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Abstract

It is computationally challenging to detect variation by aligning single-molecule sequencing

(SMS) reads, or contigs from SMS assemblies. One approach to efficiently align SMS reads

is sparse dynamic programming (SDP), where optimal chains of exact matches are found

between the sequence and the genome. While straightforward implementations of SDP

penalize gaps with a cost that is a linear function of gap length, biological variation is more

accurately represented when gap cost is a concave function of gap length. We have devel-

oped a method, lra, that uses SDP with a concave-cost gap penalty, and used lra to align

long-read sequences from PacBio and Oxford Nanopore (ONT) instruments as well as de

novo assembly contigs. This alignment approach increases sensitivity and specificity for

SV discovery, particularly for variants above 1kb and when discovering variation from ONT

reads, while having runtime that are comparable (1.05-3.76×) to current methods. When

applied to calling variation from de novo assembly contigs, there is a 3.2% increase in Tru-

vari F1 score compared to minimap2+htsbox. lra is available in bioconda (https://anaconda.

org/bioconda/lra) and github (https://github.com/ChaissonLab/LRA).

Author summary

Any two human genomes will have sequence differences across multiple scales: from sin-

gle-nucleotide variants to large gains, losses, or rearrangements of DNA called structural

variants. Long-read single-molecule sequencing has been shown to help discover struc-

tural variation because the reads span across the entire variant. The computational prob-

lem for discovering a structural variant is to find the optimal alignment of the read to the

genome with gaps that accurately reflect the variant. Here we demonstrate a method, lra,

that uses an efficient implementation of concave-cost alignment for structural variant dis-

covery using long reads. On standardized benchmark data, we show that structural variant

discovery is improved for multiple combinations of variant detection algorithms and

long-read sequence using alignments generated by lra compared to existing methods.

Finally, we show that it is possible to use lra to accurately discover a complete spectrum of

structural variants using de novo assemblies constructed from long-read sequence data.

This implies a future model of comparative genomics where variants are discovered only

by comparing de novo assemblies and not a comparison of reads against a reference.
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Introduction

Studies of genetic variation often begin by aligning sequences from a sample back to a reference

genome, and inferring variation as differences in the alignment. Long read, single molecule

sequencing (LRS) is becoming established as a routine approach for sequencing genomes. The

two technologies that produce LRS technologies, Pacific Biosciences (PacBio) and Oxford Nano-

pore (ONT) generate reads over 50kb at error rate 15% or less. Aligning these sequences is a

computationally challenging task for which several methods are available including minimap2,

ngmlr, and BLASR [1–3]. They are demonstrated to be quite fast and accurate, but have limita-

tions, particularly when there are large sequence differences between the read and the reference.

This problem is amplified in complex, repetitive regions such as variable-number tandem

repeats, that only make up 3% of the human genome, but account for nearly 70% of observed

structural variation: insertions and deletions at least 50 bases (SV), and in larger SV [4].

A common approach for mapping LRS reads is seeding and chaining, where an approxi-

mate alignment is formed based on a subset (chain) of exact matches between the sequence

and the genome. The exact matches may be found using various data structures including vari-

able-length matches using a BWT-FM index or suffix arrays [3], and minimizer based index-

ing [1]. The chaining algorithm used by BLASR uses a linear cost gap function for sparse-

dynamic programming (SDP) [5]. While the chaining algorithm is efficient, it has long been

known that linear-cost gap functions do not accurately reflect biological variation [6], and has

been shown to decrease sensitivity for detecting SV from LRS alignments [2].

Both the minimap2 and ngmlr aligners use gap penalties that are a concave function of gap

length, and are demonstrated to be quite effective for mapping LRS reads across SV with align-

ment gaps that reflect biological variation. In minimap2, a heuristic algorithm is used for

chaining, while ngmlr adopts a Smith-Waterman-like dynamic programming algorithm. An

exact solution to sparse dynamic programming with a concave gap (CG-SDP) function exists

[7], and is slightly less efficient than linear-cost SDP. However, as presented, the algorithm

requires asynchronous processing and has never been implemented for sequence alignment

in computational biology. Furthermore, the algorithm does not take into account genome

arrangements such as inversions.

An additional challenge for variant discovery is efficient alignment of contigs assembled

from LRS that now have contiguity on par with the initial release of the human genome [8–

10]. Existing methods exist to align whole genomes, but do not implement concave gap penal-

ties [11], are low-resolution [12], or split alignments across large variants [1]. To explore the

application of the exact solution of seed chaining sparse dynamic programming with a concave

gap function to read and assembly alignment, we developed an alignment method—lra. We

have simplified the implementation of the CG-SDP algorithm [7], and extended to allow for

inversions and translocations. Finally, we demonstrate that this approach can improve SV dis-

covery while having a runtime on par with state of the art methods.

Results

We compared alignment metrics and variant discovery on simulated data sampling from

the human genome build GRCh38, and real sequencing data from HG002 including three
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ONT reads are available in NCBI database under

BioProject accession number PRJNA678534. The

HG002 HiFi reads can be downloaded using links:

https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=NHGRI_UCSC_

panel/HG002/hpp_HG002_NA24385_son_v1/

PacBio_HiFi/19kb/m64011_190714_120746.Q20.

fastq https://s3-us-west-2.amazonaws.com/

human-pangenomics/index.html?prefix=NHGRI_

UCSC_panel/HG002/hpp_HG002_NA24385_son_

v1/PacBio_HiFi/19kb/m64011_190728_111204.

Q20.fastq https://s3-us-west-2.amazonaws.com/

human-pangenomics/index.html?prefix=NHGRI_

UCSC_panel/HG002/hpp_HG002_NA24385_son_

v1/PacBio_HiFi/20kb/m64011_190830_220126.

Q20.fastq https://s3-us-west-2.amazonaws.com/

human-pangenomics/index.html?prefix=NHGRI_

UCSC_panel/HG002/hpp_HG002_NA24385_son_

v1/PacBio_HiFi/20kb/m64011_190901_095311.

Q20.fastq https://s3-us-west-2.amazonaws.com/

human-pangenomics/index.html?prefix=NHGRI_

UCSC_panel/HG002/hpp_HG002_NA24385_son_

v1/PacBio_HiFi/25kb/m64011_190712_225711.

Q20.fastq https://s3-us-west-2.amazonaws.com/

human-pangenomics/index.html?prefix=NHGRI_

UCSC_panel/HG002/hpp_HG002_NA24385_son_

v1/PacBio_HiFi/25kb/m64011_190726_220327.

Q20.fastq The HG002 CLR reads can be

downloaded using the following links: https://s3-

us-west-2.amazonaws.com/human-pangenomics/

index.html?prefix=NHGRI_UCSC_panel/HG002/

hpp_HG002_NA24385_son_v1/PacBio_CLR/

WUSTL_SV-HG002-CLR/1_A01/m64043_

191010_174437.subreads.bam https://s3-us-west-

2.amazonaws.com/human-pangenomics/index.

html?prefix=NHGRI_UCSC_panel/HG002/hpp_

HG002_NA24385_son_v1/PacBio_CLR/WUSTL_

SV-HG002-CLR/3_C01/m64043_191012_102127.

subreads.bam Variant calls, and a set of curated

inversions are available at: https://figshare.com/

articles/dataset/lra-supplemental-HG002-SV_vcf_

tar_gz/13238717.
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sequencing datasets: PacBio consensus reads (HiFi), PacBio single-pass reads (CLR), and ONT

reads, as well as on contigs from a haplotype-resolved de novo assembly [10]. The simulated

data were mapped to GRCh38 to evaluate mapping accuracy with a genome that includes cen-

tromeric sequences. All real data were mapped to build GRCh37 to use curated variants for

accuracy analysis [13]. The PacBio HiFi data are characterized by high-accuracy reads (>99%)

with an average length of 19kb, compared to the CLR reads that have an accuracy around 80%

and an average read length of 21kb. The ONT data: 88% accuracy and 1.2kb average read

length. The distribution of the read lengths are shown in S1 and S2 Figs. All read datasets are

above 40× coverage of a human genome.

The alignment results and structural variant callsets were compared to those generated by

minimap2 and ngmlr. When computing SAM formatted alignments with minimap2, the lra

and minimap2 runtime are comparable. lra and minimap2 reach similar speed on HiFi and

ONT data, although all are within a factor of 1.12. minimap2 is 3.7 times faster than lra on

CLR dataset (Table 1). lra is 4–6 times faster than ngmlr. The difference of bases aligned by lra

and minimap2 are within 0.06–1%. We compared the mapping accuracy of lra, minimap2 and

ngmlr on simulated HiFi, CLR data for read lengths between 5–50kb and ONT data for read

lengths between 1–50kb. HiFi and CLR reads were simulated by PBSIM (https://github.com/

pfaucon/PBSIM-PacBio-Simulator) and ONT data were simulated by alchemy2, which is dis-

tributed with lra source. We used paftools.js mapeval to evaluate the mapping accuracy across

three overlap percentages (10%, 40%, 70%) to measure the change of mapping accuracy with

overlap percentage evaluation metric. The mapping accuracy of lra for reads with mapping

quality at least 20 is 99.89%, 99.97% and 99.97% for HiFi, CLR and ONT respectively, when a

40% overlap with the simulated interval is required for a correct alignment (Fig 1). As the over-

lap percentage goes up from 10% to 70%, the mapping accuracy of lra alignment decreases

0.1%, 0.09%, 0.03% for HiFi, CLR and ONT at mapqv 20 due to differences in lengths of

sequences aligned in repetitive regions. In lra, a second local minimizer index is used to refine

chained anchors and improve alignments (Methods). We evaluated the mapping accuracy of

lra without the step of refining by local minimizers (S1 Text). For simulated HiFi data, the

mapping accuracy has almost no difference on all 10%, 40%, 70% overlap percentage metrics,

Table 1. Performance of alignment methods.

