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Abstract— This paper presents LQG-Obstacles, a new concept
that combines linear-quadratic feedback control of mobile
robots with guaranteed avoidance of collisions with obstacles.
Our approach generalizes the concept of Velocity Obstacles [3]
to any robotic system with a linear Gaussian dynamics model.
We integrate a Kalman filter for state estimation and an LQR
feedback controller into a closed-loop dynamics model of which
a higher-level control objective is the “control input”. We then
define the LQG-Obstacle as the set of control objectives that
result in a collision with high probability. Selecting a control
objective outside the LQG-Obstacle then produces collision-

free motion. We demonstrate the potential of LQG-Obstacles
by safely and smoothly navigating a simulated quadrotor
helicopter with complex non-linear dynamics and motion and
sensing uncertainty through three-dimensional environments
with obstacles and narrow passages.

I. INTRODUCTION

Planning under uncertainty has received considerable at-

tention in robotics in recent years. Motion uncertainty (due

to external disturbances) and imperfect state information

(due to partial and noisy measurements) arise in most real-

world robotic tasks. This is especially true for highly dy-

namic mobile robots that must reach a target configuration

while avoiding collisions with obstacles, such as quadrotor

helicopters [11]. Traditional planning approaches [15], [9]

may not suffice in these cases, as they assume deterministic

motion and full knowledge of the state, and often produce

jerky paths due to the random nature of the algorithm.

Feedback controllers, on the other hand, can compen-

sate for motion and sensing uncertainty while smoothly

controlling a mobile robot towards a target configuration,

either directly or by tracking a pre-planned path. The linear-

quadratic Gaussian (LQG) controller does so optimally for

linear systems with Gaussian noise [2], and is widely used

for non-linear models as well [27]. LQG control does not,

however, account for the risk of colliding with obstacles in

the environment.

To address this shortcoming, we present the novel concept

of LQG-Obstacles for combining LQG feedback control

with collision avoidance. LQG-Obstacles generalize Velocity

Obstacles [3] to any linear Gaussian system. Our approach

integrates a Kalman filter for state estimation and an LQR

feedback controller into a closed-loop dynamics model of
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Fig. 1. The 3-Window scenario for our quadrotor simulation experiments.
The red line is the guiding path. Our approach smoothly controls the quadro-
tor (shown at 4Hz) through the windows without colliding with the walls.
Videos are available at http://gamma.cs.unc.edu/CA/LQGObs/.

which a higher-level control objective (a target configuration)

is the “control input”. LQG-Obstacles then identify all target

configurations to which a mobile robot can safely be con-

trolled using the LQG controller. For deterministic dynamics

models, the LQG-Obstacle guarantees that the robot will not

collide with an obstacle. We consider this to be a special case

and refer to the LQG-Obstacle as an LQR-Obstacle for this

class of models. For stochastic models, the general case, the

LQG-Obstacle bounds the a priori probability of colliding

with obstacles to a user-specified limit, explicitly accounting

for motion and sensing uncertainty.

Our concept can be used to safely and smoothly navigate

a robot with complex dynamics through an environment

with obstacles, by continually selecting a target configuration

allowed by the computed LQG-Obstacle. The LQG controller

then determines the corresponding control input. While our

approach is designed for robots with linear dynamics and

observation models, it can also be applied to robots with

non-linear models, by continually linearizing them around

the nearest steady state. The LQG-Obstacle automatically

adapts to the local amount of motion and sensing uncertainty:

it forces the robot to choose safer control objectives if this

uncertainty is high, and allows for more aggressive motion

when there is less uncertainty. In contrast to existing collision

avoidance and (re)planning approaches, our approach (i) pro-

duces smooth motion, (ii) works at real-time rates even for

robots with high-dimensional state spaces, (iii) is applicable

to robots requiring high-frequency control feedback loops,

and (iv) explicitly considers motion and sensing uncertainty.

While our approach naturally extends to moving obstacles,

we focus on environments with static obstacles in this paper.

We assume that the geometry of the obstacles in the robot’s

configuration space are given explicitly. Further, we assume

the dynamics and observation models of the robot to be

given, and that their uncertainty can be modeled by known

Gaussian distributions. We implemented our approach for



two illustrative cases. The first is a linear mobile robot in

the plane whose acceleration can be controlled. The second

is a quadrotor helicopter with a thirteen-dimensional state

space and non-linear dynamics flying in three-dimensional

workspaces. We validate our approach using simulation

experiments with synthetic motion and sensor noise in en-

vironments with obstacles and narrow corridors. Our results

suggest that LQG-Obstacles can work well for safe, real-time

LQG control of mobile robots towards a goal configuration

amidst obstacles (see Fig. 1).

