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AbstractÐEfficient and effective buffering of disk blocks in main memory is critical for better file system performance due to a wide

speed gap between main memory and hard disks. In such a buffering system, one of the most important design decisions is the block

replacement policy that determines which disk block to replace when the buffer is full. In this paper, we show that there exists a

spectrum of block replacement policies that subsumes the two seemingly unrelated and independent Least Recently Used (LRU) and

Least Frequently Used (LFU) policies. The spectrum is called the LRFU (Least Recently/Frequently Used) policy and is formed by how

much more weight we give to the recent history than to the older history. We also show that there is a spectrum of implementations of

the LRFU that again subsumes the LRU and LFU implementations. This spectrum is again dictated by how much weight is given to

recent and older histories and the time complexity of the implementations lies between O(1) (the time complexity of LRU) and O�log2 n�
(the time complexity of LFU), where n is the number of blocks in the buffer. Experimental results from trace-driven simulations show

that the performance of the LRFU is at least competitive with that of previously known policies for the workloads we considered.

Index TermsÐBuffer cache, LFU, LRU, replacement policy, trace-driven simulation.
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1 INTRODUCTION

TO bridge the wide speed gap between main memory and
hard disks, much research has been performed on

buffering disk blocks in main memory. Such a buffering
system is called a buffer cache [1] and one of its most
important design decisions is the block replacement policy
that decides the block to be replaced when the buffer cache
is full. Efficient and effective block replacement policies
have been the topic of much research in both the systems
[2], [3], [4], [5], [6], [7] and database [8], [9], [10], [11], [12]
areas. Of these, the Least Recently Used (LRU) and the
Least Frequently Used (LFU) block replacement policies
constitute the two main streams. The LRU policy and its
variants base their replacement decision on the recency of
references, while the LFU policy and its variants base their
decision on the frequency of references. In this paper, we

show that, between these seemingly unrelated and inde-
pendent two policies, there exists a spectrum of policies,
with the LRU and LFU policies existing as the two extreme
points. This spectrum of policies, which we refer to as the
Least Recently/Frequently Used (LRFU) policy, inherits the
benefits of the two policies and allows a flexible trade-off
between recency and frequency of references in basing the
replacement decision. The decision to lean toward the LRU
or the LFU is made through the use of a parameter �, which
essentially determines how much more weight we give to
the recent history than to the older history.

In this paper, we also show that there is a spectrum of

implementations of the LRFU that again subsumes the LRU

and LFU implementations. That is, for each point in the

spectrum of policies of the LRFU, there exists a correspond-

ing implementation that lies between the LRU and LFU.

Hence, the spectrum of implementations has time complex-

ity that ranges between O(1), which is the time complexity

for the LRU policy, and O�log2 n�, which is the time

complexity for the LFU policy, where n is the number of

blocks in the buffer cache.
The remainder of this paper is organized as follows: In

the next section, we review some of the previous policies

that have been proposed for buffer caching. In Section 3, we

describe the LRFU policy in detail. Its implementation is

discussed in Section 4. In Section 5, we discuss two

extensions to the LRFU policy, namely, the issue of

optimized implementation and correlated references [11],

[12]. In Section 6, we compare the performance of the LRFU

policy with that of previous policies through trace-driven

simulations and discuss the performance impact of the
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control parameter � and the correlated references. Finally,
we conclude this paper in Section 7.

2 RELATED WORKS

The study of block replacement policies is, in essence, a
study of relating past access patterns with future access
behavior. Based on the recognition of access patterns
through acquisition and analysis of past behavior or history,
replacement policies resolve to identify the block that will
be used furthest down in the future so that that block may
be replaced when needed [13], [14]. The LRU policy does
this by attaining the recency of block references while the
LFU policy considers the frequency of block references. One
problem of the LRU policy is that, since it uses only the time
of the most recent reference to each block, it cannot
discriminate well between frequently and infrequently
referenced blocks. On the other hand, the problem with
the LFU policy is that it cannot distinguish between
references that occurred far back in the past and the more
recent ones in recording the frequency and, thus, cannot
adapt well to changing workloads.