HG002 HiFi HG002 CLR HG002 ONT HG002 HiFi hifiasm hap1 HG002 HiFi hifiasm hap2

lra runtime 942m 7428m 1528m 105m 90m

memory 12.01G 16.46G 13.96G 31.10G 28.66G

# of mapped reads 1.84M 4.95M 1.37M 396 411

# of mapped bases 35.85Gb 86.82Gb 25.45Gb 2.87Gb 2.98Gb

minimap2 runtime 890m 1973m 1358m 100m 82m

memory 19.04G 18.49G 22.88G 20.95G 21.90G

# of mapped reads 1.85M 5.06M 1.41M 492 496

# of mapped bases 36.20Gb 87.36Gb 25.73Gb 2.92Gb 3.01Gb

ngmlr runtime 5087m 33047m 8862m - -

memory 13.6G 14.67G 17.00G - -

# of mapped reads 1.78M 4.84M 2.07M - -

# of mapped bases 34.59Gb 83.75Gb 24.22Gb - -

Each dataset was aligned to GRCh37 by all methods with 16 threads, with—indicating a software crash. Total CPU time is reported. The optimal values in each class are

given in bold. The HiFi hifiasm assembly is a haplotype-resolved de novo assembly of HG002 using HiFi reads, with haplotype N50 values of 50.55Mb and 42.92Mb.

https://doi.org/10.1371/journal.pcbi.1009078.t001
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while mapping accuracy at the 70% dropped below 0.90 and 0.97 for simulated CLR and ONT

reads, respectively.

A common application of LRS in human genetics is detecting structural variation [2, 14].

We evaluated SV detection from mapped reads across combinations of technologies, aligners,

and SV calling algorithms on both simulated datasets and real dataset. Reads were aligned with

lra, pbmm2/minimap2, and ngmlr, and variants were detected with pbsv, Sniffles and cuteSV

[2, 15, 16]. The pbmm2 method encapsulates minimap2 with technology and SV discovery

specific parameters. The pbsv method did not run using ONT reads, and so pbsv analysis

of ONT data is omitted. In the simulation study, we used SUVIVOR (https://github.com/

fritzsedlazeck/SURVIVOR) to simulate insertions, deletions, inversions and more complicated

nested SVs, including deletion-inversion-deletions (INVDEL) and inverted duplications

(INVDUP). We simulated 195 insertions and deletions of lengths between 50–10000 bases, 97

inversions of lengths between 600–2000 bases and 100 INVDEL and INVDUP of lengths

between 600–1000 bases respectively using the human genome GRCh37 chromosomes 20–22

as a reference. HiFi and CLR reads were simulated by PBSIM and ONT reads were simulated

by alchemy2. Truvari (https://github.com/spiralgenetics/truvari) was used to benchmark the

insertions, deletions and inversions callset. Both pbsv and cuteSV calling results show similar

F1 score (>= 0.974, 0.979, 0.974) for lra, minimap2 and ngmlr alignments on insertions and

deletions over all data types. All three aligners achieved comparable F1 scores (>= 0.97) on

inversions from cuteSV calling results over all data types (S3 Table). There was a lower F1

score for variants detected by Sniffles on lra alignment of the simulated CLR reads, which is

inconsistent with other two callers. Complicated nested SVs like INVDEL presented a greater

challenge, particularly for lower accuracy reads. Using simulated HiFi reads, 98 of the INVDEL

and 94 of the INVDUP were correctly called by lra, with all alignment methods detecting at

least 93 variants in each data set. The majority of the INVDEL variants detected by lra align-

ments using CLR (79) data missed one deletion, while variant calls from minimap2 and

ngmlr correctly detect 94 and 74 INVDEL variants, respectively. A different pattern existed for

ONT data, where 1–2 correct calls were detected from minimap2/ngmlr, and 37 by lra. The

INVDUP calls were successfully detected from lra and ngmlr alignments, and represented as

insertions by minimap2. The lra alignments resulted in 99 and 100 calls from the CLR and

ONT simulated reads, and ngmlr 98 calls from both datasets (S4 Table).

We used pbsv and Sniffles to detect variation on the HiFi, CLR, and ONT data; the cuteSV

variant calls had lower accuracy on PacBio data across multiple alignment methods (S7 Table)

and were excluded from analysis. The majority of SVs are under 500 bases [14] and are

Fig 1. Mapping accuracy.Mapping accuracy of lra, minimap2 and ngmlr on simulated HiFi, CLR reads for lengths between 5–50kb and ONT reads for
lengths between 1–50kb. Simulated reads were mapped to genome GRCh38. A read is considered as correctly mapping if the reported mapping interval
has� 10%, 40%, 70% overlap with the truth interval. paftools.js mapeval was used to evaluate the mapping accuracy.

https://doi.org/10.1371/journal.pcbi.1009078.g001
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spanned by LRS alignments. Consequently, variant calls with similar representations of gaps

should have converging callsets, which may be confirmed by comparing SV calls from differ-

ent combinations of algorithms. The most consistent variant calling was found using pbsv on

both types of PacBio using lra and pbmm2 alignments. These callsets ranged from 21,439–

22,325 SVs, with a difference of 2.6–3.3% between alignment algorithms and 0.7–1.5%

between data types (Table 2). Compared to the pbsv calls, there was greater variation between

callsets generated using Sniffles across both data types and alignment algorithms, with a range

of 16,689–27,001 SVs per callset. There was less variation between the size of callsets of differ-

ent data types and the same alignment algorithm (average difference of 624 across pbsv call-

sets), compared to different alignment algorithms applied to the same data (an average

difference of 2,290 across pbsv callsets). The differences between callsets not due to gap place-

ment were broadly measured by comparing callsets with a low-stringency filter: within 50% of

length and at most 1kb apart. Using this definition of overlap, the callsets from PacBio data

using pbsv were most similar with no more than 20% of calls unique to an alignment method.

When stratifying PacBio variants unique to a dataset overlap with genomic features, 29–46%

of variants overlap tandem repeats, and 15–56% overlap segmental duplications (SD) (S2

Table). This indicates that calls in tandem repeats may have different breakpoints and are diffi-

cult to compare using standard overlap approaches [13].

A greater call count may reflect more sensitive detection of SV, or simply fragmentation of

variants. To assess the accuracy of variant callsets, we compared callsets against the GIAB Tier

1 calls [13] using Truvari. The lra and pbmm2 based callsets outperform ngmlr based calls in

precision and recall on all data types (Table 3 and Fig 2). While the F1 scores are effectively

equivalent between lra and pbmm2 based variant calls on HiFi (0.970 vs 0.968) and CLR

(0.967 vs 0.967) using pbsv, there is a substantial improvement on calls on ONT data made by

Sniffles (0.942 vs 0.910). This indicates that the greater call count on ONT data includes is at

least partially attributed to increasing recall, particularly in larger (>500 base) insertions, with-

out affecting precision on the high-quality regions that were ascertained.

While the F1 scores are nearly equivalent on PacBio data, the combination of algorithms

may contribute to a more complete evaluation of an LRS genome. Calls from the lra and

pbmm2 alignments contribute 83 and 43 unique calls, respectively, that were annotated as

true positives in the HiFi/pbsv call sets, and 134, 133 unique calls from the CLR/pbsv call sets.

