
LSC'S: BREATHING LIFE INTO

MESSAGE SEQUENCE CHARTS

Werner Damm

OFFIS, Oldenburg, Germany

David Harel

The Weizmann Institute of Science, Rehovot, Israel

Abstract: While message sequence charts (MSCs) are widely used in indus­

try to document the interworking of processes or objects, they are expressively

quite weak, being based on the modest semantic notion of a partial ordering

of events as defined, e.g., in the ITU standard. A highly expressive and rig­

orously defined MSC language is a must for serious, semantically meaningful

tool support for use-cases and scenarios. It is also a prerequisite to address­

ing what we regard as one of the central problems in behavioral specification

of systems: relating scenario-based inter-object specification to state-machine

intra-object specification. This paper proposes an extension of MSCs, which we

call live sequence charts (or LSCs), since our main extension deals with specify­

ing "liveness", i.e., things that must occur. In fact, LSCs allow the distinction

between possible and necessary behavior both globally, on the level of an entire

chart and locally, when specifying events, conditions and progress over time

within a chart. This also makes it possible to specify forbidden scenarios, and

strengthens structuring constructs like as subcharts, branching and iteration.

P. Ciancarini et al. (eds.), Formal Methods for Open Object-Based Distributed Systems

© Springer Science+Business Media New York 1999

294

1. INTRODUCTION

Message sequence charts (MSCs) are a popular visual medium for the descrip­

tion of scenarios that capture the typical interworking of processes or objects.

They are particularly useful in the early stages of system development. There

is also a standard for the MSC language, which has appeared as a recommen­

dation of the ITU [29] (previously called the CCITT). The standard defines the

allowed syntactic constructs rigorously, and is also accompanied by a formal
semantics [30] that provides unambiguous meaning to basic MSCs in a process

algebraic style. Other efforts at defining a rigorous syntax and semantics for

MSCs have been made [17, 24, 10], and some tools supporting their analysis

are available [1, 2, 6].

Surprisingly, despite the widespread use of the charts themselves and the

more rigorous foundational efforts cited above, several fundamental issues have

been left unaddressed. One of the most basic of these is, quoting [7]: "What

does an MSC specification mean: does it describe all behaviors of a system,

or does it describe a set of sample behaviors of a system?". While typically

MSCs are used to capture sample scenarios corresponding to use-cases [23, 5],

as the system model becomes refined and conditions characterizing use-cases
evolve, the intended interpretation often undergoes a metamorphosis from an

existential to a universal view: earlier one wants to say that a condition can

become true and that when true the scenario can happen, but later on one

wants to say that if the condition characterizing the use-case indeed becomes

true the system must adhere to the scenario described in the chart. Thus,

we want to be able to specify liveness in our scenarios, that is, mandatory

behavior, and not only provisional behavior.

In fact, the confusion between necessity and possibility arises even within

a basic MSC itself: should edges of an MSC prescribe only (partial) ordering

constraints, or should they entail causality? While the standard [30] views the
semantics of MSCs as merely imposing restrictions on the ordering of events,

designers are often interested in shifting the intended meaning depending on the

current design level. And this, again, means preferring initially a provisional

interpretation, but transforming these into mandatory interpretations as design

details are added, thus enforcing messages to be sent and received, progress to

be made, etc. We feel that the lack of variety in the semantic support of

conditions in the ITU standard may well have contributed to its inability to

distinguish between possibility and necessity.
Hence, we feel the dire need for a highly expressive MSC language with

a clear and usable syntax and a fully worked out formal semantics. Such a

language is needed in order to construct semantically meaningful computer­
ized tools for describing and analyzing use-cases and scenarios. It is also a

prerequisite to a thorough investigation of what we consider to be one of the
central problems in the behavioral specification of systems, and, we feel, the

problem in object-oriented specification: relating inter-object specification to

intra-object specification. The former is what engineers will typically do in the
early stages of behavioral modeling; namely, they come up with use-cases and

295

the scenarios that capture them, specifying the inter-relationships between the

processes and object instances in a linear or quasi-linear fashion in terms of

temporal progress. That is, they come up with the description of the scenarios,

or "stories" that the system will support, each one involving all the relevant

instances. An MSC language is best used for this. The latter, on the other

hand, is what we would like the final stages of behavioral modeling to end up

with; namely, a full behavioral specification of each of the processes or object

instances. That is, we want a complete description of the behavior of each of

the instances under all possible conditions and in all possible "stories". For this,

most methodologists agree that a state-machine language (such as statecharts

[18, 19]) is most useful. The reason we want something like a state-machine

intra-object model as an output from the design stage is for implementation

purposes: ultimately, the final software will consist of code for each process

or object. These pieces of code, one for each process or object instance, must

- together - support the scenarios as specified in the MSCs. Thus the "all

relevant parts of stories for one object" descriptions must implement the "one

story for all relevant objects" descriptions.

