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Abstract: While message sequence charts (MSCs) are widely used in indus­

try to document the interworking of processes or objects, they are expressively 

quite weak, being based on the modest semantic notion of a partial ordering 

of events as defined, e.g., in the ITU standard. A highly expressive and rig­

orously defined MSC language is a must for serious, semantically meaningful 

tool support for use-cases and scenarios. It is also a prerequisite to address­

ing what we regard as one of the central problems in behavioral specification 

of systems: relating scenario-based inter-object specification to state-machine 

intra-object specification. This paper proposes an extension of MSCs, which we 

call live sequence charts (or LSCs), since our main extension deals with specify­

ing "liveness", i.e., things that must occur. In fact, LSCs allow the distinction 

between possible and necessary behavior both globally, on the level of an entire 

chart and locally, when specifying events, conditions and progress over time 

within a chart. This also makes it possible to specify forbidden scenarios, and 

strengthens structuring constructs like as subcharts, branching and iteration. 
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1. INTRODUCTION 

Message sequence charts (MSCs) are a popular visual medium for the descrip­

tion of scenarios that capture the typical interworking of processes or objects. 

They are particularly useful in the early stages of system development. There 

is also a standard for the MSC language, which has appeared as a recommen­

dation of the ITU [29] (previously called the CCITT). The standard defines the 

allowed syntactic constructs rigorously, and is also accompanied by a formal 
semantics [30] that provides unambiguous meaning to basic MSCs in a process 

algebraic style. Other efforts at defining a rigorous syntax and semantics for 

MSCs have been made [17, 24, 10], and some tools supporting their analysis 

are available [1, 2, 6]. 

Surprisingly, despite the widespread use of the charts themselves and the 

more rigorous foundational efforts cited above, several fundamental issues have 

been left unaddressed. One of the most basic of these is, quoting [7]: "What 

does an MSC specification mean: does it describe all behaviors of a system, 

or does it describe a set of sample behaviors of a system?". While typically 

MSCs are used to capture sample scenarios corresponding to use-cases [23, 5], 

as the system model becomes refined and conditions characterizing use-cases 
evolve, the intended interpretation often undergoes a metamorphosis from an 

existential to a universal view: earlier one wants to say that a condition can 

become true and that when true the scenario can happen, but later on one 

wants to say that if the condition characterizing the use-case indeed becomes 

true the system must adhere to the scenario described in the chart. Thus, 

we want to be able to specify liveness in our scenarios, that is, mandatory 

behavior, and not only provisional behavior. 

In fact, the confusion between necessity and possibility arises even within 

a basic MSC itself: should edges of an MSC prescribe only (partial) ordering 

constraints, or should they entail causality? While the standard [30] views the 
semantics of MSCs as merely imposing restrictions on the ordering of events, 

designers are often interested in shifting the intended meaning depending on the 

current design level. And this, again, means preferring initially a provisional 

interpretation, but transforming these into mandatory interpretations as design 

details are added, thus enforcing messages to be sent and received, progress to 

be made, etc. We feel that the lack of variety in the semantic support of 

conditions in the ITU standard may well have contributed to its inability to 

distinguish between possibility and necessity. 
Hence, we feel the dire need for a highly expressive MSC language with 

a clear and usable syntax and a fully worked out formal semantics. Such a 

language is needed in order to construct semantically meaningful computer­
ized tools for describing and analyzing use-cases and scenarios. It is also a 

prerequisite to a thorough investigation of what we consider to be one of the 
central problems in the behavioral specification of systems, and, we feel, the 

problem in object-oriented specification: relating inter-object specification to 

intra-object specification. The former is what engineers will typically do in the 
early stages of behavioral modeling; namely, they come up with use-cases and 
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the scenarios that capture them, specifying the inter-relationships between the 

processes and object instances in a linear or quasi-linear fashion in terms of 

temporal progress. That is, they come up with the description of the scenarios, 

or "stories" that the system will support, each one involving all the relevant 

instances. An MSC language is best used for this. The latter, on the other 

hand, is what we would like the final stages of behavioral modeling to end up 

with; namely, a full behavioral specification of each of the processes or object 

instances. That is, we want a complete description of the behavior of each of 

the instances under all possible conditions and in all possible "stories". For this, 

most methodologists agree that a state-machine language (such as statecharts 

[18, 19]) is most useful. The reason we want something like a state-machine 

intra-object model as an output from the design stage is for implementation 

purposes: ultimately, the final software will consist of code for each process 

or object. These pieces of code, one for each process or object instance, must 

- together - support the scenarios as specified in the MSCs. Thus the "all 

relevant parts of stories for one object" descriptions must implement the "one 

story for all relevant objects" descriptions. 