The average length of the uniquely called true positive SV among these callsets is 1986bp,

Table 2. Statistics of structural variant call sets.

lra pbmm2 ngmlr

Number of calls Average call size Total size Number of calls Average call size Total size Number of calls Average call size Total size

pbsv CLR INS 13177 560 7.38M 12828 523 6.72M 11416 537 6.14M

DEL 9148 688 6.30M 8926 603 5.39M 8569 594 5.10M

HiFi INS 13133 577 7.58M 12655 488 6.19M 10342 506 5.24M

DEL 9037 619 5.60M 8784 583 5.12M 8445 575 4.86M

Sniffles CLR INS 16377 1074 17.59M 11592 785 9.10M 8318 600 5.00M

DEL 10624 820 8.71M 9195 578 5.32M 8371 739 6.19M

HiFi INS 12004 805 9.67M 10902 459 5.01M 9716 436 4.24M

DEL 8883 1073 9.54M 7907 430 3.40M 7698 672 5.18M

ONT INS 13052 1084 14.15M 12103 488 5.91M 10314 476 4.91M

DEL 10129 752 7.63M 9238 550 5.08M 8286 637 5.28M

Summary of SV callsets from different aligners (lra/pbmm2/ngmlr) + SV callers (pbsv/Sniffles).

https://doi.org/10.1371/journal.pcbi.1009078.t002
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Table 3. Truvari classification of variant calls.

pbsv Sniffles

HiFi CLR HiFi CLR ONT

lra pbmm2 ngmlr lra pbmm2 ngmlr lra minimap2 ngmlr lra minimap2 ngmlr lra minimap2 ngmlr

TP base 9466 9408 8433 9438 9414 9076 8924 8700 8015 8969 8082 6533 9085 8887 8471

TP call 9506 9449 8500 9516 9507 9208 8964 8713 8028 9101 8147 6567 9102 8902 8488

FP 404 390 396 448 418 428 392 357 800 2023 1492 1298 550 940 815

FN 175 233 1208 203 227 565 717 941 1626 672 1559 3108 556 754 1170

s/FN 108 93 176 169 151 268 573 598 573 629 1423 2387 477 464 410

precision 0.959 0.96 0.955 0.955 0.958 0.956 0.958 0.961 0.909 0.818 0.845 0.835 0.943 0.904 0.912

recall 0.982 0.976 0.875 0.979 0.976 0.941 0.926 0.902 0.831 0.930 0.838 0.678 0.942 0.922 0.879

F1 score 0.970 0.968 0.913 0.967 0.967 0.952 0.942 0.931 0.869 0.871 0.842 0.748 0.943 0.91 0.895

Truvari comparisons between lra, pbmm2/minimap2 and ngmlr using the Genome in a Bottle benchmark SV set. Optimal results in each category are shown in bold.

TP-base means true positive calls in the benchmark SV curation set, while TP-call means true positive calls in the SV set from each aligner. False positive means the

number of non-matching calls from the SV set from each aligner. False negative means the number of non-matching calls from the SV curation set.

https://doi.org/10.1371/journal.pcbi.1009078.t003

Fig 2. The precision and recall of HG002 SV call sets. The precision and recall of SV call sets from HG002 HiFi, CLR, ONT, hifiasm assembly,
measured by Truvari using Genome in a Bottle benchmark SV callsets.

https://doi.org/10.1371/journal.pcbi.1009078.g002
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highlighting the challenge of detecting longer SV from read based alignments. To further

assess the potential for callsets to be more comprehensive, benchmark variants annotated as

false-negatives were compared to variants discovered directly from read alignments. Each call

where at least 20% of the reads overlapping the call had an SV of the same type with the ratio

of lengths between 0.6–1.4 was annotated as a supported false-negative (s/FN). Between

14.5%-83.2% of annotated false negatives from pbsv variant callsets, and 35.0%-93.6% of false-

negative calls in Sniffles callsets were considered s/FN. Furthermore, there were 13% more

supported false-negative calls in the PacBio lra/pbsv callsets compared to the pbmm2/pbsv

callsets, possibly the result of tuning the pbsv variant discovery algorithm to the input gener-

ated by a particular alignment algorithm.

The accuracy of breakpoints was measured by comparing the boundaries of true positive

SVs to the breakpoints of the GIAB truth data for each aligner/caller combination. We mea-

sured the percentage of SVs with perfect breakpoint boundaries and the average shifting dis-

tance between the left-most coordinate of SV boundaries. The average shifting distances of lra

is 53bp across all data type and SV calling algorithms, compared to an average shifting distance

of 46bp across all aligner/data/SV calling methods. The percentages of SVs with perfect break-

points called from lra alignments ranged between 31–64% across all data and SV calling algo-

rithms (S5 Table), which indicates in addition to alignment, the accuracy of breakpoints also

depends on SV caller.

A comparison of callsets highlights how detecting inversions and SV in segmental duplica-

tions remains challenging. Inversion calls were generated by Sniffles. We filtered calls that

overlapped the centromere. Each resulting callset was manually curated using dot-plots of the

genome assemblies against the reference. Calls were classified as true positives if at least one

haplotype demonstrated the inversion, an inverted duplication if the dot-plot signature was a

fixed inverted duplication or inverted transposition, false-positive if both haplotypes did not

show an inversion or an inverted duplication, and NA if not possible to validate with the

assembly, commonly in pericentric regions. Across all data types, ngmlr based alignments dis-

covered the most inversions and inverted duplications annotated as true-positives, with calls

ranging from 8077–44,538 bases (Table 4). On average, 75 inversions and inverted duplica-

toins were detected using ngmlr alignments, versus 61 for both minimap2 and lra, indicating

that additional development may be required to accurately detect rearranged DNA with mini-

mal computational burden.

When sequencing depth is sufficiently high coverage, comprehensive haplotype-resolved

de novo assemblies can be used to detect variation instead of read alignments. Both lra and

Table 4. Classification of inversions detected in HG002 using PacBio and ONT reads.

Dataset Aligner TP Dup NA FP

HiFi lra 30 21 8 26

minimap2 59 4 4 8

ngmlr 58 17 2 16

CLR lra 65 9 9 36

minimap2 69 1 9 20

ngmlr 66 17 9 17

ONT lra 53 7 7 18

minimap2 44 7 1 6

ngmlr 58 10 3 9

TP, true positive using manual curation. Dup, inverted duplication misclassified as an inversion on both haplotypes,

NA not possible to manually curate, FP—no signature of inversion in read nor assembled haplotype dot-plots.

https://doi.org/10.1371/journal.pcbi.1009078.t004
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minimap2 were used to align contigs of a haplotype-resolved de novo assembly of HG002 con-

structed by the hifiasm assembler [10]. The haplotype assemblies resolve 2.97Gb and 3.07Gb,

with N50 values 50.55 and 42.92 Mb. Both alignment methods have similar runtime to align de

novo assembly contigs to GRCh37, although lra requires 1.5-fold the memory. Over 95% of

each haplotype assembly was mapped by each method; 2.92/2.97 Gb were mapped by mini-

map2, and 2.87/2.97Gb mapped by lra. It was not possible to use ngmlr to align contigs. Vari-

ants were detected from the lra and minimap2 alignments using htsbox pileup -cuf. Calls from

different haplotypes that overlap at least 30% were determined as homozygous calls and the

rest were classified as heterozygous calls. Additionally, calls in centromere regions were

removed for both minimap2 and lra callsets. This generated 25,982 calls by lra, and 26,341 by

minimap2. Truvari analysis of the calls gives an F1 score of 0.955 by lra calls, and 0.933 for

minimap2 calls (Table 5). There are 233 calls from the true-positive annotations of the lra

HiFi/pbsv callset missing from the lra assembly callset. Upon inspection, the majority of these

missed calls are due to a combination of the process used to merge haplotype calls into a dip-

loid callset, shifted breakpoints relative to the GIAB annotation, and haplotype dropout/swap-

ping of de novo assembly sequences.

Diversity studies are increasingly using SMS de novo assemblies to measure variation [17,

18] rather than from sequencing reads. An integrated analysis of the regions of the genome

spanned by assembly alignments and the raw-read base calls from multiple alignment and SV

discovery methods can help reveal the extent that variation is discovered and potentially miss-

ing from a high-quality haplotype-resolved de novo assembly. Across all read technologies,

alignment algorithms, and variant discovery methods, 167 unique calls representing 0.6% of

an average read-based SV callset were in regions not mapped by either haplotype of the assem-

bly. Of these, 113 are in segmental duplications (SD). Because SDs make up roughly 5% of the

human genome, the majority of SD regions that are mapped by SMS reads in this study are

assembled in the hifiasm genome. The lra alignments detect 53 and 60 large SV (>20kb) total-

ing over 3Mb from the haplotype 1 and haplotype 2 assemblies that are not found in the read

SV callsets (S2 Text). Because the length of SV negatively correlates with allele frequency, and

is associated with enrichment in genome-wide association studies significant loci [19], these

larger variants represent a class of variation that is biologically important for discovery.

Table 5. Assembly based calls comparison.

HG002 HiFi hifiasm assembly

lra minimap2

Insertion, hom 6276 6494

Insertion, het 8852 8783

Deletion, hom 3518 3895

Deletion, het 7336 7169

TP base 9310 9035

TP call 9412 9062

FP 546 692

FN 331 606

precision 0.945 0.929

recall 0.966 0.937

F1 score 0.955 0.933

htsbox pileup -cuf is used to call SVs from contig lra and minimap2 alignment. Calls from lra and minimap2 assembly

alignments are classified as homozygous and heterozygous by comparing calls from two haplotypes. Truvari

comparison results between these two callsets are shown.

https://doi.org/10.1371/journal.pcbi.1009078.t005
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The high-confidence callset used in Truvari analysis contains fewer than 10,000 SVs, less

than half what are expected to be found in a human genome. To gauge the specificity of assem-

bly-based calls outside this set, SV contained in read alignments were compared to the SV

discovered from assemblies. An SV detected from an individual read supported an assembly

based SV if the call was the same type (e.g. insertion or deletion), was within 1kb, and the ratio

of SV lengths was between 0.5–2. When using PacBio CLR aligned reads, nearly all (99.998–

100%) of SV annotated by Truvari as true-positives had at least four supporting reads aligned

by lra or minimap2. Using this approach, 98.3% of lra deletion SV, and 98.7% of minimap2

deletion SV are supported by reads, and 99.1%/99.7% of insertion SV from lra/minimap2, are

supported by reads (Table 6). This is greater than the precision measured by Truvari on assem-

bly-based calls: 0.955 for lra, and 0.933 for minimap2, indicating an underestimate of the call-

set precision. When inspecting the SV calls that are not supported by read alignments, many

are due to differential placement of gaps causing disagreement of SV length between the read

and assembly-based calls.