In the following, we survey the studies that aim to
overcome the limitations of the LRU and LFU policies. Our
discussion focuses on two papers, one by Robinson and
Devarakonda [12] and the other by O'Neil et al. [11]. Before
describing these studies we need to explain the concept of
correlated references. In general, references to disk blocks
have less locality than references to CPU caches or virtual
memory pages [12]. However, references to a disk block still
exhibit strong short-term locality of reference once the disk
block is referenced. Such clustered references are called
correlated references and their examples in database
systems are given in [11], [12].

A frequency-based policy, called the FBR (Frequency-
Based Replacement), in which the notion of a correlated
reference was introduced was proposed by Robinson and
Devarakonda [12]. The main difference between the FBR
and the conventional LFU is that the former replaces blocks
based on the frequency of references whose short-term
locality has been factored out via a special buffer area called a
new section [12]. The new section consists of knew section most
recently referenced blocks, where the value of knew section is
implementation dependent. When there is a hit to a block in
the new section, the corresponding reference is considered
to be correlated with a previous reference to the same block
and the reference count of the block is not incremented. In
addition to the new section, there are two more sections in
the buffer cache: the old section and the middle section. In
the FBR, replacement is confined to blocks in the old section
which consists of kold section least recently referenced blocks,
where kold section is an implementation-dependent para-
meter. The middle section is located between the new
section and the old section in the LRU stack and is intended
to allow blocks to build up their reference counts before
becoming eligible for replacement.

In the FBR, the block to be replaced when the buffer
cache is full is the block in the old section with the smallest
reference count if it does not exceed Cmax, where the value
of Cmax is implementation dependent; otherwise, the least
recently referenced block is replaced. The FBR policy also

uses a periodic aging mechanism where every reference
count is halved whenever the average reference count
exceeds a predetermined maximum value Amax. This
mechanism is intended to prevent blocks with large
reference counts from being fixed in the cache, a problem
commonly called the cache pollution problem.

O'Neil et al. present the LRU-K replacement policy that
bases its replacement decision on the time of the Kth-to-last
reference to the block [11]. In other words, its replacement
decision is based on the reference density [15] observed
during the past K references. Thus, when K is large and the
reference shows a stationary pattern, the LRU-K can
discriminate well between frequently and infrequently
referenced blocks. On the other hand, when K is small, it
can remove cold blocks quickly since such blocks would
have a wider span between the current time and the Kth-to-
last reference time.

The LRU-K ignores the recency of the K ÿ 1 references
and considers only the distance of the Kth reference. This
violates the rule of thumb that the more recent behavior
predicts the future better. For example, assume that
f7; 31; 35g and f7; 9; 25g are the reference histories of blocks
a and b, respectively. Then, LRU-3 would treat both blocks
equally since their third-to-last reference times are the same
(that is, 7), although, intuitively, block a is more likely to be
referenced in the near future since its last and second-to-last
references are more recent. For this reason, the LRU-K is not
very adaptive to changing workloads when K is large. Also,
the LRU-K incurs an O�K� space overhead to keep the
history of the last K references. This may not be a serious
problem since, in practice, smaller K values such as 2 or 3
are preferred for better performance [11]. Another potential
problem with the LRU-K is that, since it requires that all of
the last K reference times of each block be maintained,
blocks that have not acquired all its K reference history
must be handled as special cases. If the history of a block is
not saved when the block is replaced from the buffer cache,
a considerable length of time may be needed to reacquire its
history and, in some cases, it may be replaced again before
acquiring all the K reference times. To cope with this
problem, the LRU-K maintains the history of a block for an
extended period of time after the block is replaced from the
buffer cache.

