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Abstract—We formulate two simple benchmark problems

for event-based control, where the optimal solutions in the

continuous-time setting turn out to be ordinary PI and PID

controllers. The benchmarks can be used to compare the perfor-

mance of continuous-time, discrete-time, and various event-based

controllers with regard to for instance disturbance attenuation,

control effort, and average sampling or actuation rates. They can

also be used to evaluate heuristic event-based PI(D) controllers

and see how their performance compare to each other and to

regular sampled-data control. We give two benchmark examples,

where we study the trade-off between event frequency and

regulator performance for a number of previously proposed

approaches to event-based control.

I. INTRODUCTION

Event-based feedback control is an old idea, but there
has been a strong renewed interest following the 14th World
Congress of IFAC in 1999, where two quite different papers on
event-based control were presented. Åström & Bernhardsson’s
paper [1] contained a theoretical analysis and comparison of
periodic and event-based control of first-order linear stochastic
systems. Årzén’s paper [2] proposed a simple, heuristically
derived event-based PID controller, which was evaluated in
simulations on a double-tank process.

Ever since these two papers were published, research on
event-based control has been conducted along two more or
less separate lines. On one hand, there has been theoretical
development in event-based estimation and control, e.g., [3]–
[9], where focus has been on deriving optimal solutions or
solutions with guaranteed performance bounds. On the other
hand, the development of more practical and industry-oriented
event-based control schemes—including PID control—has also
continued, e.g., [10]–[15].

In this paper, we make an attempt to bridge the gap between
theory and practice by proposing two simple benchmarks for
event-based control. The benchmarks are simple in the sense
that they are defined for low-order linear processes and that
the optimal continuous-time solutions can be interpreted as
ordinary PI and PID controllers. At the same time, introducing
one or more event-based elements in the control loop, the
optimal solutions are often (so far) unknown, or known but
computationally intractable. Because of the theoretical diffi-
culties involved, various heuristic or suboptimal approaches
have been proposed. For surveys of recent results in both
optimal and suboptimal/heuristic event-based control and state
estimation, see [16], [17].
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Fig. 1. A general event-based controller structure, cf. [18]. Solid lines
represent continuous signal transmission, while dashed lines represent event-
based transmission.

A quite general event-based controller structure for a
single-input–single-output process is shown in Figure 1. The
process is driven by disturbances v that should be countered by
the controller. The sensor event generator and the control signal
generator determine, respectively, when and how the process
output y is sampled and how the process output u is updated.
The sensor event generator could implement, for instance, con-
tinuous measurements, periodic sampling, quantized sampling,
send-on-delta sampling, or stochastic sampling, The control
signal generator could be an impulse generator, a zero-order
hold, a linear system control generator, or something else.
The control event generator determines when new information
should be communicated to the control signal generator and
could implement, for instance, continuous or periodic commu-
nication, a deadband, or a self-triggered scheme. Finally, the
event-based observer transforms the intermittent information
received from the sensor event generator into a state estimate
x̂ that can be used for feedback.

The proposed benchmarks in this paper are based on linear-
quadratic-Gaussian (LQG) theory and make it possible to
compare the performance of continuous-time, discrete-time
and event-based controllers within a unified framework. The
problem formulations are designed so that ordinary PI and PID
controllers are optimal in the continuous-time setting if there
is no cost on sensor or control events. This makes it possible to
evaluate and compare different event-based PI and PID control
schemes that have been proposed in the literature, both against
each other and against regular sampled-data control or more
advanced event-based estimation and control schemes.



Every benchmark has its limitations and the proposed
benchmarks are of course no exception to this rule. The
design criterion is non-standard for PID control [19], focusing
on disturbance attenuation and control signal activity and
disregarding robustness constraints. The disturbance model
includes an integrator but is driven by white noise and hence
puts more focus on high-frequency behavior than standard
performance criteria for PID control that typically measure,
e.g., the integral absolute error in response to a constant load
disturbance. Also, the servo problem is ignored. Despite of
these shortcomings, we believe that the benchmarks can still
be useful for pointing out some strengths and weaknesses of
the heuristic event-based PID schemes and also for posing new
design challenges for optimal event-based control.