The remainder of this paper is organized as follows. In

Section II we discuss related work. In Section III we intro-

duce LQR-Obstacles for robots with deterministic dynamics.

In Section IV we extend this to LQG-Obstacles for robots

with stochastic dynamics and observation models. We report

simulation results in Section V and conclude in Section VI.

II. BACKGROUND AND RELATED WORK

A. Planning and Control under Uncertainty

The problem of planning under motion and sensing uncer-

tainty is most generally described as a partially-observable

Markov decision process (POMDP) [10]. POMDPs provide

a formulation of the objective to optimize the overall prob-

ability of arriving at a goal configuration without collisions.

Unfortunately, in their general form, POMDPs are known

to be of extreme complexity, which makes it challenging

to solve them for large or high-dimensional state spaces

[18]. Most approaches that approximate an optimal solution

to POMDPs rely on discretization or random sampling of

the belief space, or a combination of both [12], [20], [26].

However, discretization error and high computational costs

may prohibit their application to mobile robots with high-

frequency control feedback loops.

Another class of algorithms assume linear(ized) Gaussian

dynamics and observation models. LQG-MP [28] calculates

the probability of successful execution of a given path based

on computed a-priori probability distributions. Belief space

planning approaches based on the LQG model [8], [21], [22]

attempt to optimize the likelihood of arriving at the goal,

but do not take into account the probability of colliding

with obstacles. More recent work [30] does account for

obstacles, but its applicability is limited to robots with

low-dimensional state spaces. These approaches focus on

the ability to generate information gathering actions as to

minimize uncertainty about the robot’s state. In contrast,

our approach does not look ahead to select actions that

provide most information, rather it bounds the probability

of collision with obstacles based on the local sensing and

acting capabilities of the robot. This goal is complementary

to that of belief space planning approaches.

Our work shares similarities with the feedback motion

planning approach of LQR-trees [25], which cover the state

space with stabilizing LQR controllers around paths in a tree

that guarantees the robot to reach the goal from any point in

the state space. Our approach may complement LQR-trees, as

they do not explicitly account for the presence of obstacles

in combination with motion and sensing uncertainty. Our

work is also related to model-predictive control approaches

[23], which do account for constraints on the state in an

optimal control formulation. However, they often require

solving high-dimensional mixed-integer programs in every

control cycle, even if the constraints are linear and convex.

B. Collision Avoidance

Our approach generalizes concepts in reactive collision

avoidance, in particular Velocity Obstacles [3]. Velocity

obstacles identify all velocities that lead to a collision at

any time in the future. Velocities can then be chosen outside

of the velocity obstacle to ensure that no collision will

occur. Stochastic variants of the velocity obstacle deal with

motion uncertainty by enlarging the velocity obstacle [24]

or consider uncertainty in the motion of the obstacles [6].

A limitation of approaches based on velocity obstacles is

that they only work for robots whose velocity can directly

be controlled. Extensions exist for robots of which the

acceleration can be controlled [29] and for car-like robots

[17], [32]. Our approach generalizes these methods to any

linear Gaussian system.

An alternative to feedback control and reactive collision

avoidance is continual (partial) replanning [19], potentially

in combination with dynamic windows [4] or ICS checking

[5]. The latter concept has recently been extended to account

for motion uncertainty of the obstacles [1]. The achievable

planning frequency and path quality may not be high enough

for highly dynamic systems such as quadrotors, though.

C. Notation

We use the following notational conventions in this paper.

Vector sets A are denoted using calligraphics, vectors a are

denoted using boldface, matrices A are denoted using upper

case italics, and scalars a are denoted in lower-case italics.

Scalar and matrix multiplication of sets are defined as:

aX = {ax | x ∈ X}, AX = {Ax | x ∈ X}. (1)

The Minkowski sum of two sets is defined as:

X ⊕ Y = {x+ y | x ∈ X ,y ∈ Y}. (2)

It follows that X ⊕ {x} denotes a translation of a set X by

a vector x.

