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ABSTRACT

At present, the relationship between fault coverage
of LS! circuit tests and the tested product quality is
not satisfactorily understood. Reported work on
integrated circuits predicts, for an acceptable field
reject rate, a fault coverage that is too high (99 per-
cent or higher). This fault coverage is difficult to
achieve for LSI circuits.

This paper proposes a model of fault distribution
for a chip. The number of faults on a defective chip is
assumed to have a Poisson density for which the
average value is determined through experiment on
actual chips. The procedure, which relates the model
to the chip being studied, is simple; one or more
fabricated chip lots must be tested by a few prelim-
inary test patterns. Once the model is characterized,
the required value of fault coverage can be easily
determined for any given field reject rate. The main
advantage of such a model is that it adapts itself to
the various characteristics of the chip (technology,
feature size, manufacturing environment, etc.) and the
fault model (e.g., stuck-type faults). As an example,
the technique was applied to an LS| circuit; realistic
results were obtained.

1. INTRODUCTION

Tests for a large LSI circuit consist of patterns,
applied to the input pins, that exercise either some
or all circuit functions. Certain functions have
faults that may be sensitive to data patterns, but in
most cases, for practical reasons, tests cannot use
exhaustive data patterns. Therefore, even though
the circuit passes the tests, there is no guarantee
that the circuit is fault-free. Thus, there is a need
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for determining how well a test can isolate a faulty
circuit.

Fault coverage obtained from a fault simulator is
a commonly used criterion for judging the quality of
tests. Since most present-day fault simulators can
simulate only the single stuck-type faults, fault cov-
erage usually refers to the percentage of these
faults detected by the tests. Faults on an actual LSI
chip, however, are caused by physical defects, such
as shorts or breaks in metallization or diffusion
runs, shorting of the substrate with metallization or
diffusion, etc. [1]. Although many of these physical
faults can be detected by tests that detect the sin-
gle stuck-type faults, it is difficult to determine
which faults may have been left undetected [1-31.
Also, the detection of multiple stuck-type faults is
not assured by the single-fault tests [4, p. 21].

Since stuck-type faults represent only a portion
of all possible faults, the coverage of stuck-type
faults can only be regarded as a figure of merit for
the tests. In this paper, we try to answer the ques-
tion: how is this figure of merit related to the qual-
ity of the tested product? The desired value of the
single stuck-type fault coverage would depend, of
course, on circuit implementation, technology,
manufacturing environment, and the required quality
level of the tested product.

As a rule, test designers attempt to provide as
close to 100-percent fault coverage as possible.
However, test development and test application
costs increase very rapidly as we approach this
goal. In reality, a large circuit may have redundan-
cies that make the testing of certain faults impossi-
ble or irrelevant. Locating redundancies is a tedi-
ous process for which no automatic method is avail-
able. If complete design verification could be
achieved, the undetected faults could be ignored as
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redundant. However, no satisfactory method of gen-
erating such tests is known.

All faults do not occur with the same frequency.
The relative frequency of occurrence depends on
the technology, design rules, production environ-
ment, etc. The evaluation of tests, therefore, should
consider these factors. The method described in
this paper is based on a model of fault distribution
for the chip. Distribution parameters are deter-
mined experimentally by examining an actual chip
production lot. An analysis then gives the value of
fault coverage required for a given quality (field
reject rate [5]) of the tested chips. A previous
attempt [5] was based on a more restrictive model
for fault distribution. It produced satisfactory
results for chips with high yield (typically S$SI and
MSI) but fault-coverage values for larger chips with
lower yield were too pessimistic. Our analysis is
not restricted to chips of any particular type or size,
and can be applied to all scales of integration.

2. DEFINITIONS

A Chip area

D, Defect density

f Fault coverage

m Number of faults covered by tests

n Number of faults present on a
chip

ng Average number of faults on a
defective chip

n,, Average number of faults on a
chip

N Total number of possible faults
on a chip

p(n) Probability of exactly n faulis
being present on a chip

P(f) Probability of a chip being found
faulty when tested to a fauit cov-
erage f

q,.(n) Probability of detecting exactly k
faults when the chip has n faults

present

r{f) Field reject rate for fault cover-
age f

y Yield of chips (probability of a

manufactured chip being good)

Ypg(f) Probability of a fauity chip being
tested as good when the fault
coverage of tests is f

A A parameter depending on the
variance of D

3. STATISTICAL MODEL

Assume that an integrated circuit chip has n
faults. Although a chip can have several types of
faults, we assume that they are equivalent to n
single-stuck type fauits. In other words, the faults
present on the chip can be detected by tests that
detect n stuck-type faults. Further assume that the
yield of good chips is y, and that the number of
faults, n, on a faulty chip has a Poisson distribution
({sl, p. 156):