The remainder of this paper is outlined as follows. The
benchmarks are detailed in Section II, where the optimal
continuous-time and sampled-data solutions are given. Sec-
tion III contains an example evaluation based on the optimal PI
control problem, with focus on different sampling techniques
and the trade-off between regulator performance and the rate
of sensor events. Section IV contains another example, based
on optimal PID control, with focus on the trade-off between
regulator cost and the rate of control events under ZOH control.
The paper is finished with some discussion and conclusions in
Section V.

II. THE BENCHMARKS

A. Benchmark Design

The benchmarks should be designed to make it possible
to compare continuous-time, sampled-data, and event-based
control within the same framework. It is thus natural to state
the process models and the performance criteria in continuous
time. The models and the criteria can then be sampled for con-
troller design and evaluation. For event-based control schemes,
it should be possible to numerically evaluate the regulator
performance and the average event rates using Monte Carlo
simulations of the closed-loop system.

Using LQG problems formulations we can obtain optimal
linear controllers, and by choosing appropriate plant and noise
models, we can derive LQG-optimal PI and PID controllers. To
achieve finite gain in the controllers, we must either introduce
some measurement noise in the models or penalize the control
signal activity. We adopt the latter approach, since continuous-
time measurement noise leads to some technical difficulties in
the optimal sampled-data control design (essentially invoking
the need to design an optimal anti-alias filter, see [20]).

Given a model with an integral disturbance at the process
input, it is not possible to directly penalize the control signal u
since it is unbounded under PI(D) control. Neither is it possible
to penalize u̇, since the control signal derivative is unbounded
under sampled-data control with zero-order hold. We avoid
this difficulty by penalizing the sum of the control signal and
the input disturbance, which is well-defined under all control
strategies and will remain bounded if the closed-loop system
is stable.

Explicit robustness constraints are not included in the
design problem, but the level of robustness can be adjusted
by putting more or less penalty on the control signal activity,
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Fig. 2. First-order process with integral input disturbance.

resulting in a less or more aggressive controller. Further, the
benchmarks offer the possibility of experimentally evaluating
the gain and delay margins of the system.

We are now ready to formulate the LQG-optimal PI and
PID control design problems.

B. LQG-Optimal PI Control

Consider the system in Figure 2, where a is a scalar
parameter and vz and vy are independent continuous-time
white noise processes with intensities rz and 1, respectively.
The control objective is to minimize the continuous-time cost
function

J = E
{

qyy
2 + (u+z)2

}

(1)

where qy is a scalar weight. To have a well-defined problem,
we assume that rz, qy > 0.

As usual, in LQG design we may separate the problem
into optimal state feedback and optimal state estimation. The
optimal state feedback, assuming that a state estimate ẑ is
available, is

u = −lyy − ẑ (2)

where ly is obtained by solving the associated algebraic Riccati
equation, yielding

ly =
√

a2 + qy − a (3)

A Kalman filter for z can be designed by assuming (just for
now) that ẏ may be used in the observer. The reduced-order
Kalman filter is then given by

˙̂z = kz(ẏ + ay − ẑ − u) (4)

where kz is obtained by solving the associated algebraic
Riccati equation, yielding

kz =
√
rz (5)

Combining (2) and (4), and solving for u, the complete
controller can be written in input-output form as

U(s) = −
(ly + kz)s+ kz(ly + a)

s
Y (s) (6)

Comparing this with a standard PI controller,

U(s) = −K

(

1 +
1

sTi

)

Y (s) (7)

we can identify the PI controller parameters as

K = ly + kz

Ti =
ly + kz

kz(ly + a)

(8)
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Fig. 3. Second-order process with integral input disturbance.

We note that, for a given process parameter a, there is a direct
correspondence between the LQG design weights qy and rz
and the PI parameters K and Ti.