III. LQR-OBSTACLES FOR DETERMINISTIC SYSTEMS

In this section we discuss how LQR feedback control

and collision avoidance are combined for robots with deter-

ministic linear dynamics and perfect state information. We

first discuss LQR control and derive the closed-loop linear

dynamics. We then define the LQR-Obstacle for collision-

free LQR control.

A. LQR Feedback Control

Let X ⊂ R
x be the state space of the robot, which

is the space of vectors containing all information relevant

for the motion of the robot, and let C ⊂ R
c be the

configuration space of the robot (c ≤ x), which is the

space of vectors containing all information relevant for the



geometric appearance of the robot in the workspace. Let a

given matrix C ∈ R
c×x map the state x ∈ X of the robot

to its corresponding configuration Cx in C. Let U ⊂ R
u be

the control input space of the robot.

Let the dynamics of the robot be given by the deterministic

linear model, which we assume is formally controllable:

ẋ = Ax+Bu, (3)

where x ∈ X and u ∈ U are the state vector and control

input vector, respectively, of the robot, and A ∈ R
x×x and

B ∈ R
x×u are given constant matrices.

Let c ∈ C denote a target configuration the robot wishes to

reach. For systems with linear dynamics, an LQR feedback

controller can optimally control the robot towards this target

state if a quadratic cost function is specified that trades-

off reaching the target quickly, versus not applying extreme

control inputs [2]:
∫ ∞

0

(

(Cx − c)TQ(Cx− c) + uTRu
)

dt, (4)

where Q ∈ R
c×c and R ∈ R

u×u are given constant weight

matrices, for which Q = QT ≥ 0 and R = RT > 0.

The feedback control policy that minimizes this cost

function is given by:

u = −Lx+ Ec, (5)

where

L = R−1BTS, E = R−1BT (BL−A)−TCTQ, (6)

with S being the positive-definite solution to the continuous-

time algebraic Riccati equation:

ATS + SA− SBR−1BTS + CTQC = 0. (7)

This is the standard continuous-time infinite-horizon LQR

derivation [2]. Note that L and E are constant and can be

computed given the matrices A, B, Q, and R [16].

We create the closed-loop dynamics of the robot by

substituting Eq. (5) into Eq. (3), which gives:

ẋ = Ãx+ B̃c, (8)

with

Ã = A−BL, B̃ = BE. (9)

The target configuration c is the higher-level “control input”

of the closed-loop linear dynamics. We use the closed-loop

dynamics to define LQR-Obstacles below.

B. Constructing LQR-Obstacles

Let O ⊂ C denote the forbidden region in the configuration

space of the robot that is occupied by obstacles. Then, the

LQR-Obstacle for the robot is defined as:

Definition 1 Given the current state x, the LQR-Obstacle

LQR(x) ⊂ C is the set of target configurations c that let

the robot collide with an obstacle at some point in time when

the LQR control policy is used to control the robot to c.

Fig. 2. The LQR-Obstacle LQR(x) shown as a union of transformed
configuration-space obstacles for a planar robot of which the acceleration
can be controlled (see Section V-B) with current state x = (p,v). The
configuration-space obstacle O is a disc shown by the dashed circle. The
LQR-Obstacle consists of all target configurations c that result in a collision
when an LQR controller is used to control the robot to that configuration.

We construct the LQR-Obstacle as follows. Integrating the

closed-loop dynamics of Eq. (8) assuming a constant target

configuration c gives:

x(t) = F (t)x(0) +G(t)c, (10)

with

F (t) = exp(tÃ), G(t) = Ã−1(exp(tÃ)− I)B̃. (11)

Then, the robot will collide with an obstacle at time t if:

Cx(t) ∈ O, (12)

⇐⇒ CF (t)x(0) + CG(t)c ∈ O

⇐⇒ c ∈ (CG(t))−1(O ⊕ {−CF (t)x(0)}),

where we assume that CG(t) ∈ R
c×c is invertible. Hence,

the LQR-Obstacle LQR(x) is defined as a union of trans-

formed configuration-space obstacles (see Fig. 2):

LQR(x) =
⋃

t>0

(CG(t))−1(O ⊕ {−CF (t)x}). (13)

The definition of the LQR-Obstacle implies that if the

robot chooses its target configuration c outside LQR(x), the

robot will not collide with any of the obstacles while it is

controlled towards c. The above formulation generalizes ear-

lier collision avoidance concepts, such as velocity obstacles

[3] and acceleration obstacles [29], to systems with arbitrary

linear dynamics.