As previously mentioned, one advantage of the LRU-K is
that it can quickly remove cold blocks from the buffer cache
when K is small. Johnson and Shasha propose a block
replacement policy called 2Q starting from a similar
motivation [10]. In this approach, a missed block is initially
placed in a special buffer called the A1 queue. A block in
the A1 queue is promoted to the main buffer, called the Am
queue, when it is rereferenced while in the A1 queue.
Otherwise, it is replaced when it becomes the LRU block in
the A1 queue. When a block is replaced, its history is
retained in a queue called the Aout queue. When a block
misses in the buffer cache but its history is still in the Aout
queue, it is placed in the Am queue directly without going
through the Ain queue. These mechanisms quickly remove
from the buffer cache blocks that are referenced only once,
while retaining in the buffer cache, for an extended period
of time, blocks that are repeatedly referenced. The time
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complexity of the 2Q policy is O(1), which is significantly

lower than the O�log2 n� time complexity of the LRU-K

policy.
Buffer management schemes have also been exten-

sively studied in the database arena [9] (also see the

references therein). However, many of its algorithms

make use of information deduced externally, such as

from query optimizer plans. Since such information is

usually not available in general file caching, these

schemes are applicable only to database systems.
Other approaches have been proposed that exploit

external information or hints, such as the application-

controlled file caching scheme [3], or that make use of

information generated internally, such as the DEAR scheme

[16]. These schemes are promising approaches, but are

beyond the scope of this paper.

3 THE LEAST RECENTLY/FREQUENTLY USED

(LRFU) POLICY

The LRFU policy associates a value with each block. This

value is called the CRF (Combined Recency and Frequency)

value and quantifies the likelihood that the block will be

referenced in the near future. Each reference to a block in

the past contributes to this value and a reference's

contribution is determined by a weighing function F�x�,
where x is the time span from the reference in the past to

the current time.

Definition 1. Assume that the system time is represented by an

integer value and is incremented by one on each block

reference. The CRF value of a block b at time tbase, denoted

by Ctbase�b�, is defined as

Ctbase�b� �
Xk
i�1

F�tbase ÿ tbi�;

where F�x� is a weighing function and ftb1
; tb2

; � � � ; tbkg are

the reference times of block b and tb1
< tb2

< � � � < tbk � tbase.

For example, assume that block b was referenced at

times 1, 2, 5, and 8 and that the current time (tc) is 10. Then,

its CRF value at tc, denoted by Ctc�b�, is computed as

Ctc�b� � F�10ÿ 1� � F�10ÿ 2�
� F�10ÿ 5� � F�10ÿ 8�

� F�9� � F�8� � F�5� � F�2�:
The weighing function F�x� essentially reflects the influ-

ence of the recency and frequency factors of a block's past

references in projecting the likelihood of its rereference in

the future. In general, F�x� is a monotonically nonincreas-

ing function to give more weight to more recent references.

Therefore, a reference's contribution to the CRF value is

proportional to the recency of the reference.
The proposed LRFU policy replaces the block with the

minimum CRF value. This policy differs from the LFU

policy in that the contribution of each reference is not

always the same but depends on its recency. The policy

also differs from the LRU policy in that it considers not

only the most recent reference, but also all the other
references in the past.

Intuitively, if F�x� � 1 for all x, then the CRF value
degenerates to the reference count. Thus, the LRFU policy
with F�x� � 1 is simply the LFU policy.

Property 1. If F�x� � c for all x where c is a positive constant,
then the LRFU policy replaces the same block as the LFU
policy.

To show that the LRFU policy also subsumes the LRU
policy, we give an example of F�x� that makes the LRFU
policy replace the same block as the LRU policy. Assume
that block a was most recently referenced at time t and that
another block b was referenced at every time step starting
from time 0, but its most recent reference was made at time
tÿ 1. The LRU policy will replace block b in favor of block
a, although block b has been referenced many more times
than block a. For the LRFU policy to mimic this behavior,
the CRF value of a must be larger than that of b at current
time tc, i.e., Ctc�a� � F�tc ÿ t� > Ctc�b� �

Ptÿ1
t0�0 F�tc ÿ t0�. By

generalizing the above condition, we have the following:

Property 2. If F�x� satisfies the following condition, then the
LRFU policy replaces the same block as the LRU policy.