Investigating the two-way relationship between these dual views of behav­

ioral description is an ultimate goal of our work. How to address this grand

dichotomy of reactive behavior, as we like to call it, is a major problem. For

example, how can we synthesize a good first approximation of the statecharts

from the MSCs? Finding good ways to do this would constitute a significant

advance in the automation and reliability of system development. However, it

is not really worth contemplating this problem in any depth without a far more

powerful MSC language.

In this paper we propose a language for scenarios, termed Live Sequence

Charts, or LSCs for short. LSCs constitute a smooth extension of the ITU

standard for MSCs, along several fronts. We allow the user to selectively des­

ignate parts of a chart, or even the whole chart itself, as live, or mandatory,

thus forcing messages to be sent, conditions to become true, etc. By taking

the existential interpretation as a default, the designer may incrementally add

liveness annotations as knowledge about the system evolves. Hand in hand

with this extension comes the need to support conditions as first-class citizens:

we assume availability of interface definitions for instances, containing events

that can be sent and received, and also variables that may be referred to when

defining (first-order) conditions. By associating activation conditions with an

LSC, a live interpretation of the chart becomes more significant; it now means,

informally, that whenever the system satisfies the chart's activation condition

its behavior must conform to that prescribed by the chart. As we shall see, live

elements (we call them hot) also make it possible to define forbidden scenar­

ios, i.e., ones that are not allowed to happen - a very important need for the

engineer at the early stages of behavioral modeling.

Another use of LSCs, indeed one of our motivations for the present work,

comes from the UML standard [25], which recommends statecharts as well as

sequence-charts for modeling behavior, but says little about the precise rela-

296

tionships between the two. The Rhapsody tool from i-Logix is based on the

language set for executable object modeling (XaM) defined in [19]. This set

is really the executable kernel of the UML, and as thus can be regarded as
UML's definitive rigorous core. It consists of the constructive languages 'of

object-model diagrams and statecharts, and allows a variant of MSCs, but as

a descriptive language only. The work presented in this paper provides the

semantical basis for rigorous and complete consistency checks between the de­

scriptive view of the system by sequence charts and the constructive one. Such
checks could eventually be made using formal verification techniques like model­

checking [3, 4]. (Some of the ideas of this paper were indeed inspired by the
symbolic timing diagrams of [26, 27, 16, 28], used to specify and verify safety­

critical requirements for systems modeled using Statemate; see [11, 13,8,9,22].)
The paper is organized as follows. Section 2 defines the way we link LSC

specifications to a system, assuming the semantics of basic charts as given. Sec­

tion 3 presents and motivates our basic extensions to message sequence charts

and outlines their semantics informally. We assume a linear time semantics of

systems, where each system is associated with a set of (possibly infinite) runs.

Section 4 highlights our approach in defining the semantics of LSCs, as the set

of runs of a system that is consistent with the chart. Section 5 demonstrates

the concepts with an example.

2. RELATING CHARTS TO SYSTEMS

In this section we show how a set of LSCs is related to a conventional behavioral

description of the system given in some operational specification language, such

as statecharts [18] or an object-oriented version thereof [19]. Usually, this
description will be of the intra-object species, but for the purposes of the present

paper the precise form it takes is unimportant; as we shall see, all we need is a

behavioral description that defines the runs of the system. To avoid confusion,

we refer to the language of such descriptions as the implementation language,

reserving the term specification for our LSCs.
We should remark that we have attempted to define LSCs with a minimal

amount of commitment to the particulars of the implementation language, so

as to preserve as much flexibility as possible. Thus, the reader will detect a

certain amount of abstractness in our requirements from the languages and

models surrounding the LSCs.
For LSCs to make sense as a specification language, the implementation lan­

guage must contain explicit ways of creating instances of the modeled system.

For example, in a structured analysis framework, such as that of STATEMATE

[20,21], instances could correspond to activities, whereas in an object-oriented

framework such as Rhapsody [19], they would correspond to instances of ob­

jects. Moreover, the implementation language will associate with each instance
its data-space as induced by variable declarations, and its possible events; the
latter might contain the sending or receiving of messages, timeouts, and the

creation and destruction of instances. We refer to the variables of an instance i
by var(i) and to its events by events(i). Variables may be local to an instance

297

or globally known. All we require is that var(i) contain all variables known to

i.

The following table shows the events discussed in this paper. To help keep

the present paper focussed on the key aspects of our approach, we have decided
to omit from it instance creation and destruction, as well as real-time features

such as the setting and expiration of timers.

