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Abstract. This paper presents a new method for the selection of the two
hyperparameters of Least Squares Support Vector Machine (LS-SVM)
approximators with Gaussian Kernels. The two hyperparameters are the width ¢
of the Gaussian kernels and the regularization parameter A. For different values
of o, a Nonparametric Noise Estimator (NNE) is introduced to estimate the
variance of the noise on the outputs. The NNE allows the determination of the
best A for each given 6. A Leave-one-out methodology is then applied to select
the best 6. Therefore, this method transforms the double optimization problem
into a single optimization one. The method is tested on 2 problems: a toy
example and the Pumadyn regression Benchmark.
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1 Introduction

The selection of hyperparameters is a important issue in the fields of Artificial Neural
Networks, Machine Learning and System Identification. Many resampling techniques
have been successfully used as Leave-One-Out (LOO), Bootstrap and Cross-
Validation [1, 2].

Least Squares Support Vector Machines with Gaussian kernels are efficient
regression models [3]. For example, they do not suffer from the problem of local
minima. Unfortunately, two hyperparameters have to be tuned, for example using
LOO [4]. The two hyperparameters are the width ¢ of the Gaussian kernels and the
regularization parameter A. This problem leads to a grid search that is highly time
consuming. In this paper, we propose the use of Nonparametric Noise Estimator
(NNE) in order to select the regularization parameter as a function of the width G.

The paper is organised as follows: LS-SVM are introduced in Section 2, NNE in
Section 3 and the methodology in Section 4. In Section 5, the method is successfully
tested on 2 problems: a toy example and the Pumadyn regression Benchmark.
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2 Least Squares Support Vector Machines

LS-SVM are regularized supervised approximators, which has been proved to be
efficient for function approximation. Only solving linear equation is needed in the
optimization process, which not only simplifies the process, but also avoids the
problem of local minima in SVM. In this section, a short summary of the LS-SVM
model is given. The LS-SVM model [4, 5] is defined in its primal weight space by,

F(x) =o' ¢(x)+b (1)

where @(x) is a function which maps the input space into a higher dimensional feature
space, x is the M-dimensional vector of inputs x;, and ® and b the parameters of the
model. Given N input-output learning pairs (x', y') € RYxR, Least Squares Support
Vector Machines for function estimation formulate the following optimization:

N

mbinJ((o,e)=%(on+y%Zef subjectto y' :(DT(p(x" )+b+e” Ji=L...,N )
e i=1

The parameter set 6 consists of vector ® and scalar b. Solving this optimization

problem in dual space leads to finding the o; and b coefficients in the following

solution:

N
h(x) =" K (x,x')+b 3)

i=1

Function K(x, x') is the kernel defined as the dot product between the (p()c)T and @(x)
mappings. The meta-parameters of the LS-SVM model are the width of the Gaussian
kernels (taken identical for all kernels) and the y regularization factor. The training
method for the estimation of @ and b can be found in [4].

3 Nonlinear Noise Estimator

The problem of function approximation consists in the determination of the
relationship between a set x of inputs and one single output y. Given N inputs-output
pairs (x', yi) e RYxR, the relationship between x; and y; can be expressed as
v =f(x;) + €,.where f is the unknown relationship and ¢; the noise. Any estimation of
model f based on a finite number N of learning data goes through a compromise
between a low learning error (small bias) and a smooth model (small variance). In the
case of LS-SVM, this compromise is implemented through the choice of an adequate
value of . If the value of 7y is set too large, the model will overfit the data, including
the noise. Still, the value of ¥ should be set as large as possible; a too small value of y
would simply mean that the model does not fit the learning data! It is therefore
suggested to select the largest value of y so that the learning error does goes below the
level of noise. Indeed it is unreasonable to expect that a model could lead to an error
that is lower than the level of noise; if it was the case, the model would be in
overfitting region.
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Selecting y then means first to estimate the learning error of the model in function of
v, and secondly to estimate the variance of the noise. Of course, the noise estimator
should not use the model itself, but only the data at disposal; it should be nonparametric.

