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Abstract

The paper addresses the problem of acquiring high-quality photographs with hand-
held smartphone cameras in low-light imaging conditions. We propose an approach
based on capturing pairs of short and long exposure images in rapid succession and
fusing them into a single high-quality photograph. Unlike existing methods, we take
advantage of both images simultaneously and perform a joint denoising and deblurring
using a convolutional neural network. A novel approach is introduced to generate real-
istic short-long exposure image pairs. The method produces good images in extremely
challenging conditions and outperforms existing denoising and deblurring methods. It
also enables exposure fusion in the presence of motion blur.

1 Introduction

Capturing high-quality images in difficult acquisition conditions is a formidable challenge.
Such conditions, which are not uncommon, include low lighting levels and dynamic scenes
with significant motion. Besides the problems of noise and motion blur, the camera sensors
have limited dynamic range. Details are typically lost either in dark shadows or bright high-
lights. These problems are most pronounced in smartphones, where the camera and optics
need to be small, light-weight and cheap.

A satisfactory compromise between short and long exposure times does not always exist.
To get rich colors, good brightness and low noise levels, one should choose long exposure
with low sensor sensitivity setting. This will cause motion blur if the camera is moving
(shaking), or if there is motion in the scene. A short exposure with high sensitivity setting
will produce sharp but noisy images. Examples of such images are shown in Fig. 1. These
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Figure 1: A pair of short and long exposure images captured by a hand-held tablet at night
in 7+210=217 milliseconds. A jointly deblurred and denoised image by the proposed LSD2

method. The sharp and noise-free LSD2 output has been tone mapped using an exposure
fusion method. See Fig. 4 for dynamic scene results.

issues can be addressed using image denoising and deblurring. However, the conventional
methods are limited by the information in a single image.

We propose a novel approach that addresses the aforementioned challenges by taking
“the best of both worlds” via computational photography. Current mobile devices can often
be programmed to capture bursts of images without extra hardware or notable delay. We
capture pairs of short and long exposure images and fuse them into a single high-quality
image. The method does not rely on existing denoising algorithms unlike previous methods
that utilize short-long exposure image pairs [33, 37].

The proposed method, called LSD2
1 performs joint image denoising and deblurring,

exploiting information from both images, adapting their contributions to the conditions at
hand. We train a deep convolutional neural network (CNN) that takes a pair of short and
long exposure images as input and provides a single image as output. A novel approach
is proposed for generating realistic short- and long-exposure images. LSD2 is shown to
outperform existing single-image and multi-image methods. Additionally, we train a second
network for exposure fusion. Processing the LSD2 output with the exposure fusion network
improves the colors and brightness compared to a single-exposure smartphone image. The
LSD2 network, training data, and the Android software we developed for acquisition of the
back-to-back short and long exposure images will be made public.

2 Related work

Single-image denoising has been addressed using approaches such as sparse representations
[7], transform-domain collaborative filtering [5] or nuclear norm minimization [9]. Several
deep learning based approaches have been proposed recently [2, 14, 17, 38]. The networks
have been trained with pairs of clean and noisy images [2, 14, 38], and without clean tar-
gets [17]. Besides the end-to-end deep learning approaches, some utilize either conventional
feed-forward networks [39] or recurrent networks [4] as learnable priors for denoising. Ran-
domly initialized networks have been used as priors without pretraining [31]. Some methods

1LSD2 stands for Long-Short Denoising and Deblurring.
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utilize raw sensor data [3]. In contrast to our approach, the aforementioned methods focus
on single image restoration and do not address multi-image denoising and deblurring.

Single-image deblurring is an ill-posed problem. Various priors have been proposed to
regularize the solutions, e.g. the dark and bright channel priors [22, 36]. These methods
assume spatially invariant blur which limits their practicality. Priors based on deep net-
works have also been proposed [39]. Some methods first estimate blur kernels and thereafter
perform non-blind deconvolution [8, 29]. There are end-to-end approaches that directly pro-
duce a deblurred image [16, 20, 21]. Some methods aim to remove deconvolution artifacts
[27, 32]. Others utilize additional information like inertial measurements [11, 19]. Despite
recent progress, single-image deblurring methods often fail to produce satisfactory results.
Unlike our approach, they cannot utilize a sharp but noisy image to guide the deblurring.