8i F�i� >
Xk
j�i�1

F�j�: for any k where k � i� 1:

A class of functions that satisfy both Property 1 and

Property 2 is F�x� � �1p��x, where x is the difference between

the current time and the time of a reference in the past,

p � 2, and � ranges from 0 to 1. This class of functions,

where p � 2, is shown in Fig. 1. Note that each function in

this class is monotonically nonincreasing with x to give

more weight to more recent references with smaller back-

ward distances, which is consistent with the principle of

temporal locality. An intuitive meaning of � in this function

is that a block's CRF value is reduced to 1
p of the original

value after every 1
� time steps. For example, if � is 0.0001, a

block's CRF value is reduced to 1
p after every 10,000 time

steps. This control parameter � allows a trade-off between

recency and frequency in projecting the likelihood of future

references. As � approaches 0, the LRFU policy moves

towards a frequency-based policy. Eventually, when � is

equal to 0 (i.e., F�x� � 1), the LRFU policy is simply the
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LFU policy. On the other hand, as � approaches 1, the LRFU

policy moves toward a recency-based policy and, when � is

equal to 1 (i.e., F�x� � �1p�x for p � 2), the LRFU policy

degenerates to the LRU policy. (Note that F�x� � �1p�x for

p � 2 satisfies Property 2.) The spectrum (Recency/Fre-

quency) in Fig. 1 is where the LRFU policy differs from both

LFU and LRU, assuming p � 2.

4 IMPLEMENTATION OF THE LRFU POLICY

From the description of the LRFU policy in the previous
section, one can observe that all history of a block is
retained and that the CRF values must constantly be
updated. As is, the LRFU policy is unimplementable and,
for the LRFU policy to be of practical value, these issues
must be rectified.

4.1 Maintaining All Reference History

In general, computing the CRF value of a block requires that
the reference times of all the past references to that block be
maintained. This obviously requires unbounded memory
and, thus, makes the policy unimplementable. We show in
the following that if the weighing function F�x� has the
F�x� y� � F�x�F�y� property as the function F�x� � �1p�x
(p � 2) in the previous section does, the storage and
computational overheads can be reduced drastically such
that this policy becomes not only implementable but also
efficient.

Property 3. If F�x� y� � F�x�F�y� for all x and y, then
Ctbk �b�, the CRF value of block b at the time of the kth reference,
is derived from Ctbkÿ1

�b�, the CRF value of block b at the time of
the �kÿ 1�th reference, as follows:

Ctbk �b� � F�0� � F���Ctbkÿ1
�b�;

where � � tbk ÿ tbkÿ1
.

Proof. See [17]. tu

Property 3 states that if F�x� y� � F�x�F�y�, then the
CRF value at the time of the kth reference can be computed
from the time of the �kÿ 1�th reference and the CRF value
at that time. Similar derivation shows that Ctc�b�, which is
the CRF value of block b at current time tc, can be computed
by multiplying F��� and Ctbk �b�, where � � tc ÿ tbk assuming
that the kth reference is the most recent reference to the
block. This shows that, at any time, the CRF value can be
computed using only two variables for each block and these
are all the history the block needs to maintain.

4.2 Keeping the CRF Values in Order

As the LRFU policy replaces the block with the minimum
CRF value, it is necessary that the blocks be ordered
according to their CRF values. Generally, however, a
reference's contribution to the CRF value changes over
time and, thus, the CRF value of a block changes with time
as well. This requires that the CRF value of every block be
updated at each time step and that blocks be reordered
according to the new CRF values, again at each time step.
Fortunately, with F�x� � �1p��x for p � 2, the relative
ordering between two blocks does not change until either

of them is referenced and, hence, reordering of blocks is
needed only upon a block reference, as the following
property shows.