< i, asynch, msgid!j >

< i, synch, msgid!j >

< i, msgid?j >

I asynchronous transmission of message msgid I
from instance i to instance j

I synchronous transmission of message msgid

from instance i to instance j

I receipt of message msgid by instance i

from instance j

< i, asynch, msgid!env > I asynchronous transmission of message msgid I
from instance i to the environment

< i, synch, msgid!env >

< i, msgid?env >

I synchronous transmission of message msgid

from instance i to the environment

I receipt of message msgid by instance i

from the environment

A snapshot s of a system S shows all current events and gives a valuation

to all variables. In particular, if c is a condition involving events in events(S)

(Le., the collection of events of the system's instances) and variables in var(S)

(Le., the variables of all its instances), then s F c denotes the fact that c is

satisfied in snapshot s.

As mentioned, we assume a linear time semantics of our implementation

language. For a system S, a run of S is an infinite sequence of snapshots. We

typically use r to denote a run, r(i) for its i-th snapshot, and r Ii for the infinite

sequence obtained from r by chopping its prefix of length i-I. The set of all

runs of S is denoted runs(S).

We now start talking about our chart language. Let M be a set of LSCs.

With each LSC m in M, we require as given the set of events and variables
visible to m, and denote them by vis_events(m) and vis_var(m), respectively.

These include all events explicitly shown in m as well as all variables occurring

in conditions of m. M is compatible with S (denoted com(M,S)) if vis_ x

events(m) ~ events(S), and vis_var(m) ~ var(S) for all m in M.

Section 4 will define the concept of satisfaction of a single chart m by a

run r of S, denoted by r F m, as a conservative extension of the semantics

proposed in the ITU standard [29]. Events and variables not visible in a chart
(as defined by vis_events(m) and vis_var(m)) are not constrained by the

chart. In particular, if r F m, and r _jitter is obtained from r by inserting

an arbitrary number of events of S which are invisible in m (i.e., events in

298

the set events(S) \ vis_events(m)), then r _jitter 1= m. Similarly, inserting

an arbitrary but finite number of changes of local variables (not occurring in

vis-var(m)) will not impact validity of m.

To a large extent, the ITU standard leaves open the interrelation between

a set of MSCs and an independent system description. However, this is a

key issue to be resolved for any tool-development exploiting the existence of

the two complementary views of system behavior (Le., inter- and intra-object).

The problem to be solved in addressing these issues is the unification of two

seemingly contradicting views of the usage of LSCs:

• In early stages in the design process, LSCs will most often be used to

describe possible scenarios of a system; in doing so, designers stipulate

that the system should at least be able to exhibit the behavior shown in

the charts. In particular, for each chart drawn, at least one run in the

system should satisfy the chart .

• In later stages in the design, knowledge about enabling conditions char­

acterizing different usages of the system to be developed will become

available; in the use-case approach, once a run of the system has reached

a point where the conditions characterizing the use case apply, d.esigners

expect that from now on, regardless of possible ways the system may

continue its run, the behavior specified in the chart should always be

exhibited.

At a logical level, the distinction between the two views is that between an

existential and a universal quantification over the runs of the system: while

the scenario view requires the existence of a run, the use-case view requires all

runs of the system to exhibit the specified behavior once the initial condition

characterizing the use-case is met. In terms of inclusion of behaviors, the

scenario view calls for the legal runs of an LSC specification M of S to be

contained in those of S, while the use-cause view calls for the reverse inclusion.

We cater for this distinction by associating with each chart m its mode, with

mod(m) E {existential, universal}. Hence, an LSC specification for a system

S is a triple LS = < M, ac, mod >, where M is a set of LSCs compatible

with S, and ac(m) provides for each m EMits activation condition.

A chart m E M is satisfied by a run r E runs(S) (written r 1= m) iff the

following hold:

- if m is existential, then 3i. (r(i) 1= ac(m) 1\ r/i 1= m) ;

- if m is universal, then Vi. (r(i) 1= ac(m) * r/i 1= m) .

The system S satisfies the specification LS (written S 1= LS) iff the following

hold:

- for all existential charts m E M, 3r E runs(S). r 1= m ;

- for all universal charts m E M, Vr E runs(S). r 1= m .

299

Typically, the activation condition of an existential chart will be weak, pos­

sibly degenerating to true, since we might have only partial knowledge at this

state of the system's development. Dually, note that a run of the system need

never match the activation condition of a universal chart, so that the "body" of

such a chart might become vacuous, imposing no restrictions on the system at

all. Good tool support for LSCs should offer "healthiness" checks for universal

charts, guaranteeing that at least one run eventually reaches a point where its

activation condition is true.

In addition to the distinction between existential and universal charts, we

may wish to say at some stage that we are done, namely, that the specification

LS = < M, ac, mod > completely characterizes the system. We term this

closing LS with respect to S, and take it to mean that for each run r of S,

there is at least one LSC in M satisfied by r. Thus, LS is closed with respect

to S iff Vr E runs(S). 3m E M. r 1= m .