Materials andmethods

The alignment of reads and contigs to a reference are generally defined by the maximally scor-

ing local alignment of a query q to a set of target sequences collectively referred to as a target t

with a match bonus and penalties for mismatch, gaps, and inversions/translocations. lra uses

a heuristic to find an approximate local alignment employing the commonly used seeding,

chaining, and refinement approach that has been applied to all scales of alignment from short-

read, long-read, and whole-genome alignment [3, 20, 21]. Each alignment proceeds in four

broad steps: seed sequence matching, clustering, chaining, and finally alignment refinement.

Many recent advances have been made in sequence mapping using a subsampled index on

a reference using minimizers or locally sensitive hashing [22, 23]. A minimizer index is param-

eterized by a k-mer size k and window size w, and indexes the position of the lexicographically

least canonical k-mer in every sequence of length w across the genome. We develop a variant

on the approach of minimizers that uses adaptive thresholds to limit the total number of posi-

tions sampled in unique regions of a genome, and increase the sampling of positions near

paralog-specific variants that distinguish repetitive regions.

Optimal sets of matches between the query and reference are selected in two phases using

CG-SDP. Given a set of fragments F = {α1, . . ., αn}, each fragment is defined by a start point

Table 6. Read based support of assembly calls.

Assembly SV type total filtered supported fraction

Haplotype 1 lra DEL 6101 5874 5767 0.982

Haplotype 1 minimap2 DEL 6078 5924 5841 0.986

Haplotype 2 lra DEL 6287 6061 5963 0.984

Haplotype 2 minimap2 DEL 6267 6107 6033 0.989

Haplotype 1 lra INS 9736 9354 9275 0.992

Haplotype 1 minimap2 INS 9882 9619 9587 0.997

Haplotype 2 lra INS 10032 9651 9568 0.991

Haplotype 2 minimap2 INS 10183 9890 9859 0.997

The two haplotype assemblies are considered separately to avoid complications of merging into a diploid callset. Calls are produced by lra and minimap2, with only

deletion and insertion SV classes considered. The total calls are the original calls produced by each method, and filtered are calls excluding centromeres and 50kb of

flanking sequence. The supported SV have at least four reads supporting the call from either lra or minimap2 alignments.

https://doi.org/10.1371/journal.pcbi.1009078.t006
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and an end point on a Cartesian plane and a weight: ai ¼ ððxsi ; y
s
iÞ; ðx

e
i ; y

e
i Þ; liÞ. The basic

CG-SDP formulation is to define a chain of fragments C� [1, . . ., n] that maximizes

X

jCj

j¼1

lCj �
X

jCj�1

j¼1

gapðaCj ; aCjþ1
Þ ð1Þ

such that aCjþ1
is above and to the right of aCj , and gap is a concave function. An algorithm was

presented for chaining using a concave gap cost model [7], however there are no alignment

methods that implement this approach. This method has been implemented in lra and

extended to allow for inversions in the optimal chain. Additionally, the original description

of the algorithm requires asynchronous processing, which we have updated to use standard

serial computation. The details of determining minimizers and the chaining algorithm are

given below.

Building a minimizer index and sequence matching

We add three additional parameters to generate a minimzer index: FM, NM andWG that limit

the density of minimizers that are selected. An initial set of minimizers is determined in the

standard approach, with minimizer k-mer parameter k and window w [22]. Next, minimizers

of multiplicity larger than FM are removed. Then the reference is partitioned into intervals of

lengthWG, and the remaining minimizers starting in each interval are selected in order of

their multiplicity in the genome until the first NMminimizers are obtained, in a more simpli-

fied version of weighted minimizer sampling [24]. Different parameter settings are used to

index a genome for different sequencing technologies and contig alignments. When indexing

the genome for aligning HiFi reads, 867Mminimizers from total 1015M were left after filtering

by frequency threshold FM. In total, 117Mminimizers were selected after the final filtering

based on NM andWG. All minimizers from a query sequence are matched against the filtered

set of minimizers from the reference. The result of the sequence matching is a set of anchors

A = {β1, . . ., βn}, where βi is a tuple (xi, yj, k), where q[xi, xi+1, . . ., xi+k−1] of the query matches

t[yj, yj+1, . . ., yj+k−1] of the target.

The chains of anchors for low-accuracy single-pass SMS reads may be sparse or have spuri-

ous off-diagonal matches in repetitive sequences. The detailed alignment may be calculated

using dynamic programming within the region that is chained, however to limit the computa-

tion required for refining the alignment we implement an additional index of local minimizers

that are used to refine an alignment once a coarse-chaining has been done. The local index is

parameterized by kl< k,wl< w, and a tiling lengthWl, and is composed of a collection of sepa-

rate minimizer indexes for sequence intervals of lengthWl tiling across both the query and the

target.

Clustering

Although CG-SDP can be applied to all anchors A, for efficiency a greedy approach is used to

cluster anchors that would likely be together on an optimal chain. These clusters may be used

to filter out spurious matches in low accuracy reads, or may be chained directly on high accu-

racy reads and contig mapping. When forming alignments from chained clusters, it is neces-

sary to have a cluster refining step that divides rough clusters into non-overlapping fine

clusters to avoid chaining that skips biological variation in repetitive sequences.

Rough clustering. Rough clustering partitions anchors into clusters representing approxi-

mate intervals on the query and target that are aligned (Fig 3a), and serves to exclude noisy

anchors unlikely to be chained in an alignment by CG-SDP. Denoting the forward diagonal of
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each anchor βi as fi = yi − xi, and the reverse diagonal ri = xi + yi, a sorted anchor order O = [o1,

. . ., on] is defined by ordering anchors by forward diagonal and then x coordinate. A reverse

sorted order Orev ¼ ½orev
1
; . . . ; orevn � is similarly defined sorting on reverse diagonal and x coordi-

nate. This will be used to detect alignments on the reverse strand, but because the operations

are the same as on the forward strand, only subsequent steps using the forward sorted order

are given. The set of rough clusters is defined by partitioning O into non-overlapping intervals

such that every anchor indexed in an interval has a diagonal within DR of the preceding anchor

in the interval. Intervals are greedily assigned with first interval starting at the first index in O,

and subsequent intervals starting on after a gap of more than DR between anchors. Intervals

with few elements (defined by aminClusterSize parameter) are discarded, and the rough clus-

ters R = {R1, . . ., RNR} are defined from the set of anchors included in each interval. The value

of DR is chosen so that rough clusters are likely to contain at leastminClusterSize true anchors

from a read (default to 3 for CLR and ONT, and 10 for HiFi/contigs). For CLR and ONT data,

we empirically determined a sufficient DR is 200, and 150 for HiFi and assembly contig align-

ment. For low accuracy reads, chains are formed by running CG-SDP on all matches retained

in rough clustering. For high accuracy reads, the clusters must be post-processed with fine-

clustering prior to being chained.

Fig 3. Example of clustering anchors prior to CG-SDP. a, Two rough clusters (blue and orange), which are far from each other on the reference. b,
The initial four fine clusters defined from the contiguous stretches of unique anchors. c, fine cluster-1 and fine cluster-2 are merged because their
diagonal difference is smaller thanDF and projected distances between their endpoints is smaller than Gdist. fine cluster-3 and fine cluster-4 are not
merged due to the large diagonal difference. d, Non-unique anchors in the trapezoid between fine cluster-1 and fine cluster-2 are added to the merged
fine cluster-1, along with non-unique anchors in the trapezoid defined by the start of rough cluster-2 and the start of fine cluster-3. e, Three fine clusters
are obtained after rough clustering and fine clustering. f-h, Splitting of overlapping fine-clusters: f, overlap of clusters. g, Boundaries of split clusters
defined by a start (red dot) and an end (blue dot). h, the optimal chain of split super-fragments.

https://doi.org/10.1371/journal.pcbi.1009078.g003
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Fine clustering. For mapping hich accuracy reads, each rough cluster is processed inde-

pendently by dividing into non overlapping fine clusters, where each fine cluster consists of

anchors on a close diagonal DF, with endpoints that do not overlap. The first step of CG-SDP

will be applied to chain the fine clusters and find an approximate alignment between q and t.

Each fine cluster Cj is defined by all of the anchors contained in the cluster, and endpoints

ðxsj ; y
s
jÞ and ðx

e
j ; y

e
j Þ, where x

s
j , y

s
j are the minimum x, y coordinates of the starting points of all

the anchors in Cj, and x
e
j , y

e
j are the maximum x, y coordinates of the ending points of all the

anchors in Cj. To define the fine clusters, anchors in each rough cluster are first sorted by

Cartesian coordinate. Within each rough cluster, an anchor is defined as unique when the k-

mer of the match is not repeated in the cluster. Fine clusters are initialized as runs of unique

anchors in the Cartesian ordering that are on a close diagonal, and the distance between the

end of one anchor and the start of the next is small (Fig 3b). Every pair of fine clusters Cj and

Ck are merged if their endpoints have diagonal differences smaller than DF and are within

Cartesian distance Gdist (Fig 3c), and all non-unique anchors within the trapezoid defined by

½ðxej ; y
e
j � DFÞ; ðxej ; y

e
j þ DFÞ; ðxsk; y

s
k � DFÞ; ðxsk; y

s
k þ DFÞ� are included into the merged fine

cluster (Fig 3d and 3e). The remaining non-unique anchors that are not added into the fine

cluster are discarded. In the step of fine clustering, we empirically found DF = 500 was able to

distinguish clustering anchors in different tandem repeats and allowed a sufficient number of

repetitive anchors to be included in the fine clusters.