Property 4. With F�x� � �1p��x for p � 2, if Ct�a� > Ct�b� and
neither a nor b has been referenced after t, then Ct0 �a� > Ct0 �b�
for all t0 � t.

Proof. See [17]. tu

We have presented, thus far, F�x� � �1p��x for p � 2 to be

an adequate weighing function for the LRFU policy. For the

remainder of this paper, we concentrate only on the

weighing function F�x� � �12��x, as the range of control

parameter � covering both the LFU and LRU is between 0

and 1, which is common in other studies that involve

control parameters.

4.3 The Algorithm

Like many other replacement algorithms that base their
decision on the ordering of blocks by a given criterion, the
LRFU uses the heap data structure to maintain the ordering
of blocks according to their CRF values (the root has the
smallest CRF value). In the algorithm in Fig. 2 that is
invoked upon a block reference, H is the heap data
structure, tc is the current time, and LAST �b� and
CRFlast�b� are the time of the last reference to block b and
its CRF value at that time, respectively. The algorithm first
checks whether the requested block b is in the buffer cache.
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If it is, the algorithm recalculates its CRF value, updates the
time of the last reference, and, if needed, restores the heap
property of the subheap rooted by b. In the other case,
where the block is not in the buffer cache, the missed block
is fetched from disk and its CRF value and the time of the
last reference are initialized. Then, the root block of the
heap is replaced with the newly fetched block and the heap
property is restored. In addition, if the replaced block is
dirty, it is written-back to the disk. Finally, the current time
tc is incremented by one to reflect the progress of the virtual
time due to the reference.

As in other replacement algorithms that use the heap
data structure, in the LRFU, the maximum number of swap
operations is equal to the height of the heap minus one, i.e.,
dlog2�n� 1�e ÿ 1, where n is the number of blocks in the
buffer cache. The only additional overhead of the LRFU
over other policies is due to the invocations of F�x� when
CRF values are compared.

5 EXTENSIONS TO THE LRFU POLICY

In this section, we discuss two extensions to the LRFU
policy presented in the previous section. The first concerns
an optimized implementation of the policy, where we show
that the time complexity of the LRFU policy ranges between
O(1) and O�log2 n�, depending on the value of control
parameter �. The second extension concerns the incorpora-
tion of the notion of correlated references into the LRFU
framework. We show that this can be done seamlessly
without complicating the implementation.

5.1 Optimized Implementation of the LRFU Policy

The O�log2 n� time complexity of the LRFU policy is
comparable to that of the LFU policy. However, this time
complexity is considerably higher than the O(1) time
complexity of the LRU policy, which is simply the LRFU
policy with � � 1. In the following, we show that the LRFU
policy with F�x� � �12��x also lends itself to a spectrum of
implementations whose time complexities depend on the
value of �. In this implementation, the buffer cache is
divided into multiple partitions as in 2Q [10] and FBR [12].
In the spectrum, the points corresponding to the LRU and
the LFU have O(1) and O�log2 n� time complexities,
respectively, which are equal to the time complexities of
their native implementations.

Property 5. In the LRFU policy with F�x� � �12��x, there exists a
threshold distance dthreshold such that

8 d � dthreshold; F�0� >
X1
i�d
F�i�:

In particular, the minimum of such dthreshold values is given by

log1
2
�1ÿ �12���
�

& '
:

Proof. See [17]. tu

This property states that a block whose most recent
reference was made earlier than dthreshold time units ago
(where one time unit corresponds to one block reference)
cannot have a CRF value larger than F�0�, which is the CRF
value of the currently referenced block. Conversely, for a
block to have a CRF value larger than F�0�, its most recent
reference must have been made within dthreshold time units.
This states that the number of blocks that have CRF values
larger than F�0� is bounded above by dthreshold. Hence, it is
possible to maintain dthreshold blocks in the heap and the
remaining blocks in a linked list such that any block
maintained in the heap has a larger CRF value than that of
any block in the linked list. With this setting, the CRF value
of the blocks in the linked list cannot be larger than F�0�
since the number of blocks that can have CRF values larger
than F�0� is bounded above by dthreshold and the number of
blocks maintained in the heap is dthreshold.

