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LQR Optimization of Linear System Switching

Bo Lincoln and Bo Bernhardsson

Abstract—This note considers offline optimization of a switching
sequence for a given finite set of linear control systems, together with
joint optimization of control laws. A linear quadratic full information
criterion is optimized and dynamic programming is used to find an
optimal switching sequence and control law. The main result is a method
for efficient pruning of the search tree to avoid combinatoric explosion.
A method to prove optimality of a found candidate switch sequence and
corresponding control laws is presented.

Index Terms—Hybrid systems, optimal control, scheduling.

I. INTRODUCTION AND MOTIVATION

Optimal hybrid control problems arise in many applications, see,
e.g., [1] and [2]. An interesting subclass of hybrid systems consists
of piecewise linear systems where either controlled or uncontrolled
switches between linear systems are used; see [3]. The main ques-
tion in most optimal hybrid control problem formulations is how to
avoid the combinatorical explosion associated with exploring all pos-
sible switching alternatives. The problem area combines the tradition-
ally separate research areas of search over graphs and control theory. In
most papers on optimal hybrid control, this issue is generally not dealt
with. The problem is sometimes solved by exhaustive search. In this
note, we propose and evaluate a promising pruning method for efficient
tree search, obtained by using information about the search objective.

The motivation for our work has mainly come from real-time con-
trol systems, where there often are restrictions on common resources
such as communication bandwidth or CPU power. The different con-
trol loops have to share some media. This is often done by time-divi-
sion-multiplexing, i.e., using some time slots for one loop and some
other for another loop. One example where this problem is found is
control over a wireless network environment such as Bluetooth [4].
The data packets are long and the maximum sample rate is restricted.
In Bluetooth, only one network device can be accessed every 1.25 ms,
so the controller has to choose which device to control (or sample); see
Fig. 1.

The scheduling, i.e., the choice of control and measurement
sequences, is normally optimized offline. The possibility to use online
information in the scheduling algorithms, such as local information
about signal values, has also been suggested recently, see [5]. Such
online scheduling will not be studied here.

Offline scheduling of linear control systems under quadratic criteria
has been treated recently in [6]–[8], where a separation property be-
tween control and estimation is presented. These references, however,
do not present any efficient solving methods and lead to search prob-
lems over large trees. When the control horizon increases the size of the
trees grows exponentially. The purpose of the present note is to present
a pruning method which often decreases this complexity drastically.
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Fig. 1. A simple problem. The controller can only access one plant each time
slot. Which sequence gives the best expected cost?

Fig. 2. The control sequence tree forM = 2 when expanding all possibilities
fromN � 3 toN (except for two nodes, dashed, where the tree was pruned).

II. PROBLEM FORMULATION

The problems we are interested in can be formulated as finding the
best switching sequence of system matrices for a discrete-time linear
system

z(n+ 1) = �(n)z(n) + �(n)u(n) +G(n)v(n): (1)

Here,z is the (extended) state space vector,u the control signals, andv
standard stochastic independent disturbances with zero mean and unit
covariance. The system matrices�(n),�(n), andG(n) are chosen by
the controller in each step from a small set ofM alternative systems
f(�k; �k; Gk; Qk)g, y 2 f1; . . . ; Mg (whereQk has to do with
the cost of the system). Note that the system is time varyingonlysince
the controller can choose system matrices from a set at every control
instant. The set of possible matrices doesnot change over time, so the
problemis time invariant.

The problem is to find a linear feedback lawu(n) = �L(n)z(n)
and a sequenceK(0; N) = [k(0); k(1); . . . ; k(N � 1)] corre-
sponding to choosing�(n) = �k(n), �(n) = �k(n),G(n) = Gk(n),
andQ(n) = Qk(n) that minimize the cost

V (Pz(0); 0; N; L(�); K(0; N))

= E
v

N�1

n=0

z(n)

u(n)

T

Q(n)
z(n)

u(n)
+ z(N)TQNz(N) (2)

whereEfz(0)g = 0,Efz(0)z(0)Tg = Pz(0),Q(n) � 0 andQN �
0.