Cluster splitting and chaining

Each fine cluster Cj 2 C defines a super-fragment Fj that unlike the minimizer fragments

which have starting and endpoints along the same diagonal, the endpoints of Cj and may not

be along a diagonal. The set of all such fragments is F, and an optimal chain of fragments will

be defined using CG-SDP. However, considering the rectangles defined by the boundaries of

each fragment, the CG-SDP algorithm only selects fragments with non-overlapping rectangles

in the optimal chain. Due to the repetitive nature of genomes, this may result in erroneously

skipped fragments. To account for this, fine clusters are split at overlapping boundaries (Fig

3g). The start and end coordinates of all fine clusters are stored in a set that is queried to find

boundary points appearing in the range of each fine cluster. The coordinates of each split clus-

ter are set according to the first/last anchors appearing after/before the boundary point. An

optimal chain of fragments FSDP 2 F with corresponding clusters CSDP are then found using

CG-SDP on F.

Cluster refinement

The optimal chain of super-fragments CSDP contains the anchors from which the optimal

alignment will be defined. A pairwise alignment may be created using dynamic programming

on the substrings between the minimizer matches, however for high-error rate reads matches

are sparse and the length of substrings may be too large to efficiently compute, or have too

large of a diagonal gap to use banded alignment. A second anchoring step using the local mini-

mizer index is used to detect shorter and more dense anchors. The local minimizer index con-

tains d jtj

Wle and d
jqj

Wle separate minimizer indexes for the target and query sequences that index

each tiling substring of lengthWl, accounting for the relative positions of the substrings in

each sequence. Every pair of substrings from q and t that have an anchor in COPT are compared

using their local minimizer indexes to generate a resulting set of anchors Alocal. To reduce run-

time of CG-SDP on Alocal, anchors that are adjacent in Cartesian sorted order and on the same

diagonal are merged. The length of any merged anchor is the difference from the last endpoint
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to the first starting point. The resulting merged fragments are chained using CG-SDP, as

described in section Problem statement of chaining, and the anchors on this chain are denoted

as Alocal−opt.

Alignment refinement

Banded alignment is used to create a pairwise alignment between anchors in Alocal−opt. We

assume that large gaps between anchors may be modeled using an affine alignment that allows

a single large penalty-free gap. Given two sequences qlocal and tlocal, a match matrixM, a gap

penalty δ, and an alignment band B, assume that |qlocal|< |tlocal| − B. A lower-score matrix

Slower is calculated for a typical banded alignment band B and gap penalty δ, e.g Sloweri;j ¼

maxfSloweri�1;j�1
þM½qlocali ; tlocalj �; Sloweri;j�1

� d; Sloweri�1;j � dg if |i − j|� B, −1 otherwise. Next, an upper-

diagonal matrix Supperi;j is calculated that allows for a single transition from the lower matrix

with banded alignment. Denoting the length of the qlocal and tlocal as lq and lt:

S
upper
i;j ¼

maxfSupperi�1;j�1
þM½qlocali ; tlocalj �; Supperi;j�1

� d; S
upper
i�1;j � dg if i� j� ðlt � lqÞ < B ;

Slowerj;jþB if lt � lq � ðj� iÞ ¼ B ;

�1 otherwise

8

>

>

>

<

>

>

>

:

ð2Þ

Problem statement of chaining

We define a set of fragments F = {α1, . . ., αn}. Each fragment αi is associated with a lower left

start point ðxsi ; y
s
iÞ and upper right end point ðx

e
i ; y

e
i Þ, and a score li. For minimizer fragments,

the upper right endpoints are a fixed distance from the lower points, e.g. ðxsi þ k; ysi þ kÞ. For

super fragments defined by fine clusters, the endpoints and starting points may not be on the

same diagonal. The starting point of a fragment α is denoted s(α), and the end e(α). A point

(xi, yi) is above (xj, yj) if xi> xj, yi> yj (conversely (xj, yj) is below (xi, yi)). The chaining score

is defined by Eq 1 where gapðaCj ; aCjþ1
Þ is a concave function of jðysCjþ1

� xsCjþ1
Þ � ðyeCj � xeCjÞj,

the difference between the forward diagonals of the endpoint of aCj and the starting point of

αCj+ 1. The naive way to solve this problem takes O(n2) in time. By applying CG-SDP [7],

the runtime is O(n log(n)2). Below, the solution provided by Eppstein, Galil, and Giancarlo is

described both with increase clarity from the original description, with a modification that

enables calculation with synchronous computation. Finally, the method is extended to allow

for inversions, similar to [25].

SDP algorithm with concave gap cost function—Defining subproblems. For simplicity,

assume both sequences are the same length l and that all points are in [0, l) (e.g. shifted by the

minimum x and y coordinate), and are on a l × l grid. To speed the chaining algorithm, the

search for the fragment that precedes another on an optimal chain is divided into multiple over-

lapping subproblems that may be solved independently and more efficiently than the naive

scan, and the globally optimal score for each point is selected from each of the subproblems that

overlap it. Each subproblem divides a block of tsub columns or rows of the search space into an

A-part and B-part covering dl
sub

2
e and bl

sub

2
c columns/rows respectively, where A-part contains

all the endpoints and B-part contains all the startpoints in the corresponding columns/rows.

When the size of a subproblem is only one column/row, the A-part of the corresponding sub-

problem is set to be empty. Each subproblem is described by the label d 2 {column, row}, the

starting and ending rows and columns of the subproblem A.s, A.e, B.s, B.e, and a set of lists col-

lectively referenced asDATA that are used in the calculation of optimal chains. The full set of
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subproblems Sub(d, s, e) are generated recursively as:

fðd; ;; ;; s; e;DATAÞg if s ¼¼ e;

f d; s; b sþe
2
c; b sþe

2
c þ 1; e;DATA

� �

[ Sub d; s; b sþe
2
c

� �

[ Sub d; b sþe
2
c þ 1; e

� �

g otherwise

8

>

>

>

<

>

>

>

:

ð3Þ

The more detailed pseudocode for this partitioning is given in S1 Algorithm. Fig 4 visualizes

the column and row subproblem division of a simple case with six fragments.

Each subproblem is processed by finding the optimal endpoint from the A-part that pre-

cedes each starting point in corresponding B-part. For a starting point pi that is assigned to the

B-parts of a set of column-based subproblems, the union of the A-parts of those subproblems

form the entire plane to the left of the point. Similarly for a starting point assigned to the B-

part of a set of row subproblems, the union of the A-parts of those subproblems form the plane

below the point. After solving for the optimal preceding endpoint in all of the subproblems in

which pi is contained, the one with maximum score among these endpoints is the global opti-

mal, which represents the optimal chain from all endpoints below and to the left of pi.

Once the subproblems are defined, the list elements of DATA are allocated and initialized.

The following elements are associated with the A-part of a column/row subproblem:

• DI: The forward diagonals in increasing/decreasing order overlapped by endpoints in the A-

part.

• DV: The optimal chaining score for diagonals overlapped by endpoints in A-part. DV[s]

holds the optimal value of forward diagonal DI[s].

Fig 4. Visualization of subproblems divisions. The data structures needed for each subproblem:DI, DV,DP, EI, EV, EP, EL and EB after the processing
of all the 12 points. Points are numbered in the order of processing (Cartesian sorted order). 12 points are assigned into three column subproblems
ðAc

0
;Bc

0
Þ, ðAc

1
;Bc

1
Þ, ðAc

2
;Bc

2
Þ and one row subproblem ðAr

0
;Br

0
Þ, where starting points are assigned to A-part and endpoints are assigned to B-part. Leaf

subproblems are not shown for simplicity. Start and End are used for the traceback of the optimal chain. Start stores sub—the index of the subproblem
which yields the optimal chaining score up to a starting point and ind—φ(EI, fi), where fi is the diagonal of the starting point. End stores the optimal
value for each endpoint. For this toy example, the match bonus of every fragment is 2 and the gap cost function of appending fragment αj to fragment αi
is gapðai; ajÞ ¼ 0:25 � logðjðyei � xei Þ � ðysj � xsjÞ þ 1jÞ þ 1, where ðxei ; y

e
i Þ is the endpoint of αi and ðxsj ; y

s
jÞ is the starting point of αj. End indicates that

there are three optimal chains achieving the optimal value: 2.8. By tracing back, chain-1: point-1, point-2, point-3, point-6, chain-2: point-1, point-2,
point-5, point-9 and chain-3: point-7, point-10, point-11, point-12.

https://doi.org/10.1371/journal.pcbi.1009078.g004
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• DP: Index of point with optimal score along diagonal. DP[s] references the point with the

best score of DV[s].