3. BREATHING LIFE INTO BASIC CHARTS

As pointed out in the Introduction, the question of which parts of behavior

are provisional and which are mandatory is not only an issue when an entire

chart is considered. It arises in full force already within a single LSC. Should a

message arc linking instances i and i' entail that the communication will indeed

take place, or just that it can take place? Does an instance have to carry out

all events indicated along its instance line or can it stop at some point, without

continuing? What is the fate of false conditions? Are they mandatory; that

is, does the run abort if a false condition is reached? Or are they provisional,

meaning that there is some escape route that is taken in such a case?

These are fundamental questions, and one of the main features of our LSC

language, which turns it into a true enrichment of MSCs, is the ability to an­

swer them in any of the two ways in each individual case. This is done by

adding liveness to the individual parts of the charts, via the ability to specify

mandatory, and not only provisional, behavior. Thus, we allow local parts of

the chart to be labeled as mandatory or provisional, and this labeling is carried

out graphically. We refer to the distinction regarding an internal chart element

as the element's temperature; mandatory elements are hot and provisional el­

ements are cold. We have attempted to make the graphical notation simple

and clear, trying to remain as close as possible to the visual appeal of the ITU

standard for MSCs. Here, now, are the extensions themselves.

Along the horizontal dimension of a chart we not only distinguish between

asynchronous and synchronous message-passing by two kinds of arrow-heads
(solid for synchronous and open-ended for asynchronous), but the arrows them­

selves now come in two variants: a dashed arrow depicts provisional behavior­

the communication may indeed complete - and a solid one depicts mandatory
behavior - the communication must complete. Along the vertical dimension

we use dashed line segments to depict provisional progress of the instance -

the run may continue downward along the line - while solid lines indicate

mandatory progress - the run must continue.

300

As far as conditions go, in order to help in capturing assertions that char­

acterize use-cases, we turn conditions into first-class citizens, allowing not only

qualifying requirements as assertions over instance variables, but also prop­

erties of the state-space assumed to be true. Our conditions thus also come

in the two flavors, mandatory ones denoted by solid-line condition boxes and

provisional ones denoted by dashed-line boxes. If a system tun encounters a

false mandatory condition, an error situation arises and the run aborts abnor­

mally. In contrast, a false provisional condition induces a normal exit from the

enclosing su bchart (or the chart itself, if it is on the top-level).

This two-type interpretation of conditions is quite powerful. Mandatory

(hot) conditions, together with the other hot elements, make it possible to

specify forbidden scenarios, i.e., ones that the system is not allowed to exhibit.

This is extremely important and allows the behavioral specifier to say early

on which are the "yes-stories" that the system adheres to and which are the

"no-stories" that it must not adhere to. Also, as we shall see in Section 3,

provisional (cold) conditions provide the ability to specify conventional flow of

control, such as conditional behavior and various forms of iteration.

Along the vertical time axis, we associate with each instance a set of loca­

tions, which carry the temperature annotation for progress within an instance.

As explained, provisional progress between locations is represented by dashed

lines and mandatory progress by solid lines.

The following table summarizes the dual mandatory/provisional notions sup­

ported in LSCs, with their informal meaning:

element mandatory provisional

chari mode universal existential

semantics all runs of the system at least one run of the

satisfy the chart system satisfies the chart

location temperature hot cold

semantics instance run must instance run need not

move beyond location move beyond location

message temperature hot cold

semantics if message is sent receipt of message

it will be received is not guaranteed

condition I temperature hot cold

semantics condition must be met; if condition not met

otherwise abort exit current (sub)chart

One notational comment is in order. While we feel that the consistent use of

dashed lines and boxes for provisional elements is important, it raises a problem

301

with the graphical notation used in the standard (and elsewhere) to denote co­
regions - a dashed vertical instance line segments. To avoid this confusion,

we denote co-regions by dotted line segments running in parallel to the main

instance axis.
We have not included figures describing each of the graphical features alone,

and prefer to show fuller examples. Thus, Section 5 contains LSCs for parts

of the rail-car example of [19). They illustrate the expressibility of some of the

newly introduced concepts in LSCs.

We now define the abstract syntax ofthe basic charts of our language (the se­
mantics being described briefly in Section 4 and in more detail in the Appendix

to the full version ofthe paper). Let inst(m) be the set of all instance-identifiers

referred to in the chart m. With each instance i we associate a finite number of

"abstract" discrete locations 1 from the set dom(m, i) ~ {O, ... ,Lmax(m, i)},

to which we refer to in the sequel as i's locations. We collect all locations of m
in the set

dom(m) = { < i, 1 >1 i E inst(m) 1\ 1 E dom(m, i)} .