The optimized LRFU implementation operates as
follows: When the requested block is not in the buffer
cache, the block at the tail of the linked list is replaced and
the block at the root of the heap is demoted to the head of
the linked list (cf. Fig. 3a). Then, the requested block, which
has F�0� as its CRF value, becomes the new root of the heap
and the restore operation is performed on the heap with
time complexity O�log2 dthreshold�. Further, the assertions that
the CRF value of the blocks in the heap is larger than that of
the blocks in the linked list and that the CRF value of the
blocks in the linked list is smaller than F�0� are maintained.

The other case where the requested block is in the buffer
cache can be further divided into two cases depending on
whether the requested block is in the heap or in the linked
list. First, consider the case where the requested block is in
the heap. Here, the restore operation needs to be performed
only for the subheap rooted by the requested block (cf.
Fig. 3b). In the other case, where the requested block is in
the linked list, the block corresponding to the root of the
heap is demoted to the head of the linked list and the
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requested block becomes the new root (cf. Fig. 3c). Then, the

restore operation is performed on the entire heap. The time

complexity for both cases is O�log2 dthreshold� and the two

assertions are maintained. In summary, for all the cases, the

time complexity of the optimized LRFU implementation is

O�log2 dthreshold�.
On the LRU extreme of this optimized LRFU implemen-

tation (i.e., when � � 1), dthreshold, which is given by

log1
2
�1ÿ �12���
�

& '
;

is equal to 1. Thus, only one block needs to be maintained in

the heap. This implies that all the blocks in the buffer cache

can be maintained by a single linked list. This corresponds

to the native LRU implementation and its time complexity

is O(1). On the other hand, as we move toward the LFU

extreme, the number of blocks that should be maintained in

the heap increases. Eventually, on the LFU extreme (i.e.,

when � � 0), dthreshold is equal to 1 and, thus, every block

should be maintained in the heap. As a result, the time

complexity becomes O�log2 n�. This again coincides with the

time complexity and the data structure of the native LFU

implementation. Fig. 4 shows the spectrum of the LRFU

implementations.

5.2 LRFU with Correlated References

In this section, we show how the notion of correlated

references can seamlessly be incorporated into the LRFU

framework. The notion of correlated references was

motivated by the observation that the recency and

frequency of higher level operations such as transactions

in database systems can predict the future better than the

recency and frequency of lower level disk accesses [11], [12].

In congruence with the description given by Robinson and

Devarakonda [12], all the references to a block within a

correlated period are treated as a single noncorrelated

reference to the block.
To incorporate the concept of correlated references more

formally, we introduce a masking function Gc�x�

Gc�x� � 0 x � c
1 x > c;

�
where c is a control parameter corresponding to the

correlated period that determines how far two references

should be separated to be considered as not being
correlated.

With this masking function, the CRF value is calculated
as follows:

C0tc�b� � F�tc ÿ tbk� �
Xkÿ1

i�1

F�tc ÿ tbi� � Gc�tbi�1
ÿ tbi�;

where C0tc�b� is the CRF value of b at tc when correlated
references are considered. This revision affects neither the
way the CRF value is calculated nor the basic structure of
the buffer cache management algorithm as the following
property shows.

Property 6. If F�x� y� � F�x�F�y� for all x and y, then

C0tbk �b�, which is the CRF value of block b at the time of the kth

reference when correlated references are considered, can be

derived from C0tbkÿ1
�b� and tbkÿ1

as follows:

C0tbk �b� � F�0� � F��� � �F�0� � Gc��� � C
0
tbkÿ1
�b� ÿ F�0��;

where � � tbk ÿ tbkÿ1
.