Investigating the two-way relationship between these dual views of behav­

ioral description is an ultimate goal of our work. How to address this grand 

dichotomy of reactive behavior, as we like to call it, is a major problem. For 

example, how can we synthesize a good first approximation of the statecharts 

from the MSCs? Finding good ways to do this would constitute a significant 

advance in the automation and reliability of system development. However, it 

is not really worth contemplating this problem in any depth without a far more 

powerful MSC language. 

In this paper we propose a language for scenarios, termed Live Sequence 

Charts, or LSCs for short. LSCs constitute a smooth extension of the ITU 

standard for MSCs, along several fronts. We allow the user to selectively des­

ignate parts of a chart, or even the whole chart itself, as live, or mandatory, 

thus forcing messages to be sent, conditions to become true, etc. By taking 

the existential interpretation as a default, the designer may incrementally add 

liveness annotations as knowledge about the system evolves. Hand in hand 

with this extension comes the need to support conditions as first-class citizens: 

we assume availability of interface definitions for instances, containing events 

that can be sent and received, and also variables that may be referred to when 

defining (first-order) conditions. By associating activation conditions with an 

LSC, a live interpretation of the chart becomes more significant; it now means, 

informally, that whenever the system satisfies the chart's activation condition 

its behavior must conform to that prescribed by the chart. As we shall see, live 

elements (we call them hot) also make it possible to define forbidden scenar­

ios, i.e., ones that are not allowed to happen - a very important need for the 

engineer at the early stages of behavioral modeling. 

Another use of LSCs, indeed one of our motivations for the present work, 

comes from the UML standard [25], which recommends statecharts as well as 

sequence-charts for modeling behavior, but says little about the precise rela-



296 

tionships between the two. The Rhapsody tool from i-Logix is based on the 

language set for executable object modeling (XaM) defined in [19]. This set 

is really the executable kernel of the UML, and as thus can be regarded as 
UML's definitive rigorous core. It consists of the constructive languages 'of 

object-model diagrams and statecharts, and allows a variant of MSCs, but as 

a descriptive language only. The work presented in this paper provides the 

semantical basis for rigorous and complete consistency checks between the de­

scriptive view of the system by sequence charts and the constructive one. Such 
checks could eventually be made using formal verification techniques like model­

checking [3, 4]. (Some of the ideas of this paper were indeed inspired by the 
symbolic timing diagrams of [26, 27, 16, 28], used to specify and verify safety­

critical requirements for systems modeled using Statemate; see [11, 13,8,9,22].) 
The paper is organized as follows. Section 2 defines the way we link LSC 

specifications to a system, assuming the semantics of basic charts as given. Sec­

tion 3 presents and motivates our basic extensions to message sequence charts 

and outlines their semantics informally. We assume a linear time semantics of 

systems, where each system is associated with a set of (possibly infinite) runs. 

Section 4 highlights our approach in defining the semantics of LSCs, as the set 

of runs of a system that is consistent with the chart. Section 5 demonstrates 

the concepts with an example. 

2. RELATING CHARTS TO SYSTEMS 

In this section we show how a set of LSCs is related to a conventional behavioral 

description of the system given in some operational specification language, such 

as statecharts [18] or an object-oriented version thereof [19]. Usually, this 
description will be of the intra-object species, but for the purposes of the present 

paper the precise form it takes is unimportant; as we shall see, all we need is a 

behavioral description that defines the runs of the system. To avoid confusion, 

we refer to the language of such descriptions as the implementation language, 

reserving the term specification for our LSCs. 
We should remark that we have attempted to define LSCs with a minimal 

amount of commitment to the particulars of the implementation language, so 

as to preserve as much flexibility as possible. Thus, the reader will detect a 

certain amount of abstractness in our requirements from the languages and 

models surrounding the LSCs. 
For LSCs to make sense as a specification language, the implementation lan­

guage must contain explicit ways of creating instances of the modeled system. 

For example, in a structured analysis framework, such as that of STATEMATE 

[20,21], instances could correspond to activities, whereas in an object-oriented 

framework such as Rhapsody [19], they would correspond to instances of ob­

jects. Moreover, the implementation language will associate with each instance 
its data-space as induced by variable declarations, and its possible events; the 
latter might contain the sending or receiving of messages, timeouts, and the 

creation and destruction of instances. We refer to the variables of an instance i 
by var(i) and to its events by events(i). Variables may be local to an instance 
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or globally known. All we require is that var( i) contain all variables known to 

i. 

The following table shows the events discussed in this paper. To help keep 

the present paper focussed on the key aspects of our approach, we have decided 
to omit from it instance creation and destruction, as well as real-time features 

such as the setting and expiration of timers. 