Locations are labeled with conditions or messages. Both messages and condi­

tions are assumed to have unique names. Messages with no defined partner as

indicated by a matching message label are assumed to be sent or received from

the environment. A shared condition by definition reappears as the label of

locations in all instances sharing the condition. Formally, the sets of messages
and conditions are defined by:

Messages = Message_Ids x {synch, asynch} x {!,?}

Ganditians = Ganditian_Ids x Bexp(vis_var(m))

where Bexp(V) denotes the set of boolean expressions involving only variables

in the set V. Intuitively, we can describe a snapshot of a system S monitored by

a chart m by picking from each of i's instances the "current" location, indicating

which events and conditions of this instance have already been observed.

For an MSC m, the association between locations and events or conditions

is given by a partial labeling function:

label(m): dom(m) -+ Temp x (Messages U Ganditians) ,

where the first component of the label in the set Temp = {hot, cold} defines
the temperature of the associa.ted event or condition. To enforce progress along

an instance line we associate a temperature with locations too, by the total
mapping:

temp(m): dom(m) -+ Temp.

As outlined above, labeling a location with the temperature hot entails that
the chart must progress beyond the location, along the subsequent (vertical)

segment of the instance line. We add the one restriction that maximal locations
must be cold; this is consistent with the graphical representation depicting a

302

hot location by a solid line segment originating from the hot location: by

convention of the lTV standard [29], no time-line originates from the endpoint

of an instance line, which is its maximal location.

To capture ordering information that will make it possible to associate loca­

tions with coregions, we assume a total mapping:

order(m) : dom(m) --t {true, false}

A coregion is then defined as a maximal unordered set of locations within a

given instance; i.e., a maximal connected set L of locations of i all satisfying

order(m)« i,l » = false (where 1 E L).

Our 1SCs are also endowed with hierarchy and the ability to specify simple

flow of control. This is done by allowing a straightforward sub chart construc­

tion, similar to the one present in the lTV standard, together with multiplic­

ity elements for specifying subchart iteration (both limited iteration - using

constants or numeric variables - and unlimited iteration - denoted by an

asterisk), and a special notation for conditi9nal branching, also similar to that

of the standard. The sub charts are themselves 1SCs, specified over a set of

instances that may contain some of the instances of the parent chart and some

new ones.

While these extensions (the formal definitions of which we omit here) are not

in themselves truly novel, when coupled with the dual notions of hot and cold

elements in the charts (mainly conditions) their power is significantly enhanced.

Whereas hot conditions serve in general to specify critical constraints that must

be met to avoid aborting the entire run, in the presence of subcharts cold

conditions become of special interest. For example, they can be used to control

the flow of the run, by exploiting the fact that our semantics causes a false

cold condition to trigger an exit from the current (sub)chart. For example,

a siIbchart with a cold condition at its start is really an if-then branching

construct, and a sub chart annotated with an unbounded multiplicity element

and with a cold condition within can be used to specify while-do or repeat-until

constructs, etc.

Thus, cold conditions exit the current sub chart and hot conditions abort,

providing a clean way to exit iterative and alternative constructs.

4. SEMANTICS OF BASIC CHARTS

A key topic in the formalization of sequence charts is the proper level of ab­

straction chosen to capture computations on variables. MSCs, and therefore

1SCs too, are suitable for capturing the inter-workings of processes and ob­

jects, but are not intended to specify how the valuations of variables change

during the runs of a system. For this there is a rich variety of specification

formalisms. However, as mentioned earlier, we are interested in capturing the

conditions that qualify use-cases, and to do so our semantic model must include

knowledge about instance variables.

Our approach to reconciling these seemingly contradictory facets of sequence

charts is to provide sufficiently loose constraints on variable valuations. We thus

303

i-steps stutter

chaos

Figure 1 The skeleton automaton of a basic chart

allow runs accepted by an LSC to include any implementation choice in updat­

ing instance variables, as long as the constraints expressed by conditions are

satisfied. Technically, this can be achieved by allowing a potentially infinite

number of local computation steps to occur anywhere between transitions visi­

ble in the LSC; such local computation steps hence do not advance the current

cut in the partial order, but may arbitrarily change the values oflocal variables.

Note that annotating locations as hot will ensure that local computations do

not get stuck in some instance line-segment. Local computation steps may in

fact also generate messages, as long as they are not visible in the chart.

Progress requirements induced by hot locations introduce an additional com­

ponent in the states of the transition-system associated with an LSC: whenever

a hot location is reached, its local successor must be reached too. Technically,

we achieve this kind of requirement by a list of promises we maintain, which

will include the successor that has to be reached. For a run to be accepted

by the LSC, all promises must be eventually kept, by traversing the LSC at

least up to the promised locations. Once thus reached, the promised locations
are removed from the list. Similarly, when a run reaches the sending of a hot

message, its reception is added to the list of promises, and is removed when the

message arrives.