— (ng—1)""" —(ng—1)
p(n)=—y) BT .
n =1,23,. (@)]
PO =y, J

where n, is the average number* of faults on a
faulty chip. In the above expression, the Poisson
density function was shifted to the right by one unit,
since it was used for the probability of the number
of faults on a defective chip, ie, n # 0,
n=123, """ From (1), the average number of
faults is obtained as

n,, = % np(n)=(—yn,. (2)
n=0

Indeed, the number of terms in this summation
should be equal to the maximum number of fauits
N. In practice, however, the value of ngy is much
smaller than the maximum number of faults, and the
use of the infinite sum, which allows a simple result,
is numerically quite accurate. The distribution of
faults, as given by (1), is characterized by the two
parameters, y and ng.

Further, we assume that the yield y of the chip is
known, at least approximately. In fact, yield of
integrated circuits has been widely studied in the
past [7-12]. The following formula is often used for
calculating chip yield [11,12]

a1
y = (14+ADgA) (3)

Note that the parameter n, is different from the average

number of physical defects (Dy,4), which is used for
calculating chip yield. In a high-density circuit, a physical
defect can produce several logical faults.
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where

>
I

chip area,

D, = average number of defects per unit area, and

D& X = variance of D,

The parameters Dy and A can be determined either
experimentally [10], or from' results on chips
manufactured by the same processing system.

The estimation of the remaining parameter, ng,
will be discussed later.

4. PROBABILITY OF ISOLATING A
FAULTY CHIP

Assume that the total number of possible faults
on a chip is N, where N >> n,; We test these
chips by the tests that detect m faults. Fault cover-
age is then f ==m/N. Let g, (n) be the probability
of detecting exactly k faults when a chip has n
faults present on it.

An expression for q,(n) may be obtained by an
analogy to the statistician’s game of selecting a ball
from an urn. Visualize N balls, one corresponding
to each possible fault. Of these, exactly n are
black, representing the actual faults on the chip.
The remaining N—n balls are white and simply
represent the sites of faults that are not present.
Each fault covered by the tests is viewed as one
ball selected without replacement from the urn.
Then g,(n) is the probability of drawing exactly k
black balls in m selections and is given by the
hypergeometric density function (6], pp. 43-44):

(1) (k)
(m)

The probability of passing the chip, having n faults,
as good, is

qgi(n) = (4)

N—n)
m
(m)
m
where f = m/N is the fault coverage of tests. The
above approximation is quite accurate for
n << VN(1—f)/f, and it will be used in the follow-
ing analysis. For larger values of n, a better

closed-form expression is derived in the Appendix,
where the accuracy of (5) is also discussed.

qoln) = =~ (1—f)", (5)
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Since the number of faults n on a bad chip is a
random number, the probability (or yield) of a bad
chip being tested good, is given by

N
Ypo(f) = 2 qoln) p(n). ()

n=1

Substituting from (1) and (5), and simplifying, we
get

Yoo (F) = (1—F)(1—y)e "7V . )

The field reject rate r(f) is defined as the ratio of
the number of bad chips tested good to the number
of ali chips that are tested good [5]. Therefore,

F(F) = Yoo (F )y +Ypg(£)] .
and by substituting from (7), we obtain

(—f)i—y)e o
y +(1=F)(1—y)e "V

r(f)= (8)

Figure 1 shows a plot of (8) for two different yields,
y =0.80 and 0.20. In each case two curves
corresponding to np=2 and 10 are drawn. The
graph illustrates the dependence of test results on
the parameter n, Consider a yield of 80 percent,

10

04

0.01

FIELD REJECT RATE,r(f)

0.005

1 1 1 1
0 01 02 03 04 05 06 07 08 09 10

FAULT COVERAGE,f

0001 [ I N

Fig. 1 Field reject rate for two chips with yields of 80
percent and 20 percent.



say, for an MSI chip. If we wish to test the chip for
a field reject rate below 0.5 percent, the fault cover-
age should be 95 percent for no = 2 or 38 percent
for ng= 10. Similarly, for a yield of 20 percent
(which is closer to LSI), one would require a fauit
coverage of 99 percent or 63 percent depending on
whether n, is taken as 2 or 10. Intuitively, we
would expect a smaller chip to have fewer faults
than a larger chip. Thus one might have a smaller
value of ny for MSI chips and a higher value for LSI
chips. A higher value of n, however, requires a
lower fault coverage for a given field reject rate,
indicating that for LS| chips, a relatively lower fault
coverage might be adequate. As pointed out earlier,
the parameter ny not only depends on the chip size,
but may also be a function of technology, design
rules, processing environment, etc. We will, there-
fore, use an experimental procedure for determining
this parameter.