Several multi-image denoising [10, 18] and deblurring approaches [1, 6, 34, 35] have
been proposed recently. They process a burst of images captured with a constant exposure
time. Therefore, they address either denoising or deblurring, but not both problems jointly
like we do. As the input images are not as complementary, they cannot get “the best of
both worlds” but suffer the drawbacks of either case. Dynamic scenes are difficult to handle,
especially when the capture time is long. Images may be severely misaligned and fast-
moving objects might disappear from the view. With a constant exposure, the saturated
regions can not be easily avoided and high dynamic range imaging is not achieved. On top
of that, based on our observations and earlier studies [1, 18], it seems that due to the non-
complementary nature of constant exposure, it is necessary to use more input frames than
two. This may increase the consumption of memory, power, and processing time.

A similar problem setting as in our work is considered in [33, 37]. These methods utilize
short-long exposure image pairs for image deblurring. They first estimate blur kernels for
the blurry image and thereafter use the so-called residual deconvolution, proposed by [37], to
iteratively estimate the residual image that is to be added to the denoised sharp image. A non-
uniform blur model was introduced in [33] to improve the results. We note that both methods
use [23] for denoising. A significant drawback of [37] and [33] is that they require a separate
photometric and geometric registration stage, where the rotation is estimated manually [37].
Moreover, their model is not applicable to non-static scenes.

3 Joint Denoising and Deblurring

An overview of the proposed LSD2 method is shown in Fig. 2. The goal is to recover the
underlying sharp and noise-free image using a pair of long and short exposure images. A
short exposure image is sharp but noisy as it is taken with a high sensitivity setting. A long
exposure image is typically blurry due to camera or scene motion. Note that colors of the
short exposure image are often distorted w.r.t. the long exposure image as shown in Fig. 1.
Furthermore, the images are slightly misaligned even though they are captured immediately
one after the other.

3.1 Data Generation

In order to train the network, we need pairs of noisy and blurry images together with the
corresponding sharp images. Since there is no easy way to capture such real-world data,
we propose a data generation framework that synthesizes realistic pairs of short and long
exposure images. By utilizing images taken from the Internet and gyroscope readings, we
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Figure 2: Overview of the LSD2 joint denoising and deblurring method. To train the net-
work, we generate pairs of short and long exposure images with realistic motion blur, spatial
misalignment, image noise, color distortion and saturated regions.

can generate unlimited amount of training data with realistic blur while covering a wide
range of different scene types. The LSD2 network operates with images having intensity
range [0,1] and hence we first scale the original RGB values to that range. We first invert
the gamma correction of the input images (assuming γ = 2.2). Once the images have been
generated, the gamma is re-applied.

3.1.1 Synthesis of Long Exposure Images

We take a regular high-quality RGB image I from Internet as the starting point of our simula-
tion. At test time, the long exposure image should be slightly overexposed in order to enable
high dynamic range and ensure sufficient illumination of darkest scene regions. Hence, we
simulate the saturation of intensities due to overexposure. We do that by first multiplying the
intensity values with a random number s uniformly sampled from the interval [1,3]. Then, by
clipping the maximum intensity to value of 1, we get the sharp long exposure image, which
will be the ground truth target. That is, we train the network to predict an output with similar
exposure as the long exposure image.

3.1.2 Underexposure and Color Distortion

The underexposed short exposure image is synthesized from the aforementioned long expo-
sure image sI, where intensities can exceed 1, by applying affine intensity change (asI + b)
with random coefficients (a,b) sampled from uniform distributions, whose parameters are
determined by analyzing the intensity distributions of real short and long exposure pairs.
The real image pairs are captured so that the short exposure time is always 1/30 of the long
exposure time. Based on our observations, a constant exposure time ratio improves the per-
formance. The absolute exposure time is allowed to vary based on auto-exposure algorithm.