Our definition of the semantics takes a two stage approach. We first associate

with an LSC m a transition system A(m) called the skeleton automaton of

m. Since standard message sequence charts are expressible in our language
by always picking the provisional interpretation, the semantics will also be a

304

conservative extension of that provided by the ITU standard. The semantics
of the standard builds on the partial order induced by an LSC m , which. we

denote by :5m. The states of A(m) correspond to cuts in :5m, augmented by
the current valuation of visible variables, the currently emitted events of all

instances, the set of promises, and finally the status of m, in which we record

whether the chart is active, or terminated, or aborted due to encountering a hot

condition in a state where it evaluates to false. A chart may become terminated

either after a complete successful run, or upon encountering a cold condition

in a state where it evaluates to false.

Figure 1 shows the transitions allowed in a particular status. The T-steps

perform purely local computations and are always enabled when the chart is

active. The i-steps allow instance i to proceed; this requires the chart to be

active, and i's next location to be enabled according to the partial order :5m.
We allow chaos-steps to arbitrarily change valuations of variables as well as the

presence of events. Also, stutter-steps perform only stuttering, i.e., they do not

change the state of the transition systm.

Readers with no previous exposure to formal semantics may be irritated by

the fact that chaotic behavior is allowed, once the chart has terminated. To

understand why chaos is in this case desired, in fact required, recall that we have

to be able to pad runs of the implementation into behaviors accepted by the

LSC. Chaotic behavior hence represents the most liberal restriction possible: all

runs that have successfully passed all ordering and liveness constraints causing

the chart to achieve status terminated, may now behave ad libitum.

The full version of this paper [12] contains a complete definition of the tran­
sition system A(m).

Given the skeleton automaton A(m) we derive the set of runs accepted by

the LSC m in the following steps.

1. We view A(m) as a symbolic transition system, thus obtaining the set

traces(A(m)) of all infinite sequences 1f of valuations of instance vari­

ables and events, such that the first valuation satisfies the initialization

predicate of A(m), and consecutive elements are related by A(m)s tran­

sition relation.

2. We classify A(m)s traces into accepted and rejected runs, by analyzing

the valuation-sequences of the system variables status and promises:

• 1f is accepted if one of the following holds:

(i) it reaches status terminated (and maintains this status forever);

in this case, either the complete LSC has been matched or a cold

condition was not satisfied, causing exit from the chart;

(ii) it stays forever in status active, having, however, fulfilled all

promises (thus from some point in time onward, promises = 0 con­

tinuously); in this case, the LSC has been traversed only partially,

with the frontier not progressing beyond some cut through the LSC.

Such a computation is perfectly legal, as long as no progress anno­

tations have been given by the designer to force the LSC to move

LSC: Car behavior
AC: car. Idle

I Car I

J Subchort: Car I
leaving terminal

..:.: ... - ~~~ - ---~

< cruising>

I Subchart: Perform I
approach

Figure 2 Top level LSC of rail-car

305

beyond the cut; in particular, this is the case if the LSC is restricted

to the notations supported by the current standard.

• 7r is rejected if one of the following holds:

(i) it reaches status aborted (and maintains this status forever); in

this case, some hot condition has not been matched, causing abortion

of the chart;

(ii) it stays forever in status active, but lails to fulfill its promises,

entailing that the set of promises remains non-empty forever; in this

case, again the evaluation of the LSC gets stuck at some intermediate

cut, performing local computations, but the promises accumulated

up to and including this cut have still to be met.

3. We obtain a run of the LSC by projecting an accepted trace onto valu­

ations of instance variables and events only, hiding the system variables
status and promises, as well as i.blocked and i.location, for all instances i

ofm.

4. We can now derive the satisfaction relation between a run T produced by

some implementation and an LSC m. We say that m is satisfied by T,

denoted T 1= m, iff T is one of the runs of m according to clause 3 above.

306

I LSC; Car behavior I
AC; car.ldle

r ,1 r . I I Control I DestPanel, Terminal Center

SUbchart: car leaving terminal ~ called I
from another terminal

Cruiser I I Car l r CarHandler

butte Pressed <' idle ':
1---. cailCar. • -

I --r---~~~~i---~se~n~d~Ca~r __ ~ ____ ~S~~~D~~~ __________ '~.~~Jl'---'

Ptm(9O)
departure

I SUbchart: Perform departure 1
<' departure ":

'.--.- ···---departRec
start _ : departA~

I--started ~

engaQ!>_

I

r Proximity I
Sensor

- ----l:~~~=oru==i~n=g==::====~=r--~ alertlOO

I Subchart: Perform approach I
-: arril{oI ;-,---- ---'

1.._ -_-.-_-_.-_~~!!!~~~~~ea_!!l_L_-._-_-.-_- __ -.-_-.-_+.-.-.-__ -_-.-.-__ -_-.-1 ______ .-1 CarHandler I
new

arrivAck

Subchart: stopping a terminal

-:'. _n:''?~~'?I? _:.:- alertStop

~~
SUbc artSlop at terminal

SUbchart: Temporary stop at terminal

I subchart: ass throug term no

-··[l~""J;1lll--'cleoartRe

aGpartACk>k::