An approach called “Delta Test” has been proposed for estimating the variance of
the noise on the output [6]. It is based on the similarity of the noise behaviour
between two closed data points. As the distance d between two close points x and x’
goes to zero, the average MSE between the corresponding outputs tends to var(e) [7]:

E<%(y'—y)2 ‘x'—x‘<6>% var(e€) as 8—0 (6)

Despite this approach seems to be promising for noise estimation purposes, it fails
when the size of the data set is small with respect to the complexity of underlying
function and noise distribution. Jones et al. [6] improved the Delta test using the -
nearest neighbour distances between data in the input space and corresponding data in
the output space. This leads to an approach called here Nonparametric Noise
Estimator (NNE). Referring to [6], the estimate of noise variance is the intercept of
the linear regression line which is drawn between the average of the k nearest
distances in the inputs space and the corresponding average of the k nearest distances
in the output space (see equation 7 below). A proof of NNE (which is also called
Gamma Test in some papers) can be found in [7] and is based on a generalization of
Chybechov inequality and the property of k-nearest neighbor structures. Moreover, it
has been shown that NNE is useful too for evaluating the nonlinear correlation
between two random variables, or input and output pairs realizations. In the proof, the
following conditions are necessary:

- the first and second partial derivatives of the underlying function exist;
- the first to the fourth moments of the noise distribution exist;
- the noise is independent from the input.

Using this three conditions, the variance of noise is given by the intercept with the
vertical line 8(k)=0, of the regression line between (k) and d(k), where 1< k< p and

2

N N
8(k) = %;‘XNNM,’J() - X ’ and y(k) = ﬁ;‘yw(,xiﬂ - i (7

In (7), NN(x;,k) is the index of the k" neighbour of x;. According to [6], p=10 is
used in experiments presented in section 5.

This noise variance estimator based on [6] is similar to the variogram based
estimator detailed in [8]. However, it differs from the fact that Jones’ estimator only
uses the k nearest neighbours of the data points. This reduces the computation time
and makes the estimator efficient when the number of data points is large enough by
concentrating on small values of 8(k).

4 Methodology

The goal of the presented methodology is to transform the double optimization of 7y
and ¢ in LS-SVM into a simple optimization procedure. The double optimization of
the metaparameters using LOO presented in [3, 4] is very efficient but is highly time
consuming.
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Our methodology can be expressed as the following:

1)
2)
3)

4)
5)

A range of © is selected.

For each 6, the Nonparametric Noise Estimate is performed.

A bisection method is used to estimate the value of v such that the training
error of the LS-SVM is equal to the value of the Nonparametric Noise
Estimate. The training error is strictly decreasing with respect to y and then
the solution is unique and its computation is very fast. Taking the largest
v value such that the training error does not exceed the noise variance leads

to the more accurate mode without overfitting.
The LOO error (LOO MSE) is estimated for each value of G.
The value of ¢ and corresponding Y minimizing the LOO error are selected.

5 Experiment

5.1 Toy Example

A toy example with 1000 samples is build using the following function:

with € an uniform noise in [-0.5, 0.5]. The function is represented in Fig.2 The real
value of the variance of the noise is 0.0822 and the estimate obtained with the NNE is
also 0.0822. The methodology presented in section 4 is applied. The range of ¢ is
between 0.01 and 0.4 by step of 0.005. For each value of G, v is calculated using the
e of the NNE (see Fig. 1. a).
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Fig. 1. Toy example results. a -y with respect to 6. b — LOO error with respect to G.

For each value of ¢ (using the corresponding ), the LOO error is computed (see

Fig. 1. b). The optimum is obtained for ¢ = 0.295 and the corresponding y = 9.727.
The approximation obtained the selected LS-SVM is represented in Fig. 2.

Fig. 2. The toy example and the approximation after the selection of the hyperparameters
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5.2 Pumadyn Benchmark

The pumadyn datasets [9] are a family of datasets synthetically generated from a
realistic simulation of the dynamics of a Puma robot arm. The tasks associated with
these datasets consist of predicting the angular acceleration of one of the links of the
robot arm given the angular positions, velocities, torques, and in some cases, other
dynamic parameters of the robot arm. The dataset contains 8192 samples, 8 inputs and
one output. The methodology presented in section 4 is applied. The range of ¢ is
between 5 and 110 by step of 5. For each value of 6, vy is calculated using the estimate
of the NNE (see Fig. 3. a).
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-

Fig. 3. a y with respect to 6. b — LOO error with respect to G.

For each value of ¢ (using the corresponding 7), the LOO error is computed; a
smooth slope similar to the one in Fig. 1. b. is obtained. Its minimum is found for ¢ =
95 and the corresponding y = 6.4749e+008. The approximation with respect to the
target value y is represented in see Fig. 3. b. The LOO error that is obtained is 1.81.

6 Conclusion and Further Work

In this paper, a Nonparametric Noise Estimator has been introduced for the selection
of the hyperparameters of LS-SVM. The proposed methodology transforms the
double optimization problem of the selection of the hyperparameters into a single
optimization one, therefore reducing drastically the computation time for similar
results.

The method has been illustrated on two examples and gives accurate
approximations. Further work includes the test of other methods for Nonparametric
Noise Estimation (see for example [8]) and their embedding into the same
methodology to select hyperparameters in LS-SVM and other learning schemes.
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