III. FINDING AN OPTIMAL SEQUENCE

We will find an optimal scheduling sequence and control law
by doing backward recursion of the cost (dynamic programming),
evaluating all possible choices ofK(n; N). See Fig. 2 for an
illustration. If this is done without care, the tree will of course grow
exponentially. Therefore, we present a pruning algorithm which
aims at keeping the tree size down to a reasonable level. The
whole optimization of the sequence is done offline, so no feedback
information is used in the scheduling.
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We will use the notation “optimal sequence” for a sequence which
achieves the optimal cost. There may be more than one sequence which
does this, and we will aim at finding at least one.

Notation: Throughout the rest of this note, the cost functionV will
be written as

V (start; end; sequence)

wherestart andenddenote the first and last time-step of the cost.Se-
quenceis either a sequence of choices [such as e.g.,K(0; N)] from the
start to the end time-step, a set of such sequences, or omitted. If a set,
V denotes the minimum over all sequences in the set, and if omittedV

denotes the minimum over all possible sequences. The initial variance
Pz(0) is omitted for notational convenience.

A. Cost Representation and Feedback Gain

For a fixed choice ofK(0; N), the problem is a standard time-
varying linear-quadratic control problem. Under standard assumptions,
it is well known that the best achievable cost can be written as

V (0; N; K(0; N)) = z(0)TSK(0;N)z(0) + cK(0;N) (3)

whereSK(0;N) is a positive symmetric matrix andcK(0; N) is a con-
stant term due to the noise. The optimal feedback law is

u(n) = �LK(n;N)z(n) = F
uu
K(n;N)

�1
F
zu
K(n;N)

T
z(n) (4)

where

FK(n;N) =
F zz
K(n;N) F zu

K(n;N)

F uz
K(n;N) F uu

K(n;N)

=Q+ [�k �k ]
T
SK(n+1; N)[ �k �k ]: (5)

As the minimization ofL is straightforward, it will be left out in the
remaining sections.

B. Finding a Candidate Sequence

Finding a candidate sequence is, as mentioned before, done by back-
ward iteration. One “step” in the iteration means expanding the set of
candidate sequences one step in time. This is done by first expanding
the search tree with new possible sequence choices (see Fig. 2), and
then pruning (removing branches) using the algorithm described below.
The set�cand(n+1; N) of possible control sequences from timen+1
to N is expanded by

�expand(n; N) = f1; 2; . . . ; Mg � �cand(n+ 1; N): (6)

Let Kprune 2 �expand(n; N) be a sequence in the set. The cor-
responding cost is parameterized byScand = SK (n; N) and
ccand = cK (n; N). The idea of the algorithm is to remove
Kprune if another sequenceKcand 2 �expand(n; N) will perform
better for all states. The algorithm calculates an� 2 [0; 1] showing
how close the quadratic costSprune is to be worse thanScand, with
� = 1 meaning thatKprune is worse for all states. If� is close
enough to one, and the noise costcprune is sufficiently much larger
thanccand, thenKprune is removed (tested by the inequality in step 3
of the algorithm in Table I).

“Sufficiently much larger” is here represented by one parameter,
R > 0, which must be chosen by hand. The exact meaning ofR is
shown in Theorem 1.

The algorithm creates a setM(n; N), calledmotivation set,which
contains data on every pruned sequence and on the candidate sequences
which was judged better. This data is used in Section III-C to prove
optimality of the found sequence. The algorithm is described in Table I.

TABLE I
THE BRANCH-AND-BOUND ALGORITHM

By using this tree pruning, the number of sequences in�cand(n; N)
can be kept reasonably low when recursing backward ifR is chosen
small enough. AfterN iteration stages, the final proposed sequence is

Kcand(0; N) = argmin
K2� (0; N)

(tr(Pz(0)SK) + cK) (7)

with costVcand = V (0; N; Kcand(0; N)).