Figure 3 Full LSC of rail-car

307

____ LI_.....:~..;c;;C;.,,' ca;;p;;er~~~:;;:..;v;.,a:;;~_p_pr_oa_C_h_._sto_p_a_t_term __ ln_a_I ____ ..JI. _ n __________ n ____ , ___ n _____ _

arivAck

Figure 4 Existential LSC for "Perform approach": Scenario 1

LSC: Perform app-oach - Pass tfTough terminal
L-__ A~C~:~ca~~a;;rr~l;;va;;I""': ____________ --J. _____ . _____ • ___ . ___________ • __ _

I car 1 I TermlndJ 1

crrivReq - n_ -------- .. CarHCI"'Idler

arivAck

< mode.poss

departReq

departAck

< cruising

T)~

Figure 5 Existential LSC for "Perform approach": Scenario 2

308

5. AN EXAMPLE

This section is devoted to illustrating LSCs with an example - the car behavior

portion of the rail-car system of [19J. The reader would do well to have [19J

handy, since the system itself is described there, as are the relevant scenarios.

Also, for lack of space, we show here only a few of the relevant charts. More of

them appear in the full version of the paper [12J.

We have not yet incorporated states into LSCs, so we do not provide a direct

mapping between the statecharts of [19J and the LSCs below, but we feel that

the connection is quite clear. In fact, we claim that for the most part the LSCs

are self-explanatory. Figure 2 shows a very high-level LSC for Car behavior,

and Figure 3 provides the full LSC for it.

A few things are worth noting: the way we denote a full chart by "LSC:

name" and a sub chart by "Subchart: name"; the way a top-level condition

"activating" a sub chart drawn within a parent chart is attached from within

to the top of the sub chart borderline; the fact that the only instance lines

shown passing through a subchart are the ones relevant to it, and that the

others become transparent to it; the cruising condition that is joint to the

Car and Proximity Sensor; the if-then-else construct within the Stopping at

terminal subchart; the termination of the CarHandler instance, and the two

small coregions with their dotted lines, inside the Perform departure subchart.

Note also that we are using the standard timeout notation from statecharts,

although we do not deal with timing issues in this paper.

Figures 4 and 5 are not subcharts. They are full LSCs, and are presented

with dashed borderlines to signify that they are existential. They show two

of the three alternative scenarios of Perform approach (we omit the third for

lack of space in this version of the paper), and hence they do not need to be

satisfied in all runs. In contrast, the main LSC in Figures 2 and 3 is universal,

so that it has to be satisfied in all runs, but its activation condition caddie

makes sure that only runs satisfying the car. idle condition need be considered,

as prescribed by the semantics of universal LSCs.

The contrast between the two ways of presenting the possible scenarios of

Perform approach (by existential charts or by an appropriately guarded sub­

chart) illustrates our comments in the Introduction about the different stages

of behavioral specification. Typically, the scenarios would first be specified ex­

istentially, as in Figures 4 and 5, probably early on in the specification process.

Later, they would be carefully combined - using the appropriate conditions

- into the more informative subchart that appears within Figure 3.

Acknowledgments

We would like to thank Eran Gery for extensive discussions in the initial phases of

the work, and Hillel Kugler for his help in preparing the examples and for comments

on an early version. The referees made several very valuable suggestions.

309

References

[1] R. Alur, G.J. Holzmann and D. Peled. An analyzer for message se­

quence charts. In T. Margaria and B. Steffen (eds.), Tools and Algo­

rithms for the Construction and Analysis of Systems (TACAS'96),

Lecture Notes in Computer Science 1055, S. 35-48, Springer-Verlag,

1996.

[2] R. Alur, G.J. Holzmann and D. Peled. An analyzer for message

sequence charts. Software - Concepts and Tools 17(2), (1996) 70-

77.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and J. Hwang.

Symbolic model checking: 1020 states and beyond. Information and

Computation 98(2) (1992) 142-170.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan and D.L. Dill. Sequential

circuit verification using symbolic model checking. In Pmc. 27th

ACM/IEEE Design Automation Conference, pp. 46-51, 1990.

[5] G. Booch, 1. Jacobson and J. Rumbaugh. Unified Modeling Lan­

guage for Object-Oriented Development. Rational Software Corpo­

ration, 1996.

[6] H. Ben-Abdallah and S. Leue. Expressing and Analyzing Timing

Constraints in Message Sequence Chart Specifications. Technical

Report 97-04, Department of Electrical and Computer Engineering,

University of Waterloo, April 1997.

[7] H. Ben-Abdallah and S. Leue. Timing constraints in message se­

quence chart specifications. In Pmc. 10th International Conference

on Formal Description Techniques FORTE/PSTV'97, Chapman

and Hall, 1997.