< i, asynch, msgid!j > 

< i, synch, msgid!j > 

< i, msgid?j > 

I asynchronous transmission of message msgid I 
from instance i to instance j 

I synchronous transmission of message msgid 

from instance i to instance j 

I receipt of message msgid by instance i 

from instance j 

< i, asynch, msgid!env > I asynchronous transmission of message msgid I 
from instance i to the environment 

< i, synch, msgid!env > 

< i, msgid?env > 

I synchronous transmission of message msgid 

from instance i to the environment 

I receipt of message msgid by instance i 

from the environment 

A snapshot s of a system S shows all current events and gives a valuation 

to all variables. In particular, if c is a condition involving events in events(S) 

(Le., the collection of events of the system's instances) and variables in var(S) 

(Le., the variables of all its instances), then s F c denotes the fact that c is 

satisfied in snapshot s. 

As mentioned, we assume a linear time semantics of our implementation 

language. For a system S, a run of S is an infinite sequence of snapshots. We 

typically use r to denote a run, r( i) for its i-th snapshot, and r Ii for the infinite 

sequence obtained from r by chopping its prefix of length i-I. The set of all 

runs of S is denoted runs(S). 

We now start talking about our chart language. Let M be a set of LSCs. 

With each LSC m in M, we require as given the set of events and variables 
visible to m, and denote them by vis_events(m) and vis_var(m), respectively. 

These include all events explicitly shown in m as well as all variables occurring 

in conditions of m. M is compatible with S (denoted com(M,S)) if vis_ x 

events(m) ~ events(S), and vis_var(m) ~ var(S) for all m in M. 

Section 4 will define the concept of satisfaction of a single chart m by a 

run r of S, denoted by r F m, as a conservative extension of the semantics 

proposed in the ITU standard [29]. Events and variables not visible in a chart 
(as defined by vis_events(m) and vis_var(m)) are not constrained by the 

chart. In particular, if r F m, and r _jitter is obtained from r by inserting 

an arbitrary number of events of S which are invisible in m (i.e., events in 
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the set events(S) \ vis_events(m)), then r _jitter 1= m. Similarly, inserting 

an arbitrary but finite number of changes of local variables (not occurring in 

vis-var( m)) will not impact validity of m. 

To a large extent, the ITU standard leaves open the interrelation between 

a set of MSCs and an independent system description. However, this is a 

key issue to be resolved for any tool-development exploiting the existence of 

the two complementary views of system behavior (Le., inter- and intra-object). 

The problem to be solved in addressing these issues is the unification of two 

seemingly contradicting views of the usage of LSCs: 

• In early stages in the design process, LSCs will most often be used to 

describe possible scenarios of a system; in doing so, designers stipulate 

that the system should at least be able to exhibit the behavior shown in 

the charts. In particular, for each chart drawn, at least one run in the 

system should satisfy the chart . 

• In later stages in the design, knowledge about enabling conditions char­

acterizing different usages of the system to be developed will become 

available; in the use-case approach, once a run of the system has reached 

a point where the conditions characterizing the use case apply, d.esigners 

expect that from now on, regardless of possible ways the system may 

continue its run, the behavior specified in the chart should always be 

exhibited. 

At a logical level, the distinction between the two views is that between an 

existential and a universal quantification over the runs of the system: while 

the scenario view requires the existence of a run, the use-case view requires all 

runs of the system to exhibit the specified behavior once the initial condition 

characterizing the use-case is met. In terms of inclusion of behaviors, the 

scenario view calls for the legal runs of an LSC specification M of S to be 

contained in those of S, while the use-cause view calls for the reverse inclusion. 

We cater for this distinction by associating with each chart m its mode, with 

mod(m) E {existential, universal}. Hence, an LSC specification for a system 

S is a triple LS = < M, ac, mod >, where M is a set of LSCs compatible 

with S, and ac( m) provides for each m EMits activation condition. 

A chart m E M is satisfied by a run r E runs(S) (written r 1= m) iff the 

following hold: 

- if m is existential, then 3i. (r(i) 1= ac(m) 1\ r/i 1= m) ; 

- if m is universal, then Vi. (r(i) 1= ac(m) * r/i 1= m) . 

The system S satisfies the specification LS (written S 1= LS) iff the following 

hold: 

- for all existential charts m E M, 3r E runs(S). r 1= m ; 

- for all universal charts m E M, Vr E runs(S). r 1= m . 
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Typically, the activation condition of an existential chart will be weak, pos­

sibly degenerating to true, since we might have only partial knowledge at this 

state of the system's development. Dually, note that a run of the system need 

never match the activation condition of a universal chart, so that the "body" of 

such a chart might become vacuous, imposing no restrictions on the system at 

all. Good tool support for LSCs should offer "healthiness" checks for universal 

charts, guaranteeing that at least one run eventually reaches a point where its 

activation condition is true. 

