = (I − H(k)C̃(k))P (k). (13)

where x̂(k) � E{x(k)|ỹ(0) · · · ỹ(k)} is the state
estimate, and Σ(k) is the covariance of the estimation
error.

From (10), (11), and (13), it is easy to verify that the
sequence P (k + 1) satisfies the time-varying discrete time
Riccati equation

P (k + 1) = AP (k)AT + G−

AP (k)C̃T (k)[I + C̃(k)P (k)C̃T (k)]−1C̃(k)P (k)AT (14)

The “one-step prediction” error, e(k) = x(k) − x̂(k−),
satisfies

e(k + 1) = (A − Γ(k)C̃(k))e(k) + v(k) − Γ(k)w(k),

and
E{e(k + 1)} = (A − Γ(k)C̃(k))E{e(k)}, (15)

where Γ(k) = AH(k) is the Kalman gain.

B. LQ Optimal Control

The optimal control law for the LQG problem can be ob-
tained by solving a standard LQ problem for the deterministic
linear system

x(k + 1) = Ax(k) + B̃(k)ũ(k) (16)

while assuming precise state feedback of x(k) at each step
k. The optimal controller is given by the feedback law

ũ
∗(k) = −L(k)x(k). (17)

The gain matrix L(k) can be obtained from

L(k) = (B̃T K(k +1)B̃(k)+ I)−1B̃(k)T K(k +1)A, (18)

where the symmetric positive semidefinite matrices K(k)
satisfy the backwards Riccati equation

K(N) = Q, (19)

K(k) = AT K(k + 1)A + Q − AT K(k + 1)B̃(k)·

· (B̃T (k)K(k + 1)B̃(k) + I)−1B̃T (k)K(k + 1)A. (20)

The closed loop dynamics of the system (16) under the
optimal control law ũ

∗ are

x(k + 1) = (A − B̃(k)L(k))x(k). (21)
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C. Periodic Riccati Equations

From the discussion in Section II-B, it follows that if
the plant (6) is invertible, it is always possible to design
periodic communication sequences σ(·) and ρ(·) such that
the stabilizability and detectability of (6) are preserved in
the extended plant (7). Notice that, under periodic commu-
nication, B̃(k), C̃(k) are both periodic. Therefore, the Ric-
cati equations (14), (20) associated with the LQG problem
will both become Discrete-time Periodic Riccati Equations
(DPREs). DPREs have been studied extensively (e.g., [12]
and references therein). We go on to review some basic facts.

Definition 5: [12] A Discrete-time Periodic Riccati Equa-
tion (DPRE) is a difference equation of the form

P(k + 1) = A(k)P(k)AT (k) + B(k)B(k)T− (22)

A(k)P(k)CT (k)[I + C(k)P(k)CT (k)]−1C(k)P(k)AT (k),

where A(k) : Z �→ R
n×n, B(k) : Z �→ R

n×m, C(k) : Z �→
R

p×n and A(·), B(·), and C(·) are T -periodic.

Theorem 3: ([12] Th. 5) Consider the Kalman gain
K(k) = A(k)P(k)CT (k)(C(k)P(k)CT (k)+I)−1 associated
with any symmetric positive semidefinite solution P(·) of
(22). If (A(·), B(·)) is stabilizable and (A(·), C(·)) detectable,
then the corresponding closed-loop matrix Â(·) = A(·) −
K(·)C(·) is exponentially stable.

Theorem 4: ([12] Th. 6) There exists a unique Symmetric
Periodic Positive Semidefinite (SPPS) solution P̄(·) of the
DPRE (14) and ˆ̄A(·) = A(·) − K̄(·)C(·) is asymptotically
stable iff (A(·),B(·)) is stabilizable and (A(·), C(·)) is de-
tectable, where K̄(·) is the Kalman gain associated with P̄(·).

Theorem 5: ([12] Th. 7) Suppose that (A(·), B(·)) is sta-
bilizable and (A(·), C(·)) detectable. Then, every symmetric
and positive semidefinite solution of the DPRE converges to
the unique SPPS solution.
The above results give a necessary and sufficient condition
(Th. 4) for the existence and uniqueness of an SPPS solution
as well a stability condition (Th. 3) for the closed-loop
system. Theorem 5 guarantees the asymptotic convergence
of the DPRE to the unique SPPS solution.

D. Convergence of the LQG optimal controller

Theorem 1, combined with the results of Sec. III-C and
applied to the Riccati equations (14) and (20), implies the
following:

Theorem 6: Suppose that:

1) The communication sequence σ(·) is chosen to be T-
periodic and such that the detectability of the the plant
(6) is preserved in the extended plant (7).

2) The pair (A, g) is stabilizable, where G = ggT .

Then, starting from any positive definite initial conditions,
the Riccati equation associated with the Kalman filter (14)
converges to a unique T-periodic solution Σ̄(k) as k → ∞.
Moreover, the error dynamics (15) are exponentially stable.

Theorem 7: Suppose that:

1) The communication sequence ρ(·) is T-periodic and
such that the stabilizability of the the plant (6) is
preserved in the extended plant (7).