Proof. See [17]. tu

6 EXPERIMENTAL RESULTS

In this section, we discuss the results from trace-driven

simulations performed to assess the effectiveness of the

proposed LRFU policy. We used two different types of real

workload traces: file system traces from the Sprite network

file system [18] and database traces that consist of the DB2

trace used by Johnson and Shasha [10] and the OLTP trace

used by both O'Neil et al. [11] and Johnson and Shasha [10].
The Sprite trace contains requests to a file server from

client workstations for a two-day period. Among the client

workstations, we selected the three with the most requests

(client workstations 54, 53, and 48) and simulated their

buffer caches. Client workstation 54 made 203,808 refer-

ences to 4,822 unique blocks, client workstation 53 made

141,223 references to 19,990 unique blocks, and client

workstation 48 made 133,996 references to 7,075 unique

blocks where the block size is 4 Kbytes.
The DB2 trace was obtained from a commercial installa-

tion of DB2 and contains 500,000 references to 75,514 unique

blocks [10]. The OLTP trace contains references to a

CODASYL database for a one-hour period. This trace

consists of 914,145 references to 186,880 unique blocks

[11]. We note that the traces are those used in previous

researches [10], [11] and were obtained from the authors of

those papers.

The performance of the LRFU policy is compared with

that of the LRU, LFU, LRU-2, 2Q, and FBR policies. The

LRU-2, 2Q, and FBR policies were simulated according to

the descriptions in [11], [10], [12]. The results of the LRU-2

and 2Q policies were obtained while changing their

correlated periods and the best results were selected for

each policy. In the 2Q policy, the length of the A1 queue

influences the performance. We performed experiments

with different A1 queue lengths suggested in [10] and,
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Fig. 4. Spectrum of the LRFU implementations.



among them, the best results are reported. Likewise for the

LRFU, we report the best results of the experiments with

different � values. The correlation period in the LRFU is set

to 60 percent of the cache size with a maximum of 2,000 for

all the experiments. For the FBR policy, we allocate 1=4 of

the cache for the new section and split the remainder in half,

that is, 3=8 of the cache for the middle and old sections,

respectively, with Cmax � 4 and Amax � 100 [12].
Experiments were performed with increasing cache sizes

until there was less than 1 percent change for all policies
and for LFU, LRU-2, 2Q, and LRFU, and the history of past
references was retained even after the corresponding blocks
were replaced from the buffer cache.

6.1 Comparison of the LRFU Policy with
Other Policies

Figs. 5 and 6 show the hit rates of the LRFU policy as a
function of the cache size for the Sprite and database traces,
respectively. The hit rates are compared with those of the
LRU, LFU, LRU-2, 2Q, and FBR policies.

The results in the figures show that the LRFU policy
performs at least competitively with other policies through-
out the cache sizes we simulated, while the LRU-2, 2Q, and
FBR policies show comparable performance at particular
cache sizes. For example, the 2Q policy performs very well
at small cache sizes. However, its hit rate starts to converge
early, that is, at a smaller cache size, than other policies. For
large cache sizes, the FBR policy shows performance that is
nearly as good as that of the LRFU policy. The LRU and
LFU policies show the worst performance due to their
shortcomings explained in Section 2.

For comparison purposes, Figs. 5 and 6 also give the hit
rate of the offline optimal replacement policy, which
replaces the block that will not be referenced for the longest
time. Notice that there is a huge gap between the hit rate of
the optimal policy and those of the online policies. This gap
results from the fact that the optimal policy makes use of
knowledge about future references which is not available to
the online policies.

6.2 Effects of � on the Performance of the
LRFU Policy

Fig. 7 shows the effect of � on the hit rate for various cache
sizes. All the figures in Fig. 7 have similar shapesÐthe hit
rate initially increases as the � value increases, that is, as the
policy moves from the LFU extreme to the LRU extreme.
After reaching a peak point, the hit rate drops slightly and
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Fig. 5. Comparison of LRFU with other policies using the Sprite trace.