In addition to the distinction between existential and universal charts, we 

may wish to say at some stage that we are done, namely, that the specification 

LS = < M, ac, mod > completely characterizes the system. We term this 

closing LS with respect to S, and take it to mean that for each run r of S, 

there is at least one LSC in M satisfied by r. Thus, LS is closed with respect 

to S iff Vr E runs(S). 3m E M. r 1= m . 

3. BREATHING LIFE INTO BASIC CHARTS 

As pointed out in the Introduction, the question of which parts of behavior 

are provisional and which are mandatory is not only an issue when an entire 

chart is considered. It arises in full force already within a single LSC. Should a 

message arc linking instances i and i' entail that the communication will indeed 

take place, or just that it can take place? Does an instance have to carry out 

all events indicated along its instance line or can it stop at some point, without 

continuing? What is the fate of false conditions? Are they mandatory; that 

is, does the run abort if a false condition is reached? Or are they provisional, 

meaning that there is some escape route that is taken in such a case? 

These are fundamental questions, and one of the main features of our LSC 

language, which turns it into a true enrichment of MSCs, is the ability to an­

swer them in any of the two ways in each individual case. This is done by 

adding liveness to the individual parts of the charts, via the ability to specify 

mandatory, and not only provisional, behavior. Thus, we allow local parts of 

the chart to be labeled as mandatory or provisional, and this labeling is carried 

out graphically. We refer to the distinction regarding an internal chart element 

as the element's temperature; mandatory elements are hot and provisional el­

ements are cold. We have attempted to make the graphical notation simple 

and clear, trying to remain as close as possible to the visual appeal of the ITU 

standard for MSCs. Here, now, are the extensions themselves. 

Along the horizontal dimension of a chart we not only distinguish between 

asynchronous and synchronous message-passing by two kinds of arrow-heads 
(solid for synchronous and open-ended for asynchronous), but the arrows them­

selves now come in two variants: a dashed arrow depicts provisional behavior­

the communication may indeed complete - and a solid one depicts mandatory 
behavior - the communication must complete. Along the vertical dimension 

we use dashed line segments to depict provisional progress of the instance -

the run may continue downward along the line - while solid lines indicate 

mandatory progress - the run must continue. 
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As far as conditions go, in order to help in capturing assertions that char­

acterize use-cases, we turn conditions into first-class citizens, allowing not only 

qualifying requirements as assertions over instance variables, but also prop­

erties of the state-space assumed to be true. Our conditions thus also come 

in the two flavors, mandatory ones denoted by solid-line condition boxes and 

provisional ones denoted by dashed-line boxes. If a system tun encounters a 

false mandatory condition, an error situation arises and the run aborts abnor­

mally. In contrast, a false provisional condition induces a normal exit from the 

enclosing su bchart (or the chart itself, if it is on the top-level). 

This two-type interpretation of conditions is quite powerful. Mandatory 

(hot) conditions, together with the other hot elements, make it possible to 

specify forbidden scenarios, i.e., ones that the system is not allowed to exhibit. 

This is extremely important and allows the behavioral specifier to say early 

on which are the "yes-stories" that the system adheres to and which are the 

"no-stories" that it must not adhere to. Also, as we shall see in Section 3, 

provisional (cold) conditions provide the ability to specify conventional flow of 

control, such as conditional behavior and various forms of iteration. 

Along the vertical time axis, we associate with each instance a set of loca­

tions, which carry the temperature annotation for progress within an instance. 

As explained, provisional progress between locations is represented by dashed 

lines and mandatory progress by solid lines. 

The following table summarizes the dual mandatory/provisional notions sup­

ported in LSCs, with their informal meaning: 

element mandatory provisional 

chari mode universal existential 

semantics all runs of the system at least one run of the 

satisfy the chart system satisfies the chart 

location temperature hot cold 

semantics instance run must instance run need not 

move beyond location move beyond location 

message temperature hot cold 

semantics if message is sent receipt of message 

it will be received is not guaranteed 

condition I temperature hot cold 

semantics condition must be met; if condition not met 

otherwise abort exit current (sub)chart 

One notational comment is in order. While we feel that the consistent use of 

dashed lines and boxes for provisional elements is important, it raises a problem 
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with the graphical notation used in the standard (and elsewhere) to denote co­
regions - a dashed vertical instance line segments. To avoid this confusion, 

we denote co-regions by dotted line segments running in parallel to the main 

instance axis. 
We have not included figures describing each of the graphical features alone, 

and prefer to show fuller examples. Thus, Section 5 contains LSCs for parts 

of the rail-car example of [19). They illustrate the expressibility of some of the 

newly introduced concepts in LSCs. 