C. Properties and Complexity of LQR-Obstacles

If the configuration space obstacle O is of O(1) geometric

complexity, then LQR(x) is of O(1) complexity as well. A

closed-form expression can be derived for the boundary of

the LQR-Obstacle if O is circular or a line-segment, and

CG(t) is a scalar matrix [29].

Further, if O = O1 ∪O2, then LQR(x) = LQRO1
(x) ∪

LQRO2
(x). It follows that if O consists of O(n) geometric

primitives of O(1) complexity each, the LQR-Obstacle for

O is a union of O(n) primitive LQR-Obstacles. This union

has a worst-case complexity of O(n2), but we do not suspect

that this bound is tight: the LQR-Obstacles may observe a

pseudo-disc property which would allow for a lower total

complexity. We leave this as an open question.



Fig. 3. Navigating a circular robot whose acceleration can be controlled (see Section V-B) through a narrow corridor using LQR-Obstacles. The workspace
obstacles are shown using thick lines. The guiding path π is shown by a dashed line. In each frame, the LQR-Obstacle LQR(x) for the particular state
x = (p,v) is shown. The valid configuration c farthest along the guiding path is chosen as target configuration.

D. Collision-Free Feedback Control with LQR-Obstacles

LQR-Obstacles can be used to safely control a robot

among obstacles in a continual cycle with a small time

step ∆t: in each time step, the LQR-Obstacle LQR(x)
is computed, and a target configuration c 6∈ LQR(x) is

selected. The control input u that is applied is then given

by Eq. (5). Note that the frequency of selecting a new target

configuration c may well be lower than the LQR control

frequency.

If a goal configuration c⋆ is given, one may continually

select the target configuration c 6∈ LQR(x) that is closest to

c⋆. For circular configuration space obstacles O (e.g. Fig. 2),

this will let the robot eventually reach the goal. For more gen-

erally shaped obstacles, however, this approach may easily

lead the robot into a local minimum. A possible alternative in

this case is to define a guiding path π : [0, 1] −→ C\O in the

free configuration space, with π(1) = c⋆, that indicates the

global direction of motion of the robot. The robot may then

continually select the target configuration farthest along π
that is outside the LQR-Obstacle, i.e. c = π(max{s |π(s) 6∈
LQR(x)}). Note that the guiding path π need not satisfy any

differential constraints; a series of waypoints suffices. It can

therefore easily be planned or constructed, e.g. by extracting

it from a roadmap or tree covering the free configuration

space [15], [9]. The LQR controller ensures that control

inputs are chosen that result in smooth motion of the robot

(see Fig. 3).

IV. LQG-OBSTACLES FOR STOCHASTIC SYSTEMS

Above, we have assumed that the motion of the robot

is deterministic, and that the robot has perfect information

about its state. Here, we extend the method to deal with

uncertainty in both the robot’s dynamics and sensing. We

will first discuss LQG control and derive the closed-loop

linear Gaussian dynamics, and then define LQG-Obstacles

for LQG control with bounded probability of collisions with

obstacles. We discuss its application to non-linear systems

as well.

A. LQG Control with State Estimation

Let the dynamics and observation models of the robot be

given by the following linear Gaussian system:

ẋ = Ax+Bu+m, m ∼ N (0,M), (14)

z = Hx+ n, n ∼ N (0, N), (15)

where Eq. (14) is similar to (3), except that the motion

of the robot is corrupted by noise m ∈ R
x drawn from

an independent zero-mean Gaussian distribution with given

constant variance M ∈ R
x×x. In the observation model,

z ∈ R
z is the vector of sensor measurements, and H ∈ R

z×x

is a given constant matrix. The sensor measurements are

corrupted by noise n ∈ R
z drawn from an independent

zero-mean Gaussian distribution with given constant variance

N ∈ R
z×z .

Let the control cost function be as in Eq. (4), given a

target configuration c ∈ C the robot wishes to reach. For

linear Gaussian systems, an LQG controller is optimal. An

LQG controller uses an LQR feedback controller in parallel

with a Kalman filter for state estimation. The Kalman filter

provides an optimal estimate x̂ of the state x, which evolves

given sensor measurements z as [7]:

˙̂x = Ax̂+Bu+K(z−Hx̂), (16)

where K is the Kalman gain, which is given by:

K = PHTN−1, (17)

where P is the variance of the state x given the state estimate

x̂. Since our dynamics and observation model are stationary

(i.e. the matrices A, H , M , and N are constant), this variance

converges over time to the positive-definite solution of the

continuous-time algebraic Riccati equation:

AP + PAT +M − PHTN−1HP = 0. (18)

Hence, the Kalman gain K is constant, and can be computed

given the matrices A, H , M , and N [16].