5. DETERMINATION OF n,

Consider the fraction of chips rejected by tests
having a fault coverage f. This fraction is equal to
the foliowing probability:

PUY=1—y = Ypolf).

Substituting from (7), we get

P(f) = (1—y)|1—(1—F)e "V | (9)

For a given chip, the yield y can be calculated from
(3). To determine n,, we start with a set of test pat-
terns that need not have a high fault coverage.
These patterns are evaluated on a fault simulator in
the same order as they would be applied to the
chip. A cumulative fault coverage as a function of
the number of test patterns is obtained. Next, the
patterns are used for testing chips being produced
in the processing line. A chip is rejected at the first
pattern it fails. A sufficiently large number of chips
(say 100 to 200) are tested so that the cumulative
fraction of rejected chips can be plotted as a func-
tion of the fault coverage. The calculated yield P(f)
as computed from (9), is also plotted on the same
graph for various values of n,. The value of ng
closest to the experimental curve is selected for
use in the calculation of the required fault coverage.

Experience has shown that in LS| testing, a large
proportion of chips is rejected by the first few test
patterns. Thus, a graph of the fraction of rejected
chips and P(f) exhibits a steeply rising straight-line
behavior near the origin. The experimental value of
this slope can also be used for determining ng,
since from (9)

dP(f) _

Pt =2,

(1= 11— F ) n g—1)le "o D

and

P(0) = (1—y)ng. (10)

Notice that the slope P’(0) is equal to the average
number (n,, ) of faults as given by (2). One can
determine an experimental value of P’(0) by apply-
ing a relatively small number of test patterns to the
chips. Also, when the yield is not known,
no = P’(0) can be used as an estimate. Notice that
P’(0) will be a close approximation for ngy for low
yield chips. Since, for a nonzero yield, P’(0) < n,,
using P’(0) in place of ny will give a pessimistic (or
safe) value of fault coverage. In Fig. 1, a lower
value of ny means a higher fault coverage for a
given field reject rate.

An example using the procedures for determin-
ing ny as outlined here will be given in a later sec-
tion.

6. DETERMINATION OF THE REQUIRED
FAULT COVERAGE

Once ny has been evaluated for a chip, the
required fault coverage for any specified field reject
rate can be computed from (8). It is, however, not
very convenient to solve (8) for f. If the required
field reject rate is r, then from (8), we get

(1_r)(1_f )e—(n°—1)l
r+(=r)(1—f)e e

(11)

The result is plotted in Figs. 2, 3, and 4 for
r = 0.01,0.005and 0.001, respectively. Fault cover-
age can be easily obtained from these graphs. For
example, if the field reject rate was specified as one
in a thousand, i.e.,, r = 0.001, then from Fig. 4, for
yield, y = 0.8 and n, = 8, the fault coverage should
be about 85 percent.

7. EXAMPLE

As an example, consider an LS| chip containing
about 25,000 transistors for which test patterns had
been evaluated on the LAMP fault simulator [13].
Results used here were obtained from testing
wafers on the Fairchild Sentry test system [14].
Yield for this chip was estimated to be about 7 per-
cent. The test pattern number, on which the chip
first failed, was recorded. The cumulative number
of failing chips as a function of the fault coverage is
shown in Table 1. The procedure for obtaining the
entries in this table can be understood by examin-
ing the first line. After the initialization sequence,
on the first pattern at which the tester strobed the
chip output, 113 of 277 (i.e, 41 percent) chips
failed. From fault simulation, the fault coverage on
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Fig. 2 Fault coverage required for a field reject rate of
1-in-100.
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Fig. 3 Fault coverage required for a field reject rate of
1-in-200.

this pattern was obtained as 5 percent. The results
of Table 1 are plotted in Fig. 5, where a family of
curves, P(f) versus f for ng = 1 through 12, is also
plotted. The experimental points closely match the
curve corresponding to ng = 8. Also, if we approxi-
mate the slope of P(f) at the origin from the data in
the first line in Table 1, we get
P’(0) = 0.41/0.056 = 8.2. From (10), ny = 8.2/0.93
= 8.8.
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Fig. 4 Fault coverage required for a field reject rate of
1-in-1000.

TABLE 1
Result of Chip Test

Yield =~ 0.07
Total number of chips = 277

Cumulative Cumulative
Fault Coverage Number of Fraction of
(percent) Chips Failed | Chips Failed
5 113 0.41
8 134 0.48
10 144 0.52
15 186 0.67
20 209 0.75
30 226 0.82
36 242 0.87
45 251 0.91
50 256 0.92
65 257 0.93

Taking ny = 8, we notice from Fig. 2 that for a 1
percent field reject rate, the fault coverage should
be about 80 percent. As Fig. 4 indicates, the fault
coverage should be improved to 95 percent in order
to achieve a field reject rate of 1-in-1000.