We now define the abstract syntax ofthe basic charts of our language (the se­
mantics being described briefly in Section 4 and in more detail in the Appendix 

to the full version ofthe paper). Let inst(m) be the set of all instance-identifiers 

referred to in the chart m. With each instance i we associate a finite number of 

"abstract" discrete locations 1 from the set dom(m, i) ~ {O, ... ,Lmax(m, i)}, 

to which we refer to in the sequel as i's locations. We collect all locations of m 
in the set 

dom(m) = { < i, 1 >1 i E inst(m) 1\ 1 E dom(m, i)} . 

Locations are labeled with conditions or messages. Both messages and condi­

tions are assumed to have unique names. Messages with no defined partner as 

indicated by a matching message label are assumed to be sent or received from 

the environment. A shared condition by definition reappears as the label of 

locations in all instances sharing the condition. Formally, the sets of messages 
and conditions are defined by: 

Messages = Message_Ids x {synch, asynch} x {!,?} 

Ganditians = Ganditian_Ids x Bexp(vis_var(m)) 

where Bexp(V) denotes the set of boolean expressions involving only variables 

in the set V. Intuitively, we can describe a snapshot of a system S monitored by 

a chart m by picking from each of i's instances the "current" location, indicating 

which events and conditions of this instance have already been observed. 

For an MSC m, the association between locations and events or conditions 

is given by a partial labeling function: 

label(m): dom(m) -+ Temp x (Messages U Ganditians) , 

where the first component of the label in the set Temp = {hot, cold} defines 
the temperature of the associa.ted event or condition. To enforce progress along 

an instance line we associate a temperature with locations too, by the total 
mapping: 

temp(m): dom(m) -+ Temp. 

As outlined above, labeling a location with the temperature hot entails that 
the chart must progress beyond the location, along the subsequent (vertical) 

segment of the instance line. We add the one restriction that maximal locations 
must be cold; this is consistent with the graphical representation depicting a 
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hot location by a solid line segment originating from the hot location: by 

convention of the lTV standard [29], no time-line originates from the endpoint 

of an instance line, which is its maximal location. 

To capture ordering information that will make it possible to associate loca­

tions with coregions, we assume a total mapping: 

order(m) : dom(m) --t {true, false} 

A coregion is then defined as a maximal unordered set of locations within a 

given instance; i.e., a maximal connected set L of locations of i all satisfying 

order(m)« i,l » = false (where 1 E L). 

Our 1SCs are also endowed with hierarchy and the ability to specify simple 

flow of control. This is done by allowing a straightforward sub chart construc­

tion, similar to the one present in the lTV standard, together with multiplic­

ity elements for specifying subchart iteration (both limited iteration - using 

constants or numeric variables - and unlimited iteration - denoted by an 

asterisk), and a special notation for conditi9nal branching, also similar to that 

of the standard. The sub charts are themselves 1SCs, specified over a set of 

instances that may contain some of the instances of the parent chart and some 

new ones. 

While these extensions (the formal definitions of which we omit here) are not 

in themselves truly novel, when coupled with the dual notions of hot and cold 

elements in the charts (mainly conditions) their power is significantly enhanced. 

Whereas hot conditions serve in general to specify critical constraints that must 

be met to avoid aborting the entire run, in the presence of subcharts cold 

conditions become of special interest. For example, they can be used to control 

the flow of the run, by exploiting the fact that our semantics causes a false 

cold condition to trigger an exit from the current (sub)chart. For example, 

a siIbchart with a cold condition at its start is really an if-then branching 

construct, and a sub chart annotated with an unbounded multiplicity element 

and with a cold condition within can be used to specify while-do or repeat-until 

constructs, etc. 

Thus, cold conditions exit the current sub chart and hot conditions abort, 

providing a clean way to exit iterative and alternative constructs. 

4. SEMANTICS OF BASIC CHARTS 

A key topic in the formalization of sequence charts is the proper level of ab­

straction chosen to capture computations on variables. MSCs, and therefore 

1SCs too, are suitable for capturing the inter-workings of processes and ob­

jects, but are not intended to specify how the valuations of variables change 

during the runs of a system. For this there is a rich variety of specification 

formalisms. However, as mentioned earlier, we are interested in capturing the 

conditions that qualify use-cases, and to do so our semantic model must include 

knowledge about instance variables. 

Our approach to reconciling these seemingly contradictory facets of sequence 

charts is to provide sufficiently loose constraints on variable valuations. We thus 
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i-steps stutter 

chaos 

Figure 1 The skeleton automaton of a basic chart 

allow runs accepted by an LSC to include any implementation choice in updat­

ing instance variables, as long as the constraints expressed by conditions are 

satisfied. Technically, this can be achieved by allowing a potentially infinite 

number of local computation steps to occur anywhere between transitions visi­

ble in the LSC; such local computation steps hence do not advance the current 

cut in the partial order, but may arbitrarily change the values oflocal variables. 