C. LQG-Optimal PID Control

Consider the system in Figure 3, where a is a scalar
parameter and vz , vx, and vy are independent continuous-
time white noise processes with intensities rz , rx, and 1,
respectively. The control objective is now to minimize the
continuous-time cost function

J = E
{

qyy
2 + qxx

2 + (u+z)2
}

(9)

where qy and qx are scalar weights. To have a well-defined
problem, we assume that rz, qy > 0 and qx, rx ≥ 0.

Proceeding similarly to above, we first assume that state
estimates x̂ and ẑ are available and design a state feedback
law

u = −lyy − lxx̂− ẑ (10)

where the optimal gains are given by

ly =
√
qy

lx =
√

a2 + 2
√
qy + qx − a

(11)

Then, again assuming that ẏ may be used in the observer, a
reduced-order Kalman filter is given by

˙̂z = kz(ẏ − ẑ)

˙̂x = ax̂+ ẑ + u+ kx(ẏ − ẑ)
(12)

with the optimal gains

kz =
√
rz

kx =
√

a2 + 2
√
rz + rx − a

(13)

Combining (10) and (12) and solving for u, the complete
controller can be written in input-output form as

U(s) = −
(kz+ly+kxlx)s

2 + (ly(kx+ a)+kz(lx+a))s+ kzly

s2 + (kx+lx+a)s
Y (s)

(14)

This can be interpreted as a standard PID controller in parallel
form with a first-order low-pass filter on the derivative part:

Gc(s) = K

(

1 +
1

sTi

+
sTd

1 + sTd/N

)

(15)

Again, for a given process parameter a, there is a direct
correspondence between the LQG design parameters qy , qx,
rz , rx and the PID parameters K, Ti, Td, N . The formulas
for the PID parameters, which are surprisingly unwieldy, are
found in the Appendix.
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Fig. 4. Design in the sampled-data control case. (a) Standard sampled-data
loop with periodic sampler Sh, discrete-time controller Hc(z), and zero-order
hold ZOH. (b) Equivalent sampled-data loop with incremental controller
H′

c(z), impulse hold IH, and external integrator.

D. Optimal Sampled-Data Design

We now turn to the sampled-data case, see Fig. 4(a). We
assume that the process output is sampled with a constant
period h and that the controller output is held between updates
using zero-order hold. The goal is to design a discrete-
time controller Hc(z) that minimizes the continuous-time cost
function (1) in the PI case or (9) in the PID case.

The sampled-data LQG problem is nonstandard due to the
unstable and uncontrollable input disturbance state. Similarly
to [20], to simplify the design process we first perform a
loop transformation into the equivalent formulation shown in
Fig. 4(b). The input disturbance state and the controller integral
state are merged into a single state, which is controllable.
Making the integrator external to the controller, the goal is now
to design an incremental controller H ′

c(z) with the discrete
measurement yk as input and the control signal movement
∆uk as output. The noise model and the process model,
including the integral state, are then sampled assuming an
impulse hold at the control signal input. After transformation
and sampling, a standard discrete-time LQG design problem
remains, which can be solved using standard control design
software, yielding H ′

c(z). The final sampled-data controller,
including the integrator, is then given by

Hc(z) = H ′

c(z)
z

z − 1
(16)

The complete controller can be conveniently calculated using
the lqgdesign command in the Jitterbug toolbox1 [21].

1Jitterbug can be downloaded at http://www.control.lth.se/jitterbug



Fig. 5. Simulink model for Monte Carlo evaluation of the PI control
benchmark.

E. Monte Carlo Evaluation of Event-Based Schemes

Unlike the continuous-time and sampled-data cases, the
performance and event rates under event-based control
schemes can typically not be computed analytically. As a
general approach, we propose to evaluate the event-based PI
and PID benchmarks using Monte Carlo simulations.

A Simulink model for Monte Carlo evaluation of the PI
control benchmark is shown in Figure 5. The noise processes
vz and vy are modeled using Band-Limited White Noise
blocks. For a fair comparison, the seed values of the noise
blocks are kept the same in the evaluation of the different
schemes. The cost function is evaluated by integration over the
simulation duration. Similarly, the event frequency is evaluated
by recording the number of events in the simulation and then
dividing by the simulation time.