C. Optimality of the Candidate Sequence

The candidate sequence found by the algorithm above may or may
not be optimal, depending on the choice ofR. A method will now be
presented which can prove optimality of the proposed sequence ifR is
large enough. The idea of the proof is to show that a lower bound on
the obtainable cost by using one of the pruned sequences is still higher
than the cost of the found sequence. If this holds for every pruned se-
quence, the found candidate is optimal. Throughout the rest of the sec-
tion,M(n; N) is the motivation set from the tree pruning, and consists
of

M(n; N) = f(cprune; �; ccand)1; (cprune; �; ccand)2; . . .g:

We will also useVlowb(0; N; �cand(n; N)), which fulfills

min V (0; N; [K(0; n)K(n; N)])

� Vlowb(0; N; �cand(n; N)): (8)

Thus,Vlowb(0; N; �cand(n; N)) is a lower bound on the optimal cost
using one of the sequences in�cand(n; N) for steps fromn toN [from
now onpassing�cand(n; N)].

Lemma 1—Best Cost Including Pruned Sequences:It holds that

V (0; N; �cand(n; N) [ �prune(n; N))

� min
(c ; �; c )2M (n;N)

f(1� �)Vlowb(0; n)

+ �(Vlowb(0; N; �cand(n; N))� ccand) + cpruneg

=: Vlowb(0; N; �cand(n; N) [ �prune(n; N)) (9)

whereVlowb(0; n) is a lower bound on the optimal cost in the length-n

-problem, andM 0(n; N) = M(n; N) [ f(0; 1; 0)g to include the
current lower bound.

ThusVlowb(0; N; �cand(n; N) [ �prune(n; N)) is a lower bound
for the cost achieved if no sequences were pruned at stepn. If Vcand =
Vlowb(0; N; �cand(n; N)[�prune(n; N)) thenVcand is also the op-
timal cost passing�cand(n; N) [ �prune(n; N).
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Fig. 3. The optimal controller sequence for Example 1 (left), and the number of sequences left after pruning in each iteration. TheR = 15 case is almost the
same as forR = 23 and, therefore, not visible. Generally, the algorithm often find sequences with short period, but not always.

For notational convenience we put

�
n�1
0 =

n�1

i=0

z(i)

u(i)

T

Qk(i)

z(i)

u(i)

in the following.
Proof of Lemma 1:First, we notice that (8) gives

min V (0; N; [K(0; n)K(n; N)])

= min
...
E
v

�
n+1
0 + z(n)TSK(n;N)z(n) + cK(n;N)

� Vlowb(0; N; �cand(n; N))) 8 K(n; N) 2 �cand(n; N);

min
K(0; n)

E
v

�
n�1
0 + z(n)TSK(n;N)z(n)

� Vlowb(0; N; �cand(n; N))� cK(n;N): (10)

Second, for two sequences fromn to N , Kprune(n; N) and
Kcand(n; N), for which

SK (n;N) �QN � �(SK (n;N) �QN) (11)

andKcand 2 �cand(n; N) it holds that

min
K(0; n)

E
v

�
n�1
0 + z(n)TSK (n;N)z(n)

� min
K(0; n)

E
v

�
n�1
0 + z(n)TQNz(n)

+�z(n)T (SK (n;N) �QN)z(n)

� � min
K(0; n)

E
v

�
n�1
0 + z(n)TSK (n;N)z(n)

+ (1� �) min
K(0; n)

E
v

�
n�1
0 + z(n)TQNz(n)

� �(Vlowb(0; N; �cand(n; N))� cK (n;N))

+ (1� �)Vlowb(0; n): (12)

Thus, we can put a lower bound on the optimal cost passing a pruned
sequenceKprune(n; N) 2 �prune(n; N) using lower bounds for the
cost of the length-n-problem and for the cost of sequences passing
�cand(n; N)

min
K(0; n);

V (0; N; [K(0; n)Kprune(n; N)])

= min
K(0; n)

E
v

�
n�1
0 + z(n)TSK (n;N)z(n)

+ cK (n;N)

� �(Vlowb(0; N; �cand(n; N))� cK (n;N))

+ (1� �)Vlowb(0; n) + cK (n;N): (13)

Fig. 4. Found sequence costs and lower bounds when running the tree pruning
algorithm with differentRs.