Note that annotating locations as hot will ensure that local computations do 

not get stuck in some instance line-segment. Local computation steps may in 

fact also generate messages, as long as they are not visible in the chart. 

Progress requirements induced by hot locations introduce an additional com­

ponent in the states of the transition-system associated with an LSC: whenever 

a hot location is reached, its local successor must be reached too. Technically, 

we achieve this kind of requirement by a list of promises we maintain, which 

will include the successor that has to be reached. For a run to be accepted 

by the LSC, all promises must be eventually kept, by traversing the LSC at 

least up to the promised locations. Once thus reached, the promised locations 
are removed from the list. Similarly, when a run reaches the sending of a hot 

message, its reception is added to the list of promises, and is removed when the 

message arrives. 

Our definition of the semantics takes a two stage approach. We first associate 

with an LSC m a transition system A(m) called the skeleton automaton of 

m. Since standard message sequence charts are expressible in our language 
by always picking the provisional interpretation, the semantics will also be a 
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conservative extension of that provided by the ITU standard. The semantics 
of the standard builds on the partial order induced by an LSC m , which. we 

denote by :5m. The states of A(m) correspond to cuts in :5m, augmented by 
the current valuation of visible variables, the currently emitted events of all 

instances, the set of promises, and finally the status of m, in which we record 

whether the chart is active, or terminated, or aborted due to encountering a hot 

condition in a state where it evaluates to false. A chart may become terminated 

either after a complete successful run, or upon encountering a cold condition 

in a state where it evaluates to false. 

Figure 1 shows the transitions allowed in a particular status. The T-steps 

perform purely local computations and are always enabled when the chart is 

active. The i-steps allow instance i to proceed; this requires the chart to be 

active, and i's next location to be enabled according to the partial order :5m. 
We allow chaos-steps to arbitrarily change valuations of variables as well as the 

presence of events. Also, stutter-steps perform only stuttering, i.e., they do not 

change the state of the transition systm. 

Readers with no previous exposure to formal semantics may be irritated by 

the fact that chaotic behavior is allowed, once the chart has terminated. To 

understand why chaos is in this case desired, in fact required, recall that we have 

to be able to pad runs of the implementation into behaviors accepted by the 

LSC. Chaotic behavior hence represents the most liberal restriction possible: all 

runs that have successfully passed all ordering and liveness constraints causing 

the chart to achieve status terminated, may now behave ad libitum. 

The full version of this paper [12] contains a complete definition of the tran­
sition system A(m). 

Given the skeleton automaton A(m) we derive the set of runs accepted by 

the LSC m in the following steps. 

1. We view A(m) as a symbolic transition system, thus obtaining the set 

traces(A(m)) of all infinite sequences 1f of valuations of instance vari­

ables and events, such that the first valuation satisfies the initialization 

predicate of A(m), and consecutive elements are related by A(m)s tran­

sition relation. 

2. We classify A(m)s traces into accepted and rejected runs, by analyzing 

the valuation-sequences of the system variables status and promises: 

• 1f is accepted if one of the following holds: 

(i) it reaches status terminated (and maintains this status forever); 

in this case, either the complete LSC has been matched or a cold 

condition was not satisfied, causing exit from the chart; 

(ii) it stays forever in status active, having, however, fulfilled all 

promises (thus from some point in time onward, promises = 0 con­

tinuously); in this case, the LSC has been traversed only partially, 

with the frontier not progressing beyond some cut through the LSC. 

Such a computation is perfectly legal, as long as no progress anno­

tations have been given by the designer to force the LSC to move 
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beyond the cut; in particular, this is the case if the LSC is restricted 

to the notations supported by the current standard. 

• 7r is rejected if one of the following holds: 

(i) it reaches status aborted (and maintains this status forever); in 

this case, some hot condition has not been matched, causing abortion 

of the chart; 

(ii) it stays forever in status active, but lails to fulfill its promises, 

entailing that the set of promises remains non-empty forever; in this 

case, again the evaluation of the LSC gets stuck at some intermediate 

cut, performing local computations, but the promises accumulated 

up to and including this cut have still to be met. 

3. We obtain a run of the LSC by projecting an accepted trace onto valu­

ations of instance variables and events only, hiding the system variables 
status and promises, as well as i.blocked and i.location, for all instances i 

ofm. 