Through the separation principle [2], the LQR control

policy can be derived independently from the state estimator,

and is therefore the same as in Eq. (5), with the difference

that the state estimate x̂ is used instead of the (unknown)

true state x:

u = −Lx̂+ Ec, (19)

with L and E as defined in Eq. (5).

To create the closed-loop dynamics that incorporates both

the state estimation and the feedback controller, we define

an augmented state y that contains both x and x̂, for the true

state x and the state estimate x̂ evolve as functions of each

other [28]. Substituting Eq. (19) into (14) and Eqs. (15) and

(19) into (16) gives:

ẏ = Ãy + B̃c+ m̃, m̃ ∼ N (0, M̃), (20)



Fig. 4. The LQG-Obstacle LQGp̄(x̂) in the same configuration as in Fig.
2 accounting for motion and sensing uncertainty of the robot (see Section V-
B). The conservative approximation of Eq. (25) is shown for various values
of the probability bound p̄. For p̄ = 1, it is equivalent to the LQR-Obstacle.

with

y =

[

x

x̂

]

, Ã =

[

A −BL
KH A−BL−KH

]

,

B̃ =

[

BE
BE

]

, M̃ =

[

M 0
0 KNKT

]

. (21)

Also in this case the target configuration c is the “control

input” of the closed-loop linear Gaussian dynamics.

B. Constructing LQG-Obstacles

We now follow a similar approach as in Section III-B to

define LQG-Obstacles.

Definition 2 Given the current state estimate x̂, the LQG-

Obstacle LQGp̄(x̂) ⊂ C for probability bound p̄ is defined

as the set of target configurations c for which there is a time

t > 0 at which the probability that the robot collides with

an obstacle is greater than p̄ when LQG control is used to

control the robot to c.

We construct the LQG-Obstacle as follows. Integrating the

closed-loop stochastic dynamics of Eq. (20) given a target

configuration c gives y(t) ∼ N (ŷ(t), Y (t)), with:

ŷ(t) = F (t)ŷ(0) +G(t)c, (22)

Y (t) = F (t)Y (0)FT (t) +

∫ t

0

F (τ)M̃FT (τ) dτ, (23)

where F (t) and G(t) are as in Eq. (10) for the matrices Ã
and B̃ of Eq. (21). Since the true state x is unknown, the

initial conditions are ŷ(0) =
[

x̂
x̂

]

and Y (0) =
[

P 0
0 0

]

, where

x̂ is the current state estimate. Recall that P is the variance

of the true state x given its estimate x̂ (see Eq. (18)).

To map the augmented state y to the configuration of the

robot, we define the augmented matrix C̃ =
[

C 0
]

. Now,

following a similar derivation as in Eq. (12), the robot will

collide with an obstacle at a specific time t if:

C̃y(t) ∈ O ⇐⇒ c̃ ∈ (C̃G(t))−1(O ⊕ {−C̃F (t)ŷ(0)}),
(24)

where c̃ ∼ N (c,Σ(t)), with Σ(t) = (C̃G(t))−1C̃Y (t)C̃T ·
(C̃G(t))−T . Let Ep(Σ) denote the contour ellipsoid of a

Fig. 5. Controlling the robot (see Section V-B) using LQG-Obstacles in the
same environment as Fig. 3. (a) Traces of maximum likelihood executions
for p̄ = {0.01, 0.02, 0.03, 0.05, 1}. (b) Traces of five actual executions
with synthetic motion and observation noise for p̄ = 0.01.

zero-mean Gaussian distribution with variance Σ that con-

tains a fraction 1 − p of its instances. Then, the probability

that the robot will collide with an obstacle at time t is less

than p̄ if c 6∈ (C̃G(t))−1(O ⊕ {−C̃F (t)ŷ(0)})⊕ E p̄(Σ(t)).
Hence, a conservative approximation of the LQG-Obstacle

can be constructed as (see Fig. 4):

LQGp̄(x̂) ⊂
⋃

t>0

(C̃G(t))−1(O⊕{−C̃F (t)
[

x̂
x̂

]

})⊕E p̄(Σ(t)).