A lower bound of all sequences passing�cand(n; N)[�prune(n; N)
is obtained by taking the minimum of lower bounds for all pruned
sequences and the remaining sequences, yielding Equation (9).

Lemma 2—Lower Bound on Full Cost:Given the candidate
sequenceKcand(0; N) from (7), lower boundsVlowb(0; i) for the
length-i-problems,i 2 f0; . . . ; N � 1g, and the pruned sequence
motivationsM(i; N) i 2 f0; . . . ; Ng, a lower boundVlowb(0; N)
on the optimal cost can be found by iterating (9) fromn = 1 to
n = N .

If Vcand = Vlowb(0; N), thenKcand(0; N) is a sequence that gives
the optimal cost.

Proof of Lemma 2:Since all sequencesK(n; N) 2
�cand(n; N) [ �prune(n; N) pass �cand(n + 1; N), the itera-
tion can use that

Vlowb(0; N; �cand(n; N) [ �prune(n; N))

= Vlowb(0; N; �cand(n+ 1; N)): (14)

Let Vlowb(0; N; �cand(0; N)) = Vcand. Equation (14) and
Lemma 1 give Vlowb(0; N; �cand(i; N)), i 2 f0; . . . ; Ng.
A lower bound on the cost for the length-N -problem is then
Vlowb(0; N) = Vlowb(0; N; ;).

Using Lemma 2 iteratively, lower bounds (or optimal costs) for the
length-N -problem can be found by starting with a length-1-problem
and iterating. The lower bound on the solution for each problem is
found and used in the calculation of lower bounds for larger problems.
The sequence tree can be kept from the previous problem length and
expanded by one step for each iteration, keeping complexity low.

Theorem 1—Optimal Sequence for FiniteR: If

R � V (0; N)� (V (0; n) + cmin(n; N)) 8n 2 f0 � � � Ng (15)

then an optimal sequence will be found. Also, if the optimal costs
for problem lengths1; . . . ; N � 1 have been found before s.t.
Vlowb(0; n) = Vcand(0; n) = V (0; n); 8 n 2 f0; . . . ; N � 1g,
then the found cost for problem lengthN will also be proven optimal
by Lemma 2.

Note: This theorem cannot be used to chooseR directly, asV (0; N)
is not known before the optimziation. It only states that for large enough
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Fig. 5. The optimal controller sequence for Example 2, with three choices in each time step (left), and the number of sequences left after pruning in each iteration.
The control signal is held when the system is not controlled, so the augmented system is of order eight. The sequence is periodic with period 8. Note thatalthough
the tree becomes rather large, it is still solvable, and a length-100-problem should give us a good insight in the steady-state behavior.

R, we will find and prove the optimal cost. The second assumption in
the theorem, that optimal costs must be found for all shorter problems,
is automatically satisfied if the tree is expanded iteratively and (15)
holds in each step.

Proof: To show that all optimal sequences cannot be pruned, we
note that the lower bound on costs of pruned sequences in (9) holds
also when all lower bounds on candidate sequence costs are replaced
by optimal costs. We want to show that these lower bounds are all worse
than the optimal cost

8 (cprune; �; ccand) 2M; ((1� �)V (0; n)

+�(V (0; N)� ccand) + cprune)� V (0; N) � 0 (16)

and expanding the left-hand side

(1� �)(V (0; n)� V (0; N))� �ccand + cprune

� (1� �)(V (0; n)� V (0; N))� �ccand + ccand

+ (1� �)(cmin(n; N) +R� ccand)

Frompruning rule

= (1� �)(fV (0; n) + cmin(n; N) +Rg � V (0; N))

� 0 , R

� V (0; N)� (V (0; n) + cmin(n; N)): (17)

This shows the role ofR: V (0; n) is the cost for the problem from 0
to n andcmin(n; N) is the cost for the problem fromn toN without
initial variance. If we add the costs of these two shorter problems to-
gether it will be lower than the cost from 0 toN (V (0; N)), andR has
to be larger than the difference for the inequality to hold.