4. We can now derive the satisfaction relation between a run T produced by 

some implementation and an LSC m. We say that m is satisfied by T, 

denoted T 1= m, iff T is one of the runs of m according to clause 3 above. 
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Figure 3 Full LSC of rail-car 
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Figure 4 Existential LSC for "Perform approach": Scenario 1 

LSC: Perform app-oach - Pass tfTough terminal 
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departAck 

< cruising 

T )~ 

Figure 5 Existential LSC for "Perform approach": Scenario 2 
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5. AN EXAMPLE 

This section is devoted to illustrating LSCs with an example - the car behavior 

portion of the rail-car system of [19J. The reader would do well to have [19J 

handy, since the system itself is described there, as are the relevant scenarios. 

Also, for lack of space, we show here only a few of the relevant charts. More of 

them appear in the full version of the paper [12J. 

We have not yet incorporated states into LSCs, so we do not provide a direct 

mapping between the statecharts of [19J and the LSCs below, but we feel that 

the connection is quite clear. In fact, we claim that for the most part the LSCs 

are self-explanatory. Figure 2 shows a very high-level LSC for Car behavior, 

and Figure 3 provides the full LSC for it. 

A few things are worth noting: the way we denote a full chart by "LSC: 

name" and a sub chart by "Subchart: name"; the way a top-level condition 

"activating" a sub chart drawn within a parent chart is attached from within 

to the top of the sub chart borderline; the fact that the only instance lines 

shown passing through a subchart are the ones relevant to it, and that the 

others become transparent to it; the cruising condition that is joint to the 

Car and Proximity Sensor; the if-then-else construct within the Stopping at 

terminal subchart; the termination of the CarHandler instance, and the two 

small coregions with their dotted lines, inside the Perform departure subchart. 

Note also that we are using the standard timeout notation from statecharts, 

although we do not deal with timing issues in this paper. 

Figures 4 and 5 are not subcharts. They are full LSCs, and are presented 

with dashed borderlines to signify that they are existential. They show two 

of the three alternative scenarios of Perform approach (we omit the third for 

lack of space in this version of the paper), and hence they do not need to be 

satisfied in all runs. In contrast, the main LSC in Figures 2 and 3 is universal, 

so that it has to be satisfied in all runs, but its activation condition caddie 

makes sure that only runs satisfying the car. idle condition need be considered, 

as prescribed by the semantics of universal LSCs. 

The contrast between the two ways of presenting the possible scenarios of 

Perform approach (by existential charts or by an appropriately guarded sub­

chart) illustrates our comments in the Introduction about the different stages 

of behavioral specification. Typically, the scenarios would first be specified ex­

istentially, as in Figures 4 and 5, probably early on in the specification process. 

Later, they would be carefully combined - using the appropriate conditions 

- into the more informative subchart that appears within Figure 3. 

Acknowledgments 

We would like to thank Eran Gery for extensive discussions in the initial phases of 

the work, and Hillel Kugler for his help in preparing the examples and for comments 

on an early version. The referees made several very valuable suggestions. 



309 

References 

[1] R. Alur, G.J. Holzmann and D. Peled. An analyzer for message se­

quence charts. In T. Margaria and B. Steffen (eds.), Tools and Algo­

rithms for the Construction and Analysis of Systems (TACAS'96), 

Lecture Notes in Computer Science 1055, S. 35-48, Springer-Verlag, 

1996. 

[2] R. Alur, G.J. Holzmann and D. Peled. An analyzer for message 

sequence charts. Software - Concepts and Tools 17(2), (1996) 70-

77. 

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and J. Hwang. 

Symbolic model checking: 1020 states and beyond. Information and 

Computation 98(2) (1992) 142-170. 

[4] J.R. Burch, E.M. Clarke, K.L. McMillan and D.L. Dill. Sequential 

circuit verification using symbolic model checking. In Pmc. 27th 

ACM/IEEE Design Automation Conference, pp. 46-51, 1990. 

[5] G. Booch, 1. Jacobson and J. Rumbaugh. Unified Modeling Lan­

guage for Object-Oriented Development. Rational Software Corpo­

ration, 1996. 

[6] H. Ben-Abdallah and S. Leue. Expressing and Analyzing Timing 

Constraints in Message Sequence Chart Specifications. Technical 

Report 97-04, Department of Electrical and Computer Engineering, 

University of Waterloo, April 1997. 

[7] H. Ben-Abdallah and S. Leue. Timing constraints in message se­

quence chart specifications. In Pmc. 10th International Conference 

on Formal Description Techniques FORTE/PSTV'97, Chapman 

and Hall, 1997. 

[8] U. Brockmeyer and G. Wittich. Tamagotchis need not die - veri­

fication of Statemate designs. In Tools and Algorithms for the Con­

struction and Analysis of Systems (TACAS'98), 1998 (to appear). 