The colors are often distorted in the noisy short exposure image as show in Fig. 1. Hence,
in order to simulate the distortion, we randomly sample different affine transformation pa-
rameters (ai,bi) for each color channel i. Moreover, the parameters of the uniform distribu-
tions for ai and bi are determined independently for each color channel and they are such
that ai < 0.3 and bi < 0.01 always. By introducing random color distortions, we encourage
the network to learn the colors and brightness mainly from the (blurry) long exposure image.
The final short exposure image is obtained by adding noise as described in Sec. 3.1.5.
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3.1.3 Motion Blur

The motion blur is simulated only to the long exposure image sI. Synthetically blurred
images are generated with help of gyroscope measurements. Similar to prior work [11,
26], we assume that motion blur is mainly caused by the rotation of the camera. We start
by recording a long sequence of gyroscope readings with a mobile device. The idea is to
simulate a real life imaging situation with a shaking hand.

The starting time of the synthetic image exposure t1 is randomly selected to make each
of the blur fields different. The level of motion blur is controlled by the exposure time
parameter te, which defines the end time of the exposure t2 = t1 + te. The rotation of the
camera R(t) is obtained by solving the quaternion differential equation driven by the angular
velocities and computing the corresponding direction cosine matrices [30]. Assuming that
the translation is zero (or that the scene is far away), the motion blur can be modelled using
a planar homography

H(t) = KR(t)K−1, (1)

where K is the intrinsic camera matrix. Let x = (x,y,1)⊤ be a projection of the 3D point in
homogeneous coordinates. The point-spread-function (PSF) of the blur at the given location
can be computed by x′ = H(t)x.

Since mobile devices are commonly equipped with a rolling shutter camera, each row
of pixels is exposed at slightly different time. This is another cause of spatially-variant blur
[28]. When computing the PSFs, the start time of the exposure is adjusted based on the
y-coordinate of the point x. Let tr denote the camera readout time, i.e. the time difference
between the first and last row exposure. The exposure of the y:th row starts at t1(y)= t f +tr

y
N

,
where t f corresponds to the starting time of the first row exposure and N is the number of
pixel rows. To take this into account, we modify Eq. 1 so that

H(t) = KR(t)R⊤(t1)K
−1. (2)

The blurred image is produced by performing a spatially-variant convolution between the
sharp image and PSFs.

3.1.4 Spatial Misalignment

It is assumed that the blurry image is captured right after the noisy image. Nevertheless, the
blurry image might be misaligned with respect to the noisy image due to camera or scene
motion. Normally, the origin of the PSF would be at the center of the kernel (middle of the
exposure). To introduce the effect of spatial misalignment, we set the origin of each PSF
kernel to be at the beginning of the exposure. This approach also extends to cases when
there is a known gap between the two exposures.

3.1.5 Realistic Noise

As a final step, we add shot noise to both generated images. The shot noise is considered to
be the dominant source of noise in photographs, modeled by a Poisson process. The noise
magnitude varies across different images since it depends on the sensitivity setting (ISO) of
the camera. In general, the noise will be significantly more apparent in the short exposure
image, and we model this by setting the noise magnitude for the short exposure image larger
by a constant factor of 4. After this, we ensure that the maximum intensity of the blurry long
exposure image does not exceed the maximum brightness value of 1. That is, we clip larger
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values at 1. Later in Sec. 3.2.1, the network is fine-tuned with real examples of noisy images.
This way the noise characteristics can be learned directly from the data.

3.2 Network and Training Details

The network is based on the popular U-Net architecture [25]. This type of network has
been successfully used in many image-to-image translation problems [13]. It was chosen
because of its simplicity and because it produced excellent results for this problem. The
architecture of the network is shown in Fig. 2. The input of the network is a pair of blurry
and noisy images (stacked). The images can be of arbitrary size since the network is fully
convolutional. The number of feature maps is shown below the layers. All convolutional
layers use a 3x3 window, except the last layer, which is a 1x1 convolution. Downsampling
layers are 2x2 max-pooling operations with a stride of 2.

The LSD2 network was trained on 100k images taken from an online image collection
[12]. The synthetically corrupted images have resolution of 270 × 480 pixels. We used the
Adam [15] optimizer with the L2 loss function. The learning rate was initially set to 0.00005
and it was halved after every 10th epoch. The network was trained for 50 epochs.