Thus, if (15) holds, the optimal sequence is found, i.e.,
Vcand(0; N) = V (0; N). If also Vlowb(0; n) = V (0; n), then
the lower bound on cost from pruned sequences in (16) equals the one
in (9) and from the latter we obtain

Vlowb(0; N; �cand(n; N) [ �prune(n; N))

= Vlowb(0; N; �cand(n; N)):

Thus, Lemma 2 will prove that our candidate sequence is optimal.
By keepingR small, the number of branches in the tree can be kept

down to a reasonable level. IfR is chosen too small, the optimal so-
lution might however not be found, or at least not be proven optimal
using Lemma 2. A lower bound on the optimal case is always found,
though.

IV. TIME COMPLEXITY OF THE ALGORITHM

The described algorithm does not run in polynomial time (unless P=
NP). In fact, one special version of the problem (which was not consid-
ered in the design of the algorithm) is easily shown to be NP-hard. The

proof is based on solving anN -mortality problemwhich is NP-com-
plete (see [9]).

V. EXAMPLES

To show the feasibility of the method, two examples have been
constructed. They are based on the select-which-system-to-control
problem, with different properties. The optimization times range from
seconds to minutes in Matlab code on a standard computer.

A. Example 1

Consider the following two simple linear systems:

x1(n+ 1) =
1 0:4

0:3 0:8
x1(n) +

0

1
u(n) +

0

0:8
v1(n)

x2(n+ 1) =0:9x2(n) + 1u(n) + 1v2(n)

Q =diag([ 1 1 10 1 ]):

The problem is to find the control access sequence which yields the
lowest cost. In this problem, the control signal will only be held
at the actuator for one sample period. If the system is not being
controlled during the next sample period, the control signal is zero.
Running the described tree optimization algorithm withR = 23 and
N = 300 produce candidate sequences for all length-i-problems,
i 2 f0; . . . ; 300g, which all prove to be optimal. For illustration, the
algorithm has been run withR = 15, andR = 10 as well. Optimality
could not be shown for these choices ofR, but forR = 15 the same
cost as forR = 23 was achieved. See Fig. 3 for the optimal sequence,
and number of sequences left in each iteration of the algorithm. Fig. 4
compares found costs and guaranteed lower bounds for the different
choices ofR.

B. Example 2

We now show a larger example consisting of the two systems in
Example 1 plus another unstable second order system. The control
signal is held at the actuator if the system is not controlled, so extra
“control-signal” states have been added, making the original order five
system grow to order eight. The optimal controller sequence for the
length-100-problem can be seen in Fig. 5.

VI. CONCLUSION

A method to find the optimal switching sequence in a
linear-quadratic full-information problem has been presented,
together with a method to prove optimality in each case. Empirically,
the method works well in that it finds the solution in reasonable
time. Future work could include formulating other problems in the
same framework, such as for example choosing among distributed
sensors. The infinite horizon problem and the problem of joint actuator
scheduling and sensor scheduling are open.
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The Impact of Finite Buffers on the Optimal Scheduling of
a Single-Machine Two-Part-Type Manufacturing System

Francesco Martinelli and Paolo Valigi

Abstract—In this note, we give a complete solution to a scheduling
problem for a two-part-type, single-machine, flexible manufacturing
system, with finite-capacity buffers. Backlogged and rejected requests
incur a cost which must be minimized over an infinite time interval. If
buffer capacities were infinite, the well-known rule would have solved
the problem. In this note, we find the optimal policy for the finite-capacity
case and give a computation procedure and some illustrative examples.