The above conclusions differ significantly from
those obtained in [5], where the field reject was
obtained as

r=1-y)t—f).

From this formula, for r = 0.01, y = 0.07, we get
f = 99 percent and for r = 0.001, f = 99.9 percent.
These fault coverages are significantly higher than
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Fig. 6 Determination of ny from experimental data.

those obtained by the analysis presented here and,
in fact, represent almost unachievable goals for LSI
circuits. Our analysis would have given similar
results for ng =3 or 4. But ny = 3 or 4 produces a
P(f) versus f curve that disagrees significantly
with the experimental result (Fig. 5).

If a large chip can be considered to be com-
posed of several smaller chips, the average number
of faults on a large faulty chip would be higher.
Also, for a given chip area,” one would expect the
average number of logical faults to be higher for
greater circuit density (e.g., in case of fine-line tech-
nology). The strength of our model lies in the
experimental process by which the model parameter
(ny) is determined for the actual chip being studied.
The fault model used in determining the fault cover-
age (e.g., stuck-type faults) also influences the
value of n,. For instance, let us assume that the
tests that detect stuck-type faults detect only a few
actual fault modes of the chip. As the tests are
applied, the chips are rejected at a slower rate (Fig.
5) and we get a smaller value of n, This means
(Figs. 2,3,4) that the fault coverage (as measured in
terms of stuck-type faults) should be higher.

8. CONCLUDING REMARKS

In addition to determining fault-coverage require-
ments for a chip-processing line, the technique
presented here, has other applications such as the
prediction of the influence of fine-line technology on
the testing problem. A given circuit, when imple-
mented with finer design rules, occupies a smaller
area. The yield, largely dependent on chip area,
would be higher. In Figs. 2, 3, and 4, a higher yield

indicates a lower fault-coverage requirement if ng,
remains fixed. However, when the circuit is shrunk
into finer features, one expects many logical faults
to be produced by a physical defect. This
phenomenon could result in a higher value of ny,
thereby further reducing the fault-coverage require-
ment.

In our theory, we have introduced a new parame-
ter, ny, the average number of faults on a defective
chip. No attempt has been made to relate nj to the
yield. Yield, which has been extensively studied in
the past, is known to depend on chip area and
defect density. The average number of faults also
depends on chip area and defect density. Further
work should establish at least an empirical relation-
ship between yield and average number of faults.

Since completion of this work, we have learned
of similar work being pursued eisewhere [15].
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APPENDIX

Approximations for q(n)

Starting with equation (5),

ot = (*7") /(1) a0

_IN-mYN-—m—1)---(N—m—n+1)
N(N—1) --- (N—n+1)

n—1
N—m

pry
(1

I
~
=

I
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n
m 1 1 1 .
n)=1——| [1— +—+—+---} -
Qoln) N N—-m{ N TN? }
_ —1 Ja=1]
1— - 1 14 1 4| +o.-
N—m N | N

~l1—-m| jy— —m*1 A
o N N(N—m) N2

_ (=1m+n—1) , [n—1
{' N(N—m) +[ N

!

N
Since lim [1— L] = exp(—x), for large N, we have
N—co N

—m

qoln) = N

n
m-+1 1
— +—_ ...
°’“’{ N(N—m) Nz}

_ (n—1)(m+n—1) [n—1
ex"{ N(N—m) +[ N

}

expi— (m+1)+ 2(m+2) +- -+ {(n—1)}m+n—1)
N(N—m)

+

124224 - - - +n—1)?
N2

m
= |1—
-

— (124224 - - Hn—1)?)

n
expi— m(1+2+---+n-—1)
N(N—m)

1 1
N(N—m) N2

}.
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From [16, p. 55],

m
n)= 1—___
qoln) N

2N(N—m)

’ exp{— mn(n—1)

1 —1)n— L
~ amn(n 1)(n 2)}

N%N—m)

= 1__m_n expl—-maln—1) |,  2n—1
N 2N(N—m) 3N )
Substituting f =%, and for large N,
— (1—f 3P _ _fa(n—1)
qoln) = (1—f) exp{ _—_2N(1—f)} . (A.2)
Also,
qoln) =~ (1—1)" (A.3)

where the condition for the last approximation is
n? << N(1—f)/f. The values of gq(n), as computed
from (A.1), (A.2), and (A.3) are plotted in Fig. 6. For
n < 4, all three values are the same. For larger n,
the approximation (A.2) still coincides with the
exact value (A.1). The error of (A.3) is small but can
be noticed.
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