3.2.1 Fine-tuning

The method is targeted for images that have gone through an unknown image processing
pipeline of the camera. To this end, we fine-tune the network with real images captured with
the NVIDIA Shield tablet. This way, the network can learn the noise and color distortion
models directly from the data. Real noise has a relatively coarse appearance as can be seen
in Fig. 3. Our synthetic noise model assumes that the noise is independent for each pixel.
This clearly does not hold because of the camera’s internal processing (demosaicing, etc.).

We capture pairs of short and long exposure images while the camera is on a tripod. The
ratio of exposure times is fixed to 1/30. The ISO settings for the long and short exposure
images are set to 200 and 800, respectively. The long exposure image is used as the ground
truth sharp image and the short exposure image directly corresponds to the noisy image. The
blurred image is generated from the sharp image as described in Sec. 3.1.3.

To increase the amount of training samples, we capture several image pairs at once while
varying the long exposure between 30 - 330 milliseconds. Moreover, the original images are
divided to four sub-images of size 480 x 960 pixels. The network was fine-tuned on 3500
images for 30 epochs. The rest of the details are the same as in the previous section.

4 Experiments

We capture pairs of noisy and blurry images in rapid succession with the NVIDIA Shield
tablet and the Google Pixel 3 smartphone. The image acquisition setup is the same as in Sec.
3.2.1, except this time the camera and/or scene is moving. The resolution of the images is
800 × 800 pixels (cropped from the original images). For the quantitative comparison, we
use synthetically blurred and noisy image pairs taken from the validation set. An example of
such pair is shown in Fig. 2.
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4.1 Single-Image Approaches

A comparison between LSD2 and the state-of-the-art denoising methods BM3D [5] and FD-
nCNN [38] is shown in Figs 3 and 4. The short exposure image (noisy) has been normalized
so that its intensity matches the blurry image for visualization. The most apparent weakness
of BM3D and FDnCNN is that the color information is partly lost and cannot be recov-
ered using a noisy image alone. Both methods tend to over-smooth some of the details even
though their noise standard deviation parameters have been manually tuned to achieve a good
overall balance between noise removal and detail preservation. A quantitative comparison in
Table 1 shows that LSD2 outperforms the other methods by a fair margin.

Fig. 4 show a comparison against the state-of-the-art deblurring method [16]. The results
of DeblurGAN are unsatisfactory as it fails to remove most of the blur. Note that saturated
image regions, such as light streaks, do not cause problems for LSD2. Furthermore, LSD2

performs surprisingly well on a dynamic scene even though it has not been trained for this
type of situations. However, fine details such as the bike wheels remain blurry. See the
supplementary material for more results.

We also tried retraining FDnCNN [38] and DeblurGAN [16] using our dataset but with
poor results. The FDnCNN network has to learn to adjust the colors and brightness in ad-
dition to denoising. This seems to be too challenging task at least for the given network.
Retraining did not improve DeblurGAN likely because the blurred and sharp images are
misaligned in our dataset.

The importance of using real data for fine-tuning is demonstrated in Fig. 3. The fine-
tuning clearly helps as the output is significantly less noisy and the colors are better. Fur-
thermore, the fine-tuning does not make the network device specific.

Noisy Blurry BM3D [5] FDnCNN [38] LSD2 (synth.) LSD2

Figure 3: A comparison of LSD2 and single-image denoising methods BM3D [5] and FD-
nCNN [38]. The second column from the right shows the results without fine-tuning (syn-
thetic data only). Note that the LSD2 network was fine-tuned using NVIDIA Shield data but
the input images on the second row were captured with Google Pixel 3.

4.2 Multi-Image Approches

Fig. 5 shows a comparison against Yuan et al. [37]. Input images were copied from the
original paper (PDF file) as their inputs are not available. The LSD2 output is significantly
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Noisy Blurry BM3D [5] FDnCNN [38] DeblurGAN [16] LSD2

Figure 4: A low light performance in the presence of saturated pixels (top) and a dynamic
scene performance (bottom).