2) The pair (A, qT ) is detectable, where Q = qqT .
Then, starting from any positive definite initial conditions,
the Riccati equation associated with the LQ problem (20)
converges to a unique T-periodic solution K̄(k) as k → ∞.
Moreover, the closed loop dynamics (21) are exponentially
stable.

IV. A NUMERICAL EXAMPLE

Consider the 2-input, 2-output, 4th order unstable LTI
plant with parameters

A =

⎡
⎢⎢⎣

1 1/5 0 0
0 11/4 0 1/5
1 1/5 1/3 3/4
0 −1 0 1/4

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ ,

C =

[
1 1 0 0
0 0 1 0

]
.

The disturbances were chosen to be v(·) ∼ N(0, 4I4×4) and
w(·) ∼ N(0, I2×2). The plant was controlled via a shared
communication medium which had only one input and one
output channels (i.e., wρ = wσ = 1). Using the algorithm
provided in the proof of Th. 1, we found that under the
period-2 communication sequences

{σ(0),σ(1), · · · } = {[0, 1]T , [1, 0]T , · · · },

{ρ(0),ρ(1), · · · } = {[0, 1]T , [1, 0]T , · · · },

the extended plant was controllable and observable.
We formulated the LQG problem described in Sec. III,

with Q = 25I4×4 and initial conditions x(0) =
[100, 50, 7, 6]T , x̂(0) = [1, 1, 3, 4]T , and Σ(0) = 4I4×4.
The solution of the periodic Riccati equation (14), associated
with the Kalman filter error covariance, converged to a 2-
periodic SPPS solution P̄ (·) in 5 steps. The solution of the
periodic backwards Riccati equation (20), associated with the
LQ optimal gain, converged to a 2-periodic SPPS solution
K̄(·) in 15 steps. The evolutions of tr(P (k)) and tr(K(k))
are shown in Fig. 2. The SPPS solutions of (14) and (20)
are, for i ∈ Z

+,

P̄ (2i) =

⎡
⎢⎣

8.92 1.15 5.00 −0.40
1.15 267.59 −21.96 −105.34
5.00 −21.96 14.12 10.06
−0.40 −105.34 10.06 46.61

⎤
⎥⎦ ,

P̄ (2i + 1) =

⎡
⎢⎣

9.53 −17.70 9.01 7.29
−17.70 71.87 −29.46 −27.60
9.01 −29.46 23.52 13.57
7.29 −27.60 13.57 15.79

⎤
⎥⎦ ,

K̄(2i) =

⎡
⎢⎣

456.09 62.55 12.61 34.65
62.55 79.70 0.33 −7.34
12.61 0.33 28.10 7.54
34.65 −7.34 7.54 45.73

⎤
⎥⎦ ,

K̄(2i + 1) =

⎡
⎢⎣

496.33 284.55 11.30 39.56
284.55 715.87 3.60 53.81
11.30 3.60 27.98 6.83
39.56 53.81 6.83 43.83

⎤
⎥⎦ .
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Fig. 2. Evolution of tr(P (k)) and tr(K(k)). The P (k) satisfy the Riccati
equation (14), while K(k) satisfy the backwards Riccati equation (20).

Using the solutions for P (·) and K(·), the Kalman filter
and the LQ optimal feedback gain were constructed from
the formulae in Sec.s III-A, III-B. The state evolution of the
closed-loop system is shown in Fig. 3. The evolution of the
Kalman filter’s one-step prediction error, e(k), is shown in
Fig. 4.
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Fig. 3. State evolution of the closed-loop NCS under the LQG controller.

V. CONCLUSIONS

We presented an LQG design method for NCSs which
are subject to medium access constraints. Our approach
forgoes the use of ZOH elements in the loop; instead, the
controller and plant “ignore” sensors and actuators which
are not granted medium access. The benefits of doing so are
twofold. First, the complexity of the closed-loop dynamics is
lower than that of previously-proposed architectures. Second,
the selection of communication sequences is decoupled from
the choice of controller, thereby simplifying the identification
of useful communication patterns and allowing us to bring
existing tools to bear. Specifically, for a reversible plant, it is
always possible to design periodic communication sequences
that preserve detectability and stabilizability. Having doing
so, Kalman filtering and LQ optimal control of a NCS can be
formulated as a standard LQG problem for a periodic time-
varying system. Our choice of communication sequences
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Fig. 4. Evolution of Kalman filter’s one-step prediction error e(k) =
x(k) − x̂(k−).

ensures that the Riccati equations associated with the Kalman
filter and the LQ optimal gain both converge to periodic solu-
tions regardless of initial conditions. One can thus construct
a (sub-optimal) LQG controller by implementing the two
periodic solutions.

The proposed approach to LQG control of NCS is com-
prised of two components:

• A pair of periodic communication sequences which
are designed off-line, independently of the controller.
Periodic communication sequences can be easily im-
plemented via MAC level network protocols such as
polling, token passing, or Time Division Multiple Ac-
cess (TDMA).

• A periodic time-varying linear controller whose param-
eters can be computed off-line.
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