The following elements are associated with the B-part of a column/row subproblem:

• EI: The forward diagonals in increasing/decreasing order overlapped by starting points in

the B-part.

• EV: Similar to DV, the locally best chaining value.

• EP: Index of the forward diagonal in DI that leads to the best chaining value EV[s] for the for-

ward diagonal EI[s].

• EB: A block structure used in the calculation of EV.

• EL: Index of the most recent value in DV used to compute values in EV.

For each point, we have two lists that reference the subproblems a point is contained in:

• SA, A list of subproblems that contain a point that is in an A-part of a subproblem.

• SB, A list of subproblems that contain a point that is in a B-part of a subproblem

To make the description of the method more concise, the operation φ(DI, f) and φ(EI, f) are

defined to give the index of diagonal f in DI and EI, respectively.

SDP algorithm with concave gap cost function—Conquering subproblems. The origi-

nal description of CG-SDP, uses asynchronous processing during solving subproblems [7].

Here we give an alternative description of the algorithm, and provide an approach to solve sub-

problems in a way that allows synchronous processing of points in Cartesian order for a more

simple implementation. The framework for solving a subproblem is first described, and then

an order of processing points is given to solve for optimal fragment chaining.

For any subproblem, the optimal chains between endpoints in the A-part to starting points

in the B-part are found using the DI, DV, DP, EI, EV, EP arrays, variable EL and block list EB.

Consider two points pa in A-part, and pb in B-part that are on diagonals fa and fb, respectively.

An invariant for any subproblem is that if the optimal chain ending with the fragment that has

endpoint pa has been solved and is referenced as Score(pa), the score of chaining pa with pb is

Score(pa) + gap(|fb − fa|). Because the gap cost only depends on diagonal and not the coordi-

nates of a point, all points in A-part on the same diagonal fa will have the same cost to chain

with pb. More generally, the score to chain any starting point in B-part to an ending point in

A-part is equal to the score of chaining a diagonal in B to a diagonal in A. The score of an opti-

mal chain up to point pb in B-part, EV[j], where j = φ(EI, fb), is found for column-based prob-

lems as:

EV ½j� ¼ max
k:DI ½k��EI ½j�

DV ½k� þ gapðjEI½j� � DI½k�jÞ ð4Þ

For row-based subproblems:

EV ½j� ¼ max
k:DI ½k�>EI ½j�

DV ½k� þ gapðjEI½j� � DI½k�jÞ ð5Þ

The naive approach to solve for all values of EV scales quadratically as O(|EV||DV|). A prob-

lem of this form:

E½j� ¼ min
k�j

D½k� þ wðk; jÞ; ð6Þ

where w is a concave function and D[k] is a linear transformation of E[k], was solved in O(|D|
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log|E|) time using the auxiliary block data structure EB [26, 27]. In this solution, iteration is

performed with one pass over the D array. After each iteration i, the invariant holds: each ele-

ment in E has been set to reference which element of the prefix D[1, . . ., n] gives the minimum

value for Eq (6). Efficiency is gained by not updating E explicitly but by storing indexes in the

data structure EB that may be updated in log(|E|) time by applying a function Update(D[i], EB)

on each iteration. The data structure EB has an operation that can reconstruct E, E[k] = O(EB,

k). The details of EB and Updatemay be derived from [27]. In the application to CG-SDP, D is

replaced byDV and E by EV, and Eqs (4) and (5) solve for the optimal chains between diagonals

from an A-part of a subproblem to diagonals in the B-part of the column and row subproblem

respectively. An important detail in our implementation is that in column-based problems an

Update operation only affects references in EV that are on a greater or equal diagonal than the

current element in DV, and for row-based problems elements in EV are only affected for diago-

nals that are less than the current element in DV. However, it is not possible to apply Eqs (4)

and (5) directly. Because points are processed in Cartesian order, but DV in forward diagonal

order, values of DV are not solved in increasing order and not all values of DV are guaranteed

to be solved when values of EV are computed. In [7] this is accounted for by asynchronous

computation. Below, an approach is described to solve with a standard model of computation

by calling Update(DV[i], EB) using subsets of DV as they become known. Contrary to the cus-

tomary model of divide and conquer, where subproblems are completely solved before com-

bining into a global solution, this solves portions of subproblems on each iteration.

Points are processed in order of x and then y coordinate, determining the value of the opti-

mal chain up to the current processed point. The value of a starting point is the value of the

optimal chain that chains the starting point to an endpoint below it. When no endpoints are

below a starting point, the value of this starting point is trivially set to 0. The value of an end-

point is simply the value of the optimal chain preceding the corresponding starting point plus

the value of the fragment.

When processing an endpoint pi, the starting point ps of the corresponding fragment αi has
been solved because points are processed in Cartesian order. The value of the chain at the end-

point is Score(ps) + li, where li is the match bonus of fragment αi. In order for pi to be used

when solving for starting points that are above it, the value of DVmust be updated in subprob-

lems for which pi is a point in the A-part. The SA list is used to determine which subproblems

contain pi in a A-part. Suppose the forward diagonal of pi is fi. In each subproblem in SA,

Score(pi) is passed to DV[j] and DV[j] is set to max{Score(pi), DV[j]}, where j = φ(DI, fi), and

DP[j] is set to i if DV[j] gets updated.

When processing a starting point pi, the optimal value must be calculated in each of the B-

parts of subproblems that include pi, and the global optimal value will be selected among them.

For any subproblem, this can be achieved by solving for EV[j] using Eq (4) for column-based

or Eq (5) for row-based subproblems, where j = φ(EI, fi) and fi is the diagonal of pi. For a col-

umn-based subproblem, this requires that the values of DV[k] have been solved where DI[k]�

fi, and for row-based subproblems, the values of DV[k] must have been solved where DI[k]> fi.

These correspond diagonals overlapping points that fall in the region below and to the left of

the pi and are exactly what have been processed when solving for points in Cartesian sorted

order. Thus all required values in DV arrays (though not the entire DV array) are available

when solving for pi.

The value of EV[j] is optimal once Update(DV[k], EB) has been called on all diagonals that

contain potential predecessors to points on diagonal EI[j]. The function Update(DV[k], EB)

must be called only once per element in DV and in increasing order. However because points

are processed in Cartesian sorted order, values of EV are solved in arbitrary order, and calling

Update(DV[k], EB) can reference elements in DVmultiple times. To account for this, we
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maintain an index EL for each subproblem that keeps track of the last element of DV which has

been processed by Update(DV[k], EB). Before solving any points, EL is initialized to -1 in every

subproblem, and when processing points will be assigned to reference the most recently

updated diagonal from DV. When processing starting point pi in a column-based subproblem,

EV[j] must be solved, where j = φ(EI, fi). If DI[EL]> fi, Update has been called on all values of

DV that EV[j] relies on, and the state of EB contains the optimal value for EV[j] such that it may

be calculated immediately from O(EB, j). Otherwise, Update(DV[k], EB) is called for EL< k<

C, where DI[C] is the first diagonal from the left that is larger than fi in array DI, and EV[j] may

be calculated from O(EB, j). Similarly, for row-based subproblems if fi� DI[EL], the value of

EV[j] may be assigned immediately from O(EB, j) where j = φ(EI, fi). Otherwise, Update(DV[k],

EB) is called for EL< k< C, where DI[C] is the first diagonal from the left that is smaller than

or equal to fi in array DI, and EV[j] can be retrieved from O(EB, j). By comparing values EV[j]

from all the subproblems in the SB list of startpoint pi, the maximum value for pi will be

obtained and stored. The pseudocode and detailed example of solving points and conquering

subproblems are given in the S2 Algorithm and S3 Fig.

Extension to inversion cases. This extension is inspired by the work [25]. As explained in

the previous section, when chaining fragments in forward direction, two points—a lower left

start point ðxs1i ; y
s1
i Þ and a upper right endpoint ðx

e1
i ; y

e1
i Þ would be associated to each fragment

αi. ðxs1i ; y
s1
i Þ can be chained to an endpoint below and to the left of it and ðxe1i ; y

e1
i Þ can be the

predecessor of a starting point above and to the right of it. To allow inversions to happen, frag-

ments must be allowed to be chained in the reverse direction. To account for this, we associate

two more points to each fragment αi, that are a upper left start point ðxs2i ; y
s2
i Þ and a lower

right endpoint ðxe2i ; y
e2
i Þ. The start point ðx

s2
i ; y

s2
i Þ can only be chained to endpoint ðxe2j ; y

e2
j Þ of

some other fragment αj that satisfies xe2j < xs2i ; y
e2
j > ys2i . The endpoint ðx

e2
i ; y

e2
i Þ can precede

a starting point ðxs2k ; y
s2
k Þ of some other fragment αk that satisfies xs2k > xe2i ; y

s2
k < ye2i . ðx

s1
i ; y

s1
i Þ,

ðxe1i ; y
e1
i Þ, ðx

s2
i ; y

s2
i Þ and ðx

e2
i ; y

e2
i Þ can be represented as s1(i), e1(i), s2(i) and e2(i) respectively.