A Gain block with value A (default = 1) and a Transport
Delay block with value L (default = 0) are included in the
control signal path to enable experimental evaluation of the
robustness of the system. In a robustness evaluation, the value
of either parameter is gradually increased until the closed-
loop system becomes unstable, and then the corresponding
amplitude and delay margins Am and Lm are recorded.

The event-based controller itself can be modeled in a
number of ways; we have used a TrueTime Kernel 2 block [22]
to implement the various control schemes in Matlab code.

III. BENCHMARK EXAMPLE 1: PI CONTROL WITH

SENSOR EVENT LIMITATIONS

As a first example we study PI control with sensor event
limitations, see Fig. 6. In particular, we focus on the trade-
off between the regulator cost (1) and the average number of
sensor events per time unit. We assume the following stable
first-order process (a = 1):

Gp(s) =
1

s+ 1

2TrueTime can be downloaded at http://www.control.lth.se/truetime
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Fig. 6. Example 1: PI control with sensor event limitations.

Further, we assume the LQG design weights qy = rz = 1.
In the subsections below, we shall evaluate and compare the
following control schemes using the benchmark:

• Continuous-time PI control.

• Periodically sampled PI control.

• Send-on-delta sampling with Årzén’s simple event-
based PI controller [2].

• Send-on-delta sampling with Durand and Marchand’s
improved event-based PI controller [11]

• Send-on-delta sampling with state feedback from a
particle filter.

A. Continuous-Time PI Control

For continuous-time control, the given process and design
parameters yield the LQG-optimal gains ly =

√
2 − 1, kz = 1

and the optimal PI controller parameters K =
√
2, Ti = 1.

The bandwidth of the closed-loop system is
√
2 rad/s, and the

optimal cost is J∗ =
√
2. The performance of all controllers

will be normalized to show the cost relative to this baseline.
As for robustness, the amplitude margin is Am = ∞ and the
delay margin is Lm = 1.11 s.

B. Periodically Sampled PI Control

For the sampled-data PI controller, we explore the event–
performance trade-off by adjusting the sampling period h
between 0.05 and 2 s, corresponding to sampling rates between
0.5 and 20 Hz. For each value of h, the optimal sampled-data
PI controller is designed and the cost function (1) is evaluated
using Jitterbug [21]. Given a digital controller, it is trivial to
evaluate the amplitude and delay margins of the sampled-data
control system.

C. Årzén’s Simple Event-Based PI(D) Controller

In Årzén’s simple event-based PI controller, we set the
nominal sampling interval to hnom = 0.05 s. This is the
interval at which the sensor event triggering condition is
checked. The maximum sampling interval is set to hmax = 2 s.
The control performance and the event rate are varied by
setting the error limit elim to different values between 0.05 and
1.4. For each value of elim, the control performance and the
average event rate are evaluated in a Monte Carlo simulation
of length 2000 s.



The pseudo-code for the full PID controller is shown below.
(For PI control, we simply set Td = 0.)

%-- Arzen’s simple event-based controller --

% Input and event detection logic

y = ADIn();

e = -y;

h_act = h_act + h_nom;

IF (abs(e - e_old) >= e_lim || h_act >= h_max) THEN

% Calculate output

u_p = K * e;

a_d = T_d / (N * h_act + T_d);

u_d = a_d * u_d - K * N * a_d * (y - y_old);

u = u_p + u_i + u_d;

% Output

DAOut(u);

% Update state

u_i = u_i + K / T_i * h_act * e;

e_old = e;

y_old = y;

h_act = 0;

END

D. Durand and Marchand’s Event-Based PI(D) Controller

Durand and Marchand [11] suggested several improve-
ments to Årzén’s simple event-based controller, two of which
we adopt here. First, their controller uses the backward differ-
ence in the I-part, which is more correct since hact is known
for the previous interval and not for the next sampling interval.
Second, they propose an exponential gain reduction in the I-
part for large sampling intervals, which removes the need for
the safety limit hmax. The pseudo-code for the controller is:

%-- Durand and Marchand’s event-based controller --

% Input and event detection logic

y = ADIn(1);

e = -y;

h_act = h_act + h_nom;

IF (abs(e - e_old) > e_lim) THEN

% Calculate output

u_p = K * e;

a_d = T_d / (N * h_act + T_d);

u_d = a_d * u_d - K * N * a_d * (y - y_old);

h_act_i = h_act * exp(h_nom - h_act);

u_i = u_i + K / T_i * h_act_i * e;

u = u_p + u_i + u_d;

% Output

DAOut(1,u);

% Update state

e_old = e;

y_old = y;

h_act = 0;

END

The resulting regulator cost and average event frequency
are evaluated in the same way as in the previous subsection.

E. State Feedback from Particle Filter

The final scheme that we evaluate for the first benchmark
example is state feedback from a particle filter [23]. The par-
ticle filter attempts to emulate an optimal, Bayesian observer
for the process with send-on-delta measurements. The particle
filter is based on a discretized system model with the basic
sampling interval h = 0.05. The non-Gaussian state probability
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Fig. 7. Benchmark results for PI control with sensor event limitations.

distribution approximated by 2000 particles that evolve accord-
ing to the stochastic process model. In each update step, each
particle is assigned a weight proportional to its likelihood given
the latest information (or lack of information) from the send-
on-delta sensor. Based on the weighted mean of the particles,
a point estimate (ŷ, ẑ) is calculated. The control signal is then
calculated using the certainty equivalence feedback law

u = −ly ŷ − lz ẑ (17)

The particles are regenerated in each step using the systematic
resampling algorithm [23].

The resulting regulator cost and average event frequency
are evaluated in the same way as in the previous subsection.

F. Results

The performance results from the PI control benchmark
are summarized in Fig. 7. Continuous PI control represents
the baseline with a relative cost of 1. The sampled-data PI
controller shows a gradual degradation in control performance
as the sampling rate is decreased, as expected. Årzén’s event-
based PI controller beats the sampled-data controller at average
rates above 3 Hz but performs worse than it at lower rates.
Durand & Marchand’s event-based PI controller shows some
improvement and beats the sampled-data controller at average
rates above 1.5 Hz. At very low average rates, state feedback
from the particle filter clearly outperforms the other schemes.
This is not surprising, given that the particle filter mimics
an optimal event-based observer for the system. However, the
amount of on-line computations are several orders of magni-
tude larger for this scheme compared to the other schemes.
Also, the particle filter shows some performance degradation
for high average rates. The overall performance of the particle
filter can be improved by increasing the number of particles,
but that would increase the computational demand even further.

Table I shows the robustness results for the different
controllers. The sampled-data and event-based controllers have
been tuned so that the nominal average sampling rate is
3 Hz. The amplitude margin Am and the delay margin Lm

for the event-based controllers were found experimentally by



TABLE I. EXPERIMENTAL ROBUSTNESS MEASURES FOR PI CONTROL

WITH NOMINAL AVERAGE SAMPLING RATE 3 HZ.

Cost Am Lm

Continuous-time control 1.00 ∞ 1.11

Sampled-data control 1.24 5.3 1.24

Årzén’s simple event-based PI control 1.22 29 1.15

Durand & Marchard’s event-based PI control 1.15 28 1.17

State feedback from particle filter 1.11 32 2.10

gradually increasing the loop gain or the loop delay. It can be
noted that the amplitude margins of the event-based controllers
are larger than that of the sampled-data controller. The event-
based controllers however generate more sensor events as the
loop gain is increased, hence consuming much more resources.
It can also be seen that state feedback from the particle filter
is overall more robust than the other event-based schemes.