(25)

It follows that if the robot chooses its target configuration

c outside LQG p̄(x̂), the probability of colliding with an

obstacle at any given time t > 0 is less than p̄, if LQG control

is used to control the robot towards c. LQG-Obstacles can

be used for navigation in a similar way as LQR-Obstacles

(see Fig. 5).

C. LQG-Obstacles for Non-Linear Systems

The above derivations only work for linear systems. Let

us consider a non-linear Gaussian system of the form:

ẋ = f(x,u,m), m ∼ N (0,M), (26)

z = h(x,n), n ∼ N (0, N). (27)

In this case, we can approximate the LQG-Obstacle by

linearizing the system. It is convenient to linearize around

a steady state x̄ for which f(x̄,0,0) = 0. Typically, one

chooses x̄ closest to the current state estimate x̂. Linearizing

then gives:

˙̃x = Ax̃+Bu+ m̃, m̃ ∼ N (0, V MV T ), (28)

z̃ = Hx̃+ ñ, ñ ∼ N (0,WNWT ), (29)

where x̃ = x − x̄ is the redefined state, z̃ = z − h(x̄,0)
is the redefined measurement vector, and A = ∂f

∂x
(x̄,0,0),

B = ∂f
∂u

(x̄,0,0), V = ∂f
∂m

(x̄,0,0), H = ∂h
∂x

(x̄,0), and

W = ∂h
∂n

(x̄,0) are the Jacobian matrices of f and h. If

the linearized system is controllable, we can construct the

LQG-Obstacle as above. As the linearized system is only

valid in a small region around the linearization point, the

models should be continually relinearized to get meaningful

control.



V. IMPLEMENTATION AND EXPERIMENTATION

A. Implementation Details

We implemented our approach using a collision-checker

capable of performing linear transformations on the geometry

[31]. In each time-step of a continuous cycle, we select a

target configuration c 6∈ LQG p̄(x̂), and apply the control

input u according to Eq. (19). In our current implementation,

we select the configuration c using a brute-force approach

as follows.

Given an explicit representation of O in the collision-

checker, and a finite set T of candidate target configurations

c, we iterate over time 0 < t < ∞ in small steps ∆t,
and transform the obstacle O in the collision-checker to

Q(t) = (C̃G(t))−1(O ⊕ {−C̃F (t)
[

x̂
x̂

]

}) (see Eq. (25)).

Then, we iterate over all candidate configurations c ∈ T ,

and use the collision-checker to check whether the ellipse

E p̄(Σ(t)) centered at c intersects the transformed obstacle

Q(t). If so, c is inside the LQG-Obstacle, and is removed

from the set T . Obviously, we cannot iterate time t over an

infinite domain, but the transformed obstacle Q(t) converges

exponentially fast to O for t → ∞ (this follows from the

fact that the LQG controller reaches the target exponentially

fast [2]). So, we can safely bound the time domain; in

our experiments, we used 0 < t < 4 in our experiments.

In general one would choose a time-bound based on the

eigenvalues of matrix Ã, as they determine the precise rate

of convergence to the target.

After this, we are left with a reduced set T of candidate

target configurations c which are outside LQGp̄(x̂). From

this set, we select the most preferable one. In our implemen-

tation, the set T initially consists of the configurations along

a guiding path π ∈ C, and the one furthest along the path

that remains is chosen.

B. Robot Models

We implemented our approach for two robot models; a

linear planar robot whose acceleration can be controlled,

and a quadrotor helicopter with non-linear dynamics and

observations flying in 3-D. The former was used to generate

Figs. 2, 3, 4, and 5 for illustration purposes. The latter is

used to report simulation results.

1) Planar Robot with Acceleration Control: The robot

is a disc in the plane that is capable of accelerating omni-

directionally. Its (linear) dynamics are defined by:

x =

[

p

v

]

, u = a, A =

[

0 I
0 0

]

, B =

[

0
I

]

, C =
[

I 0
]

,

where p ∈ R
2 is the position, v ∈ R

2 the velocity, and

a ∈ R
2 the acceleration of the robot. The configuration space

consist of all positions of the robot (the velocity does not

change its geometry in the workspace), so the matrix C as

given above projects the state to the robot’s configuration.

We used the following settings for the controller and for

the stochastic case with noisy motion and partial observation:

Q = I, R = I, H =
[

I 0
]

, M = 0.01I, N = 0.01I.