310 

[9J U. Brockmeyer and G. Wittich. Real-Time Verification of STATE­

MATE Designs. Proc. CAV 98, to appear. 

[10J M. Broy, C. Hofmann, 1. Kroger and M. Schmidt. A Graphical De­

scription Technique for Communication in Software Architectures. 

In Joint 1997 Asia Pacific Software Engineering Conference and In­

ternational Computer Science Conference (APSEC'97/ICSC'97), 
1997. 

[I1J W. Damm, M. Eckrich, U. Brockmeyer, H.-J. Holberg and G. Wit­

tich. Einsatz formaler Methoden zur Erhohung der Sicherheit einge­

betteter Systeme im Kfz. In 17. VDI/VW-Gemeinschaftstagung 

System-Engineering in der Kfz-Entwicklung, VDI-Tagungsbericht, 

1997. 

[12J W. Damm and D. Harel. LSCs: Breathing Life into Message Se­

quence Charts. Technical Report CS98-09, The Weizmann Institute 

of Science, Rehovot, Israel, April 1998. 

[13J W. Damm, B. Josko, H. Hungar and A. Pnueli. A compositional 

real-time semantics for STATEMATE designs. In Proc. COM­

POS'97, Lecture Notes in Computer Science, Springer Verlag, 1998. 

[14J W. Damm, B. Josko and R. Schlor. Specification and verification 

of VHDL-based system-level hardware designs. In E. Borger (ed.), 

Specification and Validation Methods. Oxford University Press, 

1995, pp. 331-410. 

[15J W. Damm and A. Pnueli. Verifying out-of-order execution. In D.K. 

Probst (ed.), Advances in Hardware Design and Verification: IFIP 

WG 10.5 International Conference on Correct Hardware Design 

and Verification Methods (CHARME), Montreal, Canada, Chap­

man and Hall, 1997, pp. 23-47. 

[16J K. Feyerabend and B. Josko. A visual formalism for real time 

requirement specifications. In M. Bertran and T. Rus (eds.), 

Transformation-Based Reactive Systems Development, Proc. 4th 

International AMAST Workshop on Real-Time Systems and Con­

current and Distributed Software, ARTS'97, Lecture Notes in Com­

puter Science 1231, pp. 156-168, Springer-Verlag, 1997. 

[17J J. Grabowski, P. Grau bmann and E. Rudolph. Towards a Petri 

net based semantics definition for message sequence charts. In O. 

Frgemand and A. Sarma (eds.), SDL'93: Using Objects, Proc. 6th 

SDL Forum, pp. 179-190, North-Holland, 1993. 

[18J D. Harel. Statecharts: A visual formalism for complex systems. Sci­

ence of Computer Programming 8 (1987) 231-274. 



311 

[19] D. Harel and E. Gery. Executable object modeling with statecharts. 

IEEE Computer, pp. 31-42, July 1997. 

[20] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sher­

man, A. Shtull-Trauring and M. Trakhtenbrot. STATEMATE: A 

working environment for the development of complex reactive sys­

tems. IEEE Trans. Software Engineering 16 (1990) 403-414. 

(21] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: 

The STATEMATE Approach. McGraw-Hill, 1998. 

[22] J. Helbig and P. Kelb. An OBDD representation of statecharts. In 

Proc. European Design and Test Conference (EDAC), pp. 142-148, 

1994. 

[23] 1. Jacobson. Object-Oriented Software Engineering: A Use Case 

Driven Approach. Addison-Wesley, Reading, MA, 1992. 

[24] P.B. Ladkin and S. Leue. Interpreting message flow graphs. Formal 

Aspects of Computing 7(5) (1995) 473-509. 

[25] Rational Corp. Documents on UML (the Unified Modeling Lan­

guage), http://www.rational.com/uml/resources.html. 1997. 

[26] R. Schlor. Symbolic Timing Diagrams: A Visual Formalism for 

Specification and Verification of System-Level Hardware Designs. 

Dissertation, Universitiit Oldenburg, 1998 (to appear). 

(27] R. Schlor and W. Damm. Specification and verification of system 

level hardware designs using timing diagrams. In Proc. European 

Conference on Design Automation, pp. 518-524, Paris, France, 

February 1993. 

[28] R. Schlor, B. Josko, and D. Werth. Using a visual formalism for 

design verification in industrial environments. In Pmc. Workshop 

on Visualization Issues for Formal Methods, VISUAL'98, Lecture 

Notes in Computer Science, Springer-Verlag, 1998 (to appear). 

[29] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). 

ITU-TS, Geneva, 1996. 

[30] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC) 

- Annex B: Algebraic Semantics of Message Sequence Charts. 

ITU-TS, Geneva, 1995. 