Index Terms—Finite buffers, fluid model, manufacturing systems,
scheduling.

I. INTRODUCTION

In this note, we consider a make-to-order, two-part-type manufac-
turing system comprising a single reliable and flexible machine. A fluid
model is considered, with demands arriving with a deterministic con-
stant rate and a holding cost associated with waiting demands. A max-
imum number of waiting demands is allowed and extra demands are
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dropped, with a cost for lost demands. The objective of the note is to
find the dynamic scheduling policy which minimizes the total cost over
an infinite time horizon.

The optimal solution turns out to be the combination of two classes
of policies, which will be defined next and will be referred to as the
“finite c� rule” and the “two-phase motion.”

Dynamic scheduling for manufacturing systems has been studied for
decades, with a variety of approaches (see [1]–[5]). Most problems
have been studied for systems with infinite-capacity buffers. In this
case, for a broad class of single-machine systems, under fairly general
assumptions on the arrival process (comprising the system considered
in this note if buffer capacities were infinite), the optimal solution of
the scheduling problem is the well-known “c� rule” [6]–[8].

Finite-capacity buffers make the problem much more difficult: the
c� rule is no longer optimal, analytical solutions become complex, and
the problem is often solved through a numerical approach or for a re-
stricted set of parameter values.

A scheduling problem for a system with finite-capacity buffers, sto-
chastic demand, and service has been considered in [9], with the objec-
tive of minimizing a discounted cost including a linear cost for waiting
customers, and a blocking cost incurred whenever arrivals encounter a
full queue and are lost. The optimal policy is found under the assump-
tion that the holding cost is not larger than the blocking cost times the
arrival rate, for each queue. It turns out that the optimal policy is charac-
terized by a switching curve dividing the state space into two decision
regions. The optimal policy maintains the same structure also in the
undiscounted case [9]. A brief sketch of extension ton > 2 part types
is given in [10]. Finite buffers and explicit rejection cost in a stochastic
scenario have been assumed also in [11]. Key properties of the optimal
solution have been investigated under some assumptions on system pa-
rameters, while numerical results are proposed to indicate that, in the
general case, the optimal policy has not a threshold structure. Both [9]
and [11] use dynamic programming to investigate the problem.

In [12], motivated by [13], we derived a numerical solution, based on
discrete dynamic programming, for a single-machine, two-part-type,
make-to-stock, finite-buffer system, with Poisson arrivals and service.
Assuming part types are not distinguishable (symmetric case), we
found in [12] an interesting result: if the cost for lost demand is larger
than a bound, the optimal policy is a longest queue first policy, while,
if such a cost is lower than another bound, we got a shortest queue
first policy. To verify the conjecture that such a result was due to finite
buffers, we studied in [14] a symmetric deterministic fluid system,
with finite buffers, proving the necessity of a full-capacity policy, and
stating the need for a shortest queue first policy, if cost for demand
loss is less than a threshold. The system considered in [14] has been
further studied in [15], where the symmetry assumption has been
relaxed. The solution proposed in [15] is optimal only within a subset
of all the admissible policies, not comprising the two-phase motion
considered in this note.

Here, we present a policy which is optimal in the set of all the
admissible policies, and whose optimality is analytically proved. As
in [15], we have considered a very general fluid model without
any assumption on cost parameters, unlike previous papers. Such an
optimal policy clarifies the structure obtained in [12]. In addition,
if the rejection cost is large enough, we get a policy (Algorithm 1)
similar to the one presented in the example reported in [9]. The
main difference is that our policy will travel exactly on the border
of the state space, being in a deterministic scenario.

A further relevant motivation for this study is that the production
model considered here can be regarded as a real model for a make-to-
stock system where the failure rate of the machine and the cost of pos-
itive surplus are such that the hedging point is at the origin. This kind
of problem has been mentioned in [5].
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