(a) Client workstation 54 in the Sprite trace. (b) Client workstation 53 in

the Sprite trace. (c) Client workstation 48 in the Sprite trace.

Fig. 6. Comparison of LRFU with other policies using the database trace.

(a) DB2. (b) OLTP.



then remains stable, decreasing very slowly until � reaches
1. It can also be noted that, as the cache size increases, the

peak hit rate is reached at a smaller � value. This rather
enlightening result indicates that, as the cache size increases

(which is the current trend), more weight should be given to
older references and that deciding the block to be replaced

must not be made in a near-sighted manner.

6.3 Combined Effects of � and Correlated Period on
the Performance of the LRFU Policy

Fig. 8a, Fig. 8b, and Fig. 8c show the hit rate as a function of
� and c for the Sprite trace (client workstation 54) with a

cache size of 2,000, for the DB2 trace with a cache size of
1,000, and for the OLTP trace with a cache size of 2,000,

respectively. Overall, for all correlated periods, we observe
a performance effect of � that is similar to that in Fig. 7, i.e.,

the hit rate initially increases, reaches a peak, and drops
slightly after the peak.

We also observe that the effect of the correlated period
becomes more significant as the LRFU policy moves toward
the LFU policy. However, the correlated period has very

little effect as the LRFU policy moves toward the LRU
extreme. This observation agrees with, and indirectly

explains, the reason behind the improvement by the FBR

policy [12]. An important observation of the FBR policy was
that there is a need for a new section to factor out locality.
This notion is basically the notion of a correlated period. We
notice from our results that, when � is close to 0, that is,
when the policy resides on the LFU extreme, the hit rate is
greatly improved by considering the correlated references.
Hence, the FBR policy benefited from the addition of the
new section.

7 CONCLUSION

In many file systems, buffer caches are used to reduce the
effective disk access time and the traffic to the disk
subsystem. In a buffer cache, one of the most important
design decisions is the block replacement policy that
decides which block to replace when the buffer cache is full.

In this paper, we have shown that there exists a spectrum
of policies that subsumes the well-known LRU and LFU
policies in the form of the LRFU (Least Recently/Frequently
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Fig. 7. Effects of � on the LRFU policy using Sprite and database traces.

(a) Sprite trace: Client 54. (b) DB2. (c) OLTP.

Fig. 8. Combined effects of � and c on the LRFU policy. (a) Sprite trace:

Client 54 (cache size = 2,000 blocks). (b) DB2 (cache size = 1,000

blocks). (c) OLTP (cache size = 2,000 blocks).



Used) block replacement policy. The LRFU policy provides
a spectrum of policies using a weighing function

F�x� � �12��x, where � is a control parameter that determines
how much more weight we give to recent references than
older references. We also showed that the LRFU gives a

spectrum of implementations whose time complexity
ranges from O(1) to O�log2 n�, depending on the value of
control parameter �, where n is the number of blocks in the

buffer cache. These time complexities correspond to the
time complexities of the native implementations of the LRU

and LFU policies.
Results from performance evaluation through trace-

driven simulation show that the LRFU policy performs at
least competitively with other policies regardless of the

cache size. The results also show that, as the cache size
increases, the � value that gives the optimal performance

under the LRFU decreases, which indicates that more
weight should be given to older references to prevent the
replacement from being made in a near-sighted manner.

One direction for future research is to develop a

mechanism that dynamically adjusts the value of control
parameter � according to the evolution of the workload. We

expect that this will improve the performance of the LRFU,
further reducing the gap between its performance and that
of the offline optimal replacement policy. Another direction

for future research is to develop a program reference model
related to the LRFU policy. An example of such a reference
model is one that has � as its parameter and leads to

optimal performance under the LRFU with the correspond-
ing � value like the LRU stack model [19] for the LRU and

the independent reference model [20] for the LFU. Finally,
applying our concept of combining recency and frequency
to data placement and migration in distributed systems

with a hierarchy of buffer caches is also a direction for
future research.
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