IV. BENCHMARK EXAMPLE 2: PID CONTROL WITH

CONTROL EVENT LIMITATIONS

In the second example we study PID control with actuator
event limitations, see Fig. 8. We now focus on the trade-
off between the regulator cost (9) and the average number
of control events per time unit. We assume that the process
output can be sampled without cost and that the control signal
generator is a zero-order hold circuit.

Setting a = 1, we have the following process to control:

Gp(s) =
1

s(s+ 1)

We assume the LQG weights qy = rz = 1 and qx = rx = 0.
In the subsections below, we shall evaluate and compare the
following control schemes using the benchmark:

• Continuous-time PID control.

• Periodically sampled PID control.

• Send-on-delta sampling with Durand and Marchand’s
improved event-based PID controller [11].

• State feedback from Kalman filter with quantizer-
based control event generator.

• State feedback from Kalman filter with send-on-delta
control event generator.

A. Continuous-Time PID Control

For continuous-time control, the given process and design
parameters yield the LQG-optimal gains ly = kz = 1 and

lx = kx =
√
3− 1 and the optimal PID controller

Gc(s) =
(6− 2

√
3)s2 + 2

√
3 s+ 1

s2 + (2
√
3 − 1)s

The corresponding PID parameters are K = 1.24, Ti = 3.06,
Td = 0.42, N = 1.04. The bandwidth of the closed-loop
system is 1.70 rad/s, and the optimal cost is J∗ = 5.32. The
performance of all controllers will be normalized to show the
cost relative to this baseline. As for robustness, the amplitude
margin is Am = ∞ and the delay margin is Lm = 0.81 s.

Process
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PID
Controller
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Fig. 8. Example 2: PID control with control event limitations.

B. Periodically Sampled PID Control

The sampled-data PID controller is designed and evaluated
in a similar way as the sampled PI controller, see Section III-B.

C. Durand and Marchand’s Event-Based PID Controller

For Durand and Marchand’s improved event-based PID
controller, we again use the nominal sampling interval hnom =
0.05 s. Note that the controller always generates the same
number of sensor and control events; the event-based PID
algorithm is executed and the control signal is updated only
when the input has changed by an amount of elim. By
varying elim between 0.15 and 3 we explore the trade-off
between performance and the control event rate. A Monte
Carlo simulation of length 2000 s is performed for each value
of elim.

D. Kalman Filter with Quantizer Control Event Generator

In this scheme, we assume that the process output y is
sampled with the regular interval h = 0.05. (Recall that
there is no cost on sensor events in this example.) The
controller implements a standard discrete-time Kalman filter
that produces the state estimates ẑ and x̂. In each sample, the
controller evaluates the state feedback law (same as (10))

u = −lyy − lxx̂− ẑ (18)

The control signal is then sent through a quantizer with
resolution ∆:

uquant = round
( u

∆

)

·∆ (19)

A control event is generated and the zero-order hold control
output is updated with the value uquant only if the quantized
control signal has changed value since the last sample. The
actual zero-order hold control output is used in the Kalman
filter to obtain correct state estimates. In the evaluation, ∆ is
varied between 0.15 and 3, and a Monte Carlo simulation of
length 2000 s is performed for each value.

E. Kalman Filter with Send-on-Delta Control Event Generator

The final scheme that we evaluate is very similar to the
previous one, except with regard to how control events are
generated. Rather than quantizing the control output, we use
a send-on-delta control generator. A new control signal is
generated only if the value has changed by at least an amount
∆ compared to the currently held control signal. When a
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control event is generated, the new value of u is sent to the
zero-order hold, without quantization. As before, the actual
control output is used in the Kalman filter to obtain correct
state estimates. The controller is evaluated in the same way as
in the previous subsection.

F. Results

The results from the PID control benchmark are shown
in Fig. 9. The straight line with relative cost 1 represents the
continuous-time PID controller. Like before, the sampled-data
PID controller shows an expected performance degradation as
the actuation rate is decreased. Durand and Marchand’s event-
based PID controller only shows a marginal improvement
compared to the sampled-data controller. The quantized state
feedback controller shows an improvement of similar magni-
tude for high actuation rates, but its performance breaks down
for average rates below 3 Hz. The best event-based controller
for this benchmark is the state feedback controller with the
send-on-delta control generator. It retains good performance
even for very low average actuation rates.