Chaining fragment αi to fragment αj in the reverse direction equals to chaining the start point

s2(αi) to the endpoint e2(αj). The cost of appending s2(αi) to s2(αj) in the reverse direction is

gaprev(αj, αi), which is a concave function of jðxe2j þ ye2j Þ � ðxs2i þ ys2i Þj, the difference between

the reverse diagonals of fragments αi and αj. In a short word, s2(α) and e2(α) of each fragment

α would be responsible for the possible chaining of α in the reverse direction, while s1(α) and
e1(α) would be responsible for the forward direction.

We used the same column and row subproblem dividing scheme to sort all s1 and e1 points

and assign them into column-1 and row-1 subproblems. Then all s2 and e2 points are sorted

and assigned to column-2 and row-2 subproblems in the same way. Arrays DI, DV, DP, EI, EV,

EP, the block structure EB and variable EL are allocated and initialized for each subproblem.

Lists SA1 and SA2 reference column-1/row-1 and column-2/row-2 subproblems that each end-

point e1 and e2 is in respectively. Similarly, lists SB1 and SB2 references column-1/row-1 and

column-2/row-2 subproblems that starting points s1 and s2 in respectively. The only difference

between column-2/row-2 and column-1/row-1 subproblems is that column-2/row-2 stores

reverse diagonal instead of forward diagonal in DI and EI arrays.

The steps to solve subproblems to allow chaining in both forward and reverse directions are

highly similar to section SDP algorithm with concave gap cost function—conquering subprob-

lems. Points are processed in order of x and then y coordinate. When a starting point s1(αi) is
being processed, EV[j], where j = φ(EI, fi) and fi is the forward diagonal, will be computed from

column-1/row-1 subproblems in SB1. The maximum EV[j] of those subproblems is the value of

optimal chain up to s1(αi), Score(s1(αi)), where s1(αi) is forwardly chained to an endpoint e1

(αj) below and to the left of it. Similarly, when a starting point s2(αi) is being processed, EV[j],
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where j = φ(EI, ri) and ri is the reverse diagonal, will be computed from column-2/row-2 sub-

problems in SB2. The maximum EV[j] of those subproblems is the value of optimal chain up to

s2(αi), Score(s2(αi)), where s2(αi) is reversely chained to an endpoint e2(αk) above and to the
left of it.

After solving s1(αi) and s2(αi) for fragment αi, the value of the optimal chain up to fragment

αi can be calculated as Score(αi) = max{Score(s1(αi)), Score(s2(αi))} + l(αi), where l(αi) is the
match bonus of fragment αi. This optimal chain is chosen from all the possible chains that frag-

ment αi is forwardly or reversely chained to the predecessor in the left. When solving e1(αi),
Score(αi), will be passed to array DV[j], where j = φ(EI, fi) and fi is the forward diagonal, to col-

umn-1/row-1 subproblems in SA1. And DP[j] will be updated to the index of point e1(αi), if
Score(αi)> DV[j]. Similarly, when e2(αi) is being processed, Score(αi) will be passed to array

DV of column-2/row-2 subproblems in SA2 and DP will be updated.

Therefore, the addition of two points s2(α) and e2(α) for each fragment α make it possible

to allow α to be chained in the reverse direction. Meanwhile, the overall time complexity and

storage remain bounded by O(n(log(n)2)), where n is the total number of fragments.

Time complexity. Assume there are n fragments in total, list SB/SA contains O(log(n))

subproblems that a point is in. In section SDP algorithm with concave gap cost function—con-

quering subproblems, we mention that when a starting point pi with forward diagonal fi is

being processed, Update(DV[k], EB) is called for EL< k< C, where DI[C] is the first diagonal

from the left that is larger than/smaller than or equal to fi in column/row subproblems. And

EV[j] can be retrieved in O(log(n)) time from the block structure EB by calling O(EB, j), where

j = φ(EI, fi). Procedure Updatemay be called several times for a starting point in each subprob-

lem. In order to make it easy to quantify the total time complexity of Update procedures, we

consider that each Update procedure is called right after DV[j] is updated by some endpoint pi
with diagonal fi, where j = φ(EI, fi). When an endpoint is being solved, there are O(log(n)) sub-

problems associated with it and in each subproblem Update takes O(log(n)) to conduct. There-

fore, it takes O((log(n))2) time to solve the subproblems that are associated with an endpoint.

When a starting point is being processed, there are O(log(n)) subproblems it is in and in each

subproblem EV[j] can be computed from the block structure EB in O(log(n)) time. Therefore,

it takes O((log(n))2) time to tackle subproblems that are associated with a starting point. Since

there are n fragments in total, the time complexity of processing all the points and subprob-

lems is bounded by O(n log(n)2).

Discussion

The initial description of CG-SDP was given in 1992 in two publications, one covering an

affine-cost gap function, and another with a concave-cost gap function [7, 28]. While there

have been many implementations of affine cost SDP, no sequence alignment methods have

been implemented using SDP with a concave-cost gap function. In the original description of

the algorithm, the processing of a starting point is blocked until all subproblems the point

relies on are solved, and then the process is unblocked and processing resumes. We find that

this blocking and unblocking strategy is not necessary, and the addition of data structures to

keep track of the state of computation of subproblems enables solving the problem with a stan-

dard model of computation. We used two additional strategies to effectively employ SDP in

lra: an iterative refinement process where a large number of anchors from the initial minimizer

search are grouped into a small super-fragments that are chained using SDP, and once a rough

alignment has been found a new set of matches with smaller anchors is calculated using the

local miminizer indexes. As a result, alignment is of similar speed to state of the art algorithms,

without the need for single-instruction multiple-data (SIMD) processing; runtime was slower
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when using an SIMD alignment library [29] possibly due to the overhead of invoking the

library functions.

The lra alignments have competitive runtime and memory usage compared to minimap2.

Using two different SV discovery algorithms, pbsv and Sniffles, we show it is possible to use

lra alignments to discover SV using PacBio HiFi, CLR, and Oxford Nanopore reads, as well

as directly from aligned de novo assembly contigs. The performance for SV detection using

PacBio reads and the pbsv algorithm is similar between lra and minimap2, with lra demon-

strating a small gain in recall over larger SV events. Importantly, the availability of multiple

alignment algorithms can help improve the results of studies that require high sensitivity

and specificity, such as Mendelian analysis. The greater improvement in SV discovery met-

rics on ONT data aligned by lra additionally highlights the utility of using multiple algo-

rithms to analyze sequencing data.

Finally, as de novo assembly of genomes becomes more routine, it is important to have

accurate methods of SV detection from contig alignments. We used lra to align a haplotype-

resolved genome assembled from PacBio HiFi reads and detect SV. When compared to the

GIAB SV benchmark data, the lra alignments show slightly lower precision and recall than

read-based SV detection. However, when the assembly-based SV are compared to SV detected

in an orthogonal read dataset, nearly all (> 98.8%) variants discovered from assemblies are

supported by read alignments. This indicates few differences between the HiFi based assembly

and the reference are due to assembly error, and the annotated precision of the callset is likely

an underestimate. A variant callset is effectively a list of operations that may be applied to the

reference genome to reconstruct a sample genome. Because the HiFi assembly has few assem-

bly errors on the same size scale as an SV, this supports the development of an alternative

model for validating SV callsets in which the reconstructed genome is compared to the haplo-

type-resolved assembly, rather than by comparing callsets. This may be used to validate calls

inside the high-confidence regions defined where a haplotype-resolved assembly has been con-

fidently generated.

Supporting information

S1 Fig. The distribution of read lengths from the HG002 HiFi, CLR, and ONT data.

(PDF)

S2 Fig. The cumulative number of bases from the HG002 HiFi, CLR, and ONT data.

(PDF)

S3 Fig. A detailed example of visualizing subproblems division. The data structures for each

subproblem: DI,DV,DP, EI, EV, EP, EL, EB and the process of subproblems solving. The horizon-

tal axis represents the query, while the vertical axis represents the target. Points are numbered

in Cartesian sorted order, which is the processing order. 12 points are assigned into three col-

umn subproblems ðAc
0
;Bc

0
Þ, ðAc

1
;Bc

1
Þ, ðAc

2
;Bc

2
Þ and one row subproblem ðAr

0
;Br

0
Þ, where starting

points are assigned to A-part and endpoints are assigned to B-part. Leaf subproblems are not

shown for simplicity. Start and End are used for the trace-back of the optimal chain. Start stores

sub—the index of the subproblem which yields the optimal chaining score up to a starting point

and ind—the index of fi in array EI, that is φ(EI, fi), where fi is the diagonal of the starting point.