Noisy Blurred DeblurGAN [16] BM3D [5] FDnCNN [38] LSD2

PSNR 16.43 16.88 15.78 23.48 23.83 25.67

SSIM 0.51 0.57 0.54 0.79 0.81 0.89

Table 1: The average peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM)
computed for 30 synthetically corrupted image pairs (shown in the supplementary material).
For fairness, the outputs of [5] and [38] have been adjusted so that the colors match the
blurred images before computing the scores.

less noisy. The performance of [37] depends heavily on the separate denoising step. Further-
more, it produces major artifacts when inputs are misaligned (supplementary material). The
parameters of [37] were kept default. Note that LSD2 does not have any tunable parameters.

The implementation of Whyte et al. [33] is not publicly available. For comparison, we
use the input images provided by the authors of [33]. Fig. 5 shows a comparison against the
original result by [33]. LSD2 produces equally good if not better results. The output of [33]
shows a little bit of ringing and slightly less details. Keep in mind that [33] and [37] utilize
an existing denoising algorithm. Moreover, the inputs need to be manually registered.

A recent burst deblurring method by Aittala and Durand [1] takes an arbitrary number
of blurry images as input. Using their implementation, we compare the methods in Fig. 6.

Noisy Blurry [37] LSD2 Noisy Blurry [33] LSD2

Figure 5: A comparison with Yuan et al. [37] and Whyte et al. [33]. They both require a
separate denoising step and manual alignment.



MUSTANIEMI ET AL.: LSD2 – JOINT DENOISING AND DEBLURRING 9

Noisy Blurry Aittala and Durand [1] LSD2 Details

Figure 6: A comparison with Aittala and Durand [1]. A burst of 6 blurry images was given
to [1] as input (supplementary material).

Noisy Blurry DeepFuse [24] LSD2 + [24] LSD2 + EF

Figure 7: Exposure fusion without and with LSD2. DeepFuse [24]: using a pair of noisy and
blurry images as input. LSD2 + DeepFuse [24]: the blurry image is replaced with the LSD2

output. LSD2 + EF: using our exposure fusion method instead of [24].

The final result appears less sharp compared to ours, which is obtained with only two images
(blurry and noisy). Furthermore, the saturated regions such as the overexposed windows,
cannot be recovered using the long exposure images alone. We also tried feeding a pair
of noisy and blurry images to [1] but the results were poor. This is not surprising as their
method is designed for blurry images only. Similar to [33, 37], the input images need to be
registered in advance.

4.3 Exposure Fusion

LSD2 network produces a sharp version of the long exposure image that is aligned with
the short exposure image. Thus, the short exposure image and the LSD2 output would be
suitable inputs for an exposure fusion method, such as DeepFuse [24], which assume that
the input images are not blurry or misaligned. Fig. 7 shows the result of DeepFuse when
using a pair of noisy and blurry images as input. The results are significantly improved when
DeepFuse is used together with LSD2.

We also trained a second network for exposure fusion since DeepFuse [24] does not con-
sider the noise and color distortions of the short exposure image. Details of the network
architecture and training are given in the supplementary material. The training was done
using similar synthetic long and short exposure image pairs as described in Sections 3.1.1
and 3.1.2. This time the random number s was uniformly sampled from the interval [1/3,3]
and the ground truth target is the original image, which has not been scaled by s and is pre-
sumably taken with "good exposure". This type of approach differs from existing methods,
which often use hand-crafted features and assume that ground truth targets are not available.

Figs 1 and 7 show that we get higher dynamic range and better reproduction of colors
and brightness than in either one of the single-exposure input images. Notice also the lack
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of details in the dark areas of the DeepFuse output (see e.g. the curtains). The main purpose
of this experiment is to demonstrate the suitability of LSD2 approach for handheld high-
dynamic range imaging with smartphones. A more comprehensive evaluation of different
exposure fusion techniques is left for future work.

5 Conclusion

We proposed a CNN-based joint image denoising and deblurring method called LSD2. It
recovers a sharp and noise-free image given a pair of short and long exposure images. Its
performance exceeds the conventional single-image denoising and deblurring methods on
both static and dynamic scenes. Furthermore, LSD2 compares favorably with existing multi-
image approaches. Unlike previous methods that utilize pairs of noisy and blurry images,
LSD2 does not rely on any existing denoising algorithm. Moreover, it does not expect the in-
put images to be pre-aligned. Finally, we demonstrated that the LSD2 output makes exposure
fusion possible even in the presence of motion blur and misalignment.
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