That is, the robot receives measurements of only its position.

Fig. 6. Probability of collision over time for the LQG-Obstacle with p̄ =
0.01.

2) Quadrotor Helicopter: Our quadrotor model is based

on Ascending Technologies’ ResearchPilot. Its 13-D state

and 4-D control input are defined by:

x =
[

pT vT rT wT ϕ
]T

, u =
[

w⋆T ϕ⋆
]T

,

where p ∈ R
3 is the robot’s position, v ∈ R

3 its velocity,

r ∈ R
3 its orientation (axis r and angle ‖r‖), w ∈ R

3 its

angular velocity, and ϕ the combined force of the rotors. The

control input consists of the desired angular velocity w⋆ and

force ϕ⋆. A low-level on-board controller transforms these

into voltages for the motors of each of the rotors. The robot’s

geometry is modeled by an encapsulating sphere, such that

the configuration space consists of only the positions p ∈ R
3.

Its non-linear dynamics are modeled after [14], augmented

with effects of rotor drag and induced inflow that cause a

force in the opposite direction of the velocity [13]:

ṗ = v, v̇ =
[

0
0
−g

]

+ (exp([r])
[

0
0
ϕ

]

− kvv)/m,

ṙ = w+ [r]w/2, ẇ = kw(w⋆ −w), ϕ̇ = kϕ(ϕ
⋆ − ϕ),

where g = 9.8m/s2 is the gravity, m the mass of the robot,

and kv, kw, and kϕ scaling constants.

An overhead camera positioned at p̌ measures the apparent

position b ∈ R
2 and radius ρ in the camera image of a

ball with radius r that is fixed on top of the quadrotor. In

addition, the quadrotor is equipped with an accelerometer,

a magnetometer, a rate-gyro, and an altimeter that produce

measurements a ∈ R
3, d ∈ R

3, g ∈ R
3, and η, respectively,

according to the following non-linear observation model:

b =
[ (px−p̌x)
(py−p̌y)

]

/(p̌z − pz), ρ = arcsin(r/‖p− p̌‖),

a = (
[

0
0
ϕ

]

− exp([r])T kvv)/m, d = exp([r])Tkd,

g = w, η = pz ,

where kd ∈ R
3 is the direction of Earth’s magnetic field.

C. Simulation Results

1) Collision Probability Experiment: In the first experi-

ment, we explore the relation between the probability bound

parameter p̄ of LQG-Obstacles and actual probabilities of

collision. Since our LQG-Obstacle formulation is conserva-

tive, we expect that the collision probability at a specific



Fig. 7. The S-Maze scenario for our quadrotor simulation experiments. The
thin red line is the guiding path. The quadrotor is shown at 6Hz. Videos
are available at http://gamma.cs.unc.edu/CA/LQGObs/.

time t will be far lower than our bound, and that the

cumulative probability of collision will slowly grow over the

duration of the experiment. Given a long enough experiment

duration, we suspect this probability will approach one, as

even after the robot reaches its goal configuration noise in its

motion model will cause it to move unpredictably, eventually

bringing the robot into contact with the obstacle.

To test this, we use the robot as described in Section V-B

in the scenario of Fig. 4. We select a target configuration c

once on the boundary of the initial LQG-Obstacle of Fig. 4

for p̄ = 0.01, and control the robot using the LQG-controller

towards c for the duration of the experiment with synthetic

motion and sensing noise. In Fig. 6, we show the results of

this experiment averaging over 100,000 trials. These results

confirm that our bound is (very) conservative: the maximal

probability of colliding at a specific time t seems to be a

factor 100 lower than our bound.

2) Quadrotor Simulation Experiments: To analyze the ef-

fectiveness of the LQG-Obstacle technique for navigating the

simulated quadrotor we created two experimental scenarios.

For both scenarios we used a simulated version of a lab space

of approximately 10m×5m. A simulated overhead camera

which refreshes at 30Hz is used to augment the quadrotor’s

on-board sensing to allow localization in the environment. It

is assumed that the location of all obstacles are known in

advance. For both scenarios we set p̄ = 0.03 and used as

realistic model parameters and levels of motion and sensor

uncertainty as possible.

In the 3-Window scenario (see Fig. 1), the quadrotor must

navigate from the east side of the room to the west side.

In between there is a series of three small windows the

quadrotor must pass through at various heights and positions.