The experimental robustness results are reported in Table II.
The sampled-data and event-based schemes have been tuned so
that the nominal average control rate is 5 Hz. Again it is seen
that the event-based schemes have good robustness towards
unmodeled gains and delays. At the same time, they generate
many more control events than the sampled-data controller as
the stability limit is approached. The controller with the best
performance—state feedback with send-on-delta output—also
displays the best robustness properties.

TABLE II. EXPERIMENTAL ROBUSTNESS MEASURES FOR PID
CONTROL WITH NOMINAL AVERAGE SAMPLING RATE 5 HZ.

Cost Am Lm

Continuous-time control 1.00 ∞ 0.81

Sampled-data control 1.13 9.3 0.80

Durand & Marchard’s event-based PI control 1.11 32 0.77

State feedback with quantized output 1.09 18 0.79

State feedback with send-on-delta output 1.06 34 0.80

V. CONCLUSIONS AND FUTURE WORK

We have presented two benchmarks problems for event-
based control: One can be interpreted as a stochastic PI
control problem, and the other one can be interpreted as a
stochastic PID control problem. Even though we are dealing
with low-order systems (two respectively three state variables
in total), optimal solutions or even performance bounds are
still unknown for many event-based problem formulations. The
continuous-time case provides a lower bound that no other
scheme can beat. The sampled-data case provides a bound that
all event-based controllers should attempt to beat.

One thing to note is that the benchmarks assume constant-
intensity white noise processes in the disturbance models.
Hence, the processes are constantly being pushed away from
their equilibria, and there are no periods of complete rest
during which the event-based schemes can shine. Beating
the sampled-data case may thus be non-trivial. The event-
based PI(D) controllers investigated in the paper exhibit some
problems at low event rates. There should hence be room for
further algorithm improvements.

In the PI control benchmark, it was interesting to note
that a nonlinear observer, such as a particle filter, can give
a large performance increase under sensor event limitations.
The particle filter is however very expensive in terms of
computational effort, so this approach is probably not feasible
for small embedded control systems.

In the PID control benchmark, it could be seen that a
quantized control signal gave much worse performance than
a send-on-delta output, which may seem surprising at first.
With the quantizer, however, even a small random disturbance
can cause the quantized output to change frequently, while
the send-on-delta mechanism in itself implements a hysteresis
function. Also, the send-on-delta output gives the correct
output value at events, while the quantized output always
contains a rounding error.

The experimental robustness evaluations showed that the
event-based controllers display at least as good robustness
properties as the sampled-data controllers.

For future work, it would be natural to evaluate and
compare more event-based control schemes from the literature,
in various settings. There are many variations of the general
event-based control loop in Fig. 1, and each variation implies
different design trade-offs and solution approaches. Further,
it could be interesting to explore other noise models in the
benchmark, such as shot noise, which may be more appropriate
for event-based control benchmarks.
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APPENDIX

The LQG-optimal PID parameters in (15) are given by

K = ly −
lxly − kz(a+ lx)

a+ kx + lx
−

kzly

(a+ kx + lx)2

Ti =
a2 + 2akx + lxa+ k2

x + lxkx − kz

kz(a+ kx + lx)
+

a2 + 2alx + kxa+ l2x + kxlx

ly(a+ kx + lx)

Td =
(ly + akx + lxkx + k2

x)(kz + alx + kxlx + l2x)

(a+ kx + lx)(a2kz − kzly + a2ly + k2
xly + kzl

2
x + akxkz + 2akxly + 2akzlx + alxly + kxkzlx + kxlxly)

N =
(ly + akx + kxlx + k2

x)(kz + alx + kxlx + l2x)

a2kz − kzly + a2ly + k2
xly + kzl

2
x + akxkz + 2akxly + 2akzlx + alxly + kxkzlx + kxlxly

(20)