[8] U. Brockmeyer and G. Wittich. Tamagotchis need not die - veri­

fication of Statemate designs. In Tools and Algorithms for the Con­

struction and Analysis of Systems (TACAS'98), 1998 (to appear).

310

[9J U. Brockmeyer and G. Wittich. Real-Time Verification of STATE­

MATE Designs. Proc. CAV 98, to appear.

[10J M. Broy, C. Hofmann, 1. Kroger and M. Schmidt. A Graphical De­

scription Technique for Communication in Software Architectures.

In Joint 1997 Asia Pacific Software Engineering Conference and In­

ternational Computer Science Conference (APSEC'97/ICSC'97),
1997.

[I1J W. Damm, M. Eckrich, U. Brockmeyer, H.-J. Holberg and G. Wit­

tich. Einsatz formaler Methoden zur Erhohung der Sicherheit einge­

betteter Systeme im Kfz. In 17. VDI/VW-Gemeinschaftstagung

System-Engineering in der Kfz-Entwicklung, VDI-Tagungsbericht,

1997.

[12J W. Damm and D. Harel. LSCs: Breathing Life into Message Se­

quence Charts. Technical Report CS98-09, The Weizmann Institute

of Science, Rehovot, Israel, April 1998.

[13J W. Damm, B. Josko, H. Hungar and A. Pnueli. A compositional

real-time semantics for STATEMATE designs. In Proc. COM­

POS'97, Lecture Notes in Computer Science, Springer Verlag, 1998.

[14J W. Damm, B. Josko and R. Schlor. Specification and verification

of VHDL-based system-level hardware designs. In E. Borger (ed.),

Specification and Validation Methods. Oxford University Press,

1995, pp. 331-410.

[15J W. Damm and A. Pnueli. Verifying out-of-order execution. In D.K.

Probst (ed.), Advances in Hardware Design and Verification: IFIP

WG 10.5 International Conference on Correct Hardware Design

and Verification Methods (CHARME), Montreal, Canada, Chap­

man and Hall, 1997, pp. 23-47.

[16J K. Feyerabend and B. Josko. A visual formalism for real time

requirement specifications. In M. Bertran and T. Rus (eds.),

Transformation-Based Reactive Systems Development, Proc. 4th

International AMAST Workshop on Real-Time Systems and Con­

current and Distributed Software, ARTS'97, Lecture Notes in Com­

puter Science 1231, pp. 156-168, Springer-Verlag, 1997.

[17J J. Grabowski, P. Grau bmann and E. Rudolph. Towards a Petri

net based semantics definition for message sequence charts. In O.

Frgemand and A. Sarma (eds.), SDL'93: Using Objects, Proc. 6th

SDL Forum, pp. 179-190, North-Holland, 1993.

[18J D. Harel. Statecharts: A visual formalism for complex systems. Sci­

ence of Computer Programming 8 (1987) 231-274.

311

[19] D. Harel and E. Gery. Executable object modeling with statecharts.

IEEE Computer, pp. 31-42, July 1997.

[20] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sher­

man, A. Shtull-Trauring and M. Trakhtenbrot. STATEMATE: A

working environment for the development of complex reactive sys­

tems. IEEE Trans. Software Engineering 16 (1990) 403-414.

(21] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts:

The STATEMATE Approach. McGraw-Hill, 1998.

[22] J. Helbig and P. Kelb. An OBDD representation of statecharts. In

Proc. European Design and Test Conference (EDAC), pp. 142-148,

1994.

[23] 1. Jacobson. Object-Oriented Software Engineering: A Use Case

Driven Approach. Addison-Wesley, Reading, MA, 1992.

[24] P.B. Ladkin and S. Leue. Interpreting message flow graphs. Formal

Aspects of Computing 7(5) (1995) 473-509.

[25] Rational Corp. Documents on UML (the Unified Modeling Lan­

guage), http://www.rational.com/uml/resources.html. 1997.

[26] R. Schlor. Symbolic Timing Diagrams: A Visual Formalism for

Specification and Verification of System-Level Hardware Designs.

Dissertation, Universitiit Oldenburg, 1998 (to appear).

(27] R. Schlor and W. Damm. Specification and verification of system

level hardware designs using timing diagrams. In Proc. European

Conference on Design Automation, pp. 518-524, Paris, France,

February 1993.

[28] R. Schlor, B. Josko, and D. Werth. Using a visual formalism for

design verification in industrial environments. In Pmc. Workshop

on Visualization Issues for Formal Methods, VISUAL'98, Lecture

Notes in Computer Science, Springer-Verlag, 1998 (to appear).

[29] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).

ITU-TS, Geneva, 1996.

[30] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC)

- Annex B: Algebraic Semantics of Message Sequence Charts.

ITU-TS, Geneva, 1995.