End stores the optimal value for each endpoint. For this toy example, gap cost of appending

fragment αj to fragment αi is gapðai; ajÞ ¼ 0:25 � logðjðyei � xei Þ � ðysj � xsjÞ þ 1jÞ þ 1, where

ðxei ; y
e
i Þ is the endpoint of αi and ðxsj ; y

s
jÞ is the startpoint of αj.m, shows the regions that each

subproblem covers and the initialized data structures for each subproblem. There are of

three column subproblems and one row subproblems (leaf subproblems are not shown for
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simplicity): ðAc
0
;Bc

0
Þ, ðAc

1
;Bc

1
Þ, ðAc

2
;Bc

2
Þ and ðAr

0
;Br

0
Þ. a-l shows how the data structures of sub-

problems that are associated with the point being processed in each step are updated. Note that

entries that are updated are highlighted by orange. a, shows for startpoint − 1, it is a leaf sub-

problem that yields the value of the optimal chain up to startpoint − 1. b, shows when processing

endpoint − 2, the optimal value up to it is Score(startpoint − 1) + 2, where 2 is the match bonus

of the fragment. Array End is then updated. Since endpoint − 2 is in Ac
0
, Ac

1
, Ar

0
, the correspond-

ingDV entries are updated to 2 and corresponding DP entries update to the index of endpoint

− 2. c, shows when processing startpoint − 3, it is in the B-parts of subproblems ðAc
1
;Bc

1
Þ and

ðAr
0
;Br

0
Þ. startpoint − 3 is located in EI[2] of ðA

c
1
;Bc

1
Þ, so Update(DV[0], EB) would be called to

get the value of EV[2]. The purple color highlighting shows what forward diagonals in EV would

be updated by DV[0]. EP[2] would be updated to point toDI[0]. startpoint − 3 is located in EI[2]

of ðAr
0
;Br

0
Þ and no forward diagonals in DI used to update EV[2]. Therefore, in Start, sub and

ind for startpoint − 3 are updated to Bc
1
, 2. d, shows when processing startpoint − 4, it is in Bc

1

and locates in EI[0] of ðA
c
1
;Bc

1
Þ. Since there is no forward diagonal in DI can be used to update

EV[0], it is a leaf subproblem that yields the optimal chaining value up to startpoint − 4 in Start.

e, shows when processing startpoint − 5, it is in Bc
1
and Br

0
. In ðAc

1
;Bc

1
Þ, there is no forward diago-

nal can be used to update EV[1]. In ðAr
0
;Br

0
Þ, Update(DV[0], EB) is called to update the block

structure EB, so EV[1] and EV[2] would be computed from EB. In Start, sub and ind for startpoint

− 5 are updated to Br
0
, 1. f, g, h, i, j, k, l: show the subproblems solving and data structures updat-

ing for the rest of points. After processing all 12 points, three optimal chains can be obtained by

tracing back, which are chain − 1 = [startpoint − 1, endpoint − 2, startpoint − 3, endpoint − 6],

chain − 2 = [startpoint − 1, endpoint − 2, startpoint − 5, endpoint − 9] and chain − 3 = [startpoint

− 7, endpoint − 10, startpoint − 11, endpoint − 12].

(PDF)

S1 Text. Impact of the local minimizer index.

(PDF)

S2 Text. Assembly exclusive calls.

(PDF)

S1 Algorithm. Defining subproblems.

(PDF)

S2 Algorithm. Sparse dynamic programming with convex gap cost.

(PDF)

S1 Table. Shared variant calls. Considering HiFi/CLR + pbsv callsets and ONT + Sniffles call-

sets, the size of the intersection of every two callsets are shown. The intersection is calculated

using Truvari bench on two called vcfs.

(PDF)

S2 Table. Calls unique to a callset in tandem repeats and segmental duplications. Entry

with pbmm2 as row and lra as column means the number of unique calls in pbmm2 callset

when comparing pbmm2 callset and lra callset.

(PDF)

S3 Table. Comparison of the Truvari result between all combinations of aligners and SV

callers on simulated HiFi, CLR and ONT dataset with simulated SVs. SVs: Indels (inser-

tions and deletions), inversions were simulated by SUVIVOR. All SVs were simulated by

SUVIVOR. HiFi and CLR reads were simulated by PBSIM and ONT reads were simulated by

alchemy2. We simulated 195 Indels (insertions and deletions) of lengths between 50-10000
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bases, 97 inversions of lengths between 600-2000 bases.

(PDF)

S4 Table. Comparison of the Truvari result between all combinations of aligners and SV

callers on simulated HiFi, CLR and ONT dataset with complicated nested SVs. Compli-

cated nested SVs: deletion-inversion-deletions (INVDEL), inverted-duplications (INVDUP),

which were simulated by SUVIVOR. HiFi and CLR reads were simulated by PBSIM and ONT

reads were simulated by alchemy2, which is distributed with lra source. We simulated 100

deletion-inversion-deletions and inverted-duplications of lengths between 600-1000 bases

respectively. Inversion-deletion is a type of nested SV where an inversion is flanked by 2 dele-

tions and inversion-duplication means the duplicated sequence is inverted. For deletion-inver-

sion-deletions, the inversion and two deletions have all been found in order to be counted as a

TP. For cases where the inversion and only one flanked deletion are found were counted as

Partial. For inverted-duplications, both the inversion and duplication need to be found in

order to be counted as a TP. We found that minimap2 alignment find inverted-duplications as

insertions, therefore, we didn’t count that as TP.

(PDF)

S5 Table. Comparison of the breakpoints on real datasets. The breakpoints accuracy analysis

was conducted by comparing the boundaries of true positive SVs from Truvari result to the

curated SVs’ breakpoints for each aligner/caller combination. Breakpoints accuracy is mea-

sured by the percentage of SVs with perfect breakpoint boundaries and the average shifting

distance between the left-most coordinate of SV boundaries.

(PDF)

S6 Table. Comparison of the breakpoints on simulated SVs. The breakpoints accuracy anal-

ysis was conducted by comparing the boundaries of true positive SVs to the bondaries of

ground truth SV for each aligner/caller combination. Breakpoints accuracy is measured by

the percentage of SVs with perfect breakpoint boundaries and the average shifting distance

between the left-most coordinate of SV boundaries.

(PDF)

S7 Table. Truvari classification of cuteSV variant calls. Truvari comparisons between lra,

minimap2 and ngmlr using the Genome in a Bottle benchmark SV set. Optimal results in each

category are shown in bold. TP-base means true positive calls in the benchmark SV curation

set, while TP-call means true positive calls in the SV set from each aligner. False positive

means the number of non-matching calls from the SV set from each aligner. False negative

means the number of non-matching calls from the SV curation set.

(PDF)

Acknowledgments

We appreciate the help from Peter Audano to test and fix various issues of lra. We thank lra

users for suggesting features and pointing out issues.

Author Contributions

Conceptualization: Jingwen Ren, Mark J. P. Chaisson.

Data curation: Jingwen Ren.

Formal analysis: Jingwen Ren, Mark J. P. Chaisson.

PLOS COMPUTATIONAL BIOLOGY lra: A long read aligner for sequences and contigs

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1009078 June 21, 2021 21 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009078.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009078.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009078.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009078.s014
https://doi.org/10.1371/journal.pcbi.1009078


Funding acquisition:Mark J. P. Chaisson.

Investigation: Jingwen Ren, Mark J. P. Chaisson.

Methodology: Jingwen Ren, Mark J. P. Chaisson.

Project administration:Mark J. P. Chaisson.

Software: Jingwen Ren, Mark J. P. Chaisson.

Supervision:Mark J. P. Chaisson.

Validation: Jingwen Ren.

Writing – original draft: Jingwen Ren, Mark J. P. Chaisson.

Writing – review & editing: Jingwen Ren, Mark J. P. Chaisson.

References
1. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34(18):3094–3100.

https://doi.org/10.1093/bioinformatics/bty191 PMID: 29750242

2. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von Haeseler A, et al. Accurate detec-
tion of complex structural variations using single-molecule sequencing. Nature methods. 2018; 15
(6):461–468. https://doi.org/10.1038/s41592-018-0001-7 PMID: 29713083

3. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with
successive refinement (BLASR): application and theory. BMC bioinformatics. 2012; 13(1):238. https://
doi.org/10.1186/1471-2105-13-238 PMID: 22988817

4. Rowell WJ, Wenger A, Kolesnikov A, Chang P, Carroll A, Hall R, et al. Comprehensive variant detection
in a human genome with highly accurate long reads. In: EUROPEAN JOURNALOF HUMANGENET-
ICS. vol. 27. NATURE PUBLISHINGGROUPMACMILLAN BUILDING, 4 CRINAN ST, LONDONN1
9XW, ENGLAND; 2019. p. 1723–1723.

5. Baker BS, Giancarlo R. Sparse dynamic programming for longest common subsequence from frag-
ments. Journal of algorithms. 2002; 42(2):231–254. https://doi.org/10.1006/jagm.2002.1214

6. FitchWM, Smith TF. Optimal sequence alignments. Proceedings of the National Academy of Sciences.
1983; 80(5):1382–1386. https://doi.org/10.1073/pnas.80.5.1382 PMID: 16593289

7. Eppstein D, Galil Z, Giancarlo R, Italiano GF. Sparse dynamic programming II: convex and concave
cost functions. Journal of the ACM (JACM). 1992; 39(3):546–567. https://doi.org/10.1145/146637.
146656

8. Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, Bosworth C, et al. Nanopore sequencing
and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnol-
ogy. 2020; p. 1–10. https://doi.org/10.1038/s41587-020-0503-6 PMID: 32686750

9. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs.
Nature biotechnology. 2019; 37(5):540–546. https://doi.org/10.1038/s41587-019-0072-8 PMID:
30936562

10. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased
assembly graphs with hifiasm. Nature Methods. 2021; 18(2):170–175. https://doi.org/10.1038/s41592-
020-01056-5 PMID: 33526886
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