A simple guiding path is given consisting of several short,

straight segments through the center of each window. In

the S-Maze scenario (see Fig. 7), the quadrotor starts on

the floor in the southeast corner of a room and is given

a goal configuration in the air in the northwest corner.

Between these two positions are several walls creating an

(a) (b)

Fig. 8. (a) The x, y, and z position over time of the quadrotor in the
3-Window scenario (see Fig. 1). (b) The xy-projections of the maximum
likelihood traces of the quadrotor in the S-Maze scenario (see Fig. 7) for 0,
1, 2, and 5× the realistic amount of uncertainty.

S-shaped corridor the quadrotor must navigate through. A

simple guiding path is given consisting of four straight lines

through the center of the corridor.

In both scenarios, the quadrotor is able to smoothly

and consistently navigate to its goal position with-

out colliding into the walls. The graphs in Fig. 8(a)

show the 3-D motion of the quadrotor in the 3-

Window scenario. Videos of both scenarios are available at

http://gamma.cs.unc.edu/CA/LQGObs/.

To demonstrate the effect of motion and sensing noise

we ran the S-Maze scenario with various levels of noise.

First with no simulated noise, second with realistic levels

of noise, and then with 2× and 5× more noise than the

realistic amount used in other experiments. Beyond 5×
the quadrotor failed to reach its goal, and instead hovered

near the entrance of the maze. Fig. 8(b) shows an xy-

projection of the maximum likelihood path for each of these

runs of increasing noise. By comparing the no-noise run to

the standard noise run the effect of the LQG-Obstacle is

apparent. The quadrotor takes a clearly wider turn around

the first bend to avoid coming too close to the wall. At

higher levels of noise, the quadrotor takes a very conservative

path, staying close the center of the corridor for much of the

run. While the constraints of the flight dynamics reduce the

variation in paths during the second curve, the higher noise

runs still stay further away from walls. In general, planning

for more noise allowed smoother, gentler paths.

3) Timing Results: A benefit of LQG-Obstacles is the

ability to run fast enough for feedback control. For the

quadrotor scenarios, the computation can not take more than

33.3ms without frames from the camera being lost. Here we

report the execution time for planning on an 3.2GHz Intel

Core i7. Table I shows the time taken by the LQG-Obstacle

feedback planner for the three scenarios discussed in this

paper. In all cases the computation is time faster than the

control frequency of 30Hz. The number of considered target

configurations – which in our case is proportional to the

length of the guiding path – is the main factor determining

the computation time.



TABLE I

COMPUTATION TIME FOR THREE DIFFERENT SCENARIOS.

Robot Scenario Computation Time

Planar L-Corridor 9.8ms (102Hz)

Quadrotor S-Maze 21.4ms (47Hz)

Quadrotor 3-Window 24.8ms (40Hz)

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we have introduced the new concept of

LQG-Obstacles for combining LQG feedback control with

collision avoidance. We have shown using simulations that

our approach can be used to smoothly and safely fly a

quadrotor helicopter with motion and sensing uncertainty

through an environment with obstacles and narrow corridors.

We are currently working to implement our approach on a

real quadrotor.

Our approach has a number of limitations. First, it requires

the geometry of the obstacles in the configuration space of

the robot to be given explicitly. While in theory our approach

works for any robot, in practice its applicability is limited to

robots with simple geometry, such as mobile robots that can

be modeled as a disc or a sphere. Also, our approach works

for non-linear systems only if the linearized dynamics are

controllable. For the quadrotor, we linearized about its near-

est steady state, but for car-like robots or differential-drives

one has to choose the linearization point more carefully, as

in these cases linearizing about a steady state results in non-

controllable dynamics. Further, our current implementation

lets the robot select its target configuration along a guiding

path. This is neither the optimal way, nor the only way to

use LQG-Obstacles. Investigating alternative strategies for

selecting control objectives is subject of ongoing work.

There are a few relatively straightforward extensions to our

method we did not discuss in this paper. Firstly, our approach

can handle constraints on the control input. These translate

to constraints on the target configuration through the control

policy, and can be included in the LQG-Obstacle. Also, our

approach can be extended to work for moving obstacles,

by replacing O by O(t) in the derivation. Extensions that

require further study include accounting for uncertainty in

the geometry and motion of obstacles, and on-board (local)

sensing of obstacles. Our approach may also extend to

reciprocal collision avoidance [29] for multiple robots.
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