
LSI vs. Wordnet Ontology in Dimension
Reduction for Information Retrieval?

Pavel Moravec, Michal Kolovrat, and Václav Snášel

Department of Computer Science, FEI, VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

{pavel.moravec, michal.kolovrat}@vsb.cz

Abstract. In the area of information retrieval, the dimension of doc-
ument vectors plays an important role. Firstly, with higher dimensions
index structures suffer the “curse of dimensionality” and their efficiency
rapidly decreases. Secondly, we may not use exact words when looking
for a document, thus we miss some relevant documents. LSI (Latent Se-
mantic Indexing) is a numerical method, which discovers latent semantic
in documents by creating concepts from existing terms. However, it is
hard to compute LSI. In this article, we offer a replacement of LSI with
a projection matrix created from WordNet hierarchy and compare it with
LSI.

Keywords: vector model, latent semantic indexing, LSI, information retrieval, dimen-

sion reduction, WordNet

1 Introduction

The information retrieval [13,3] deals among other things with storage and re-
trieval of multimedia data, which can be usually represented as vectors in mul-
tidimensional space. This is especially suitable for text retrieval, where we store
a collection (or corpus) of texts. There are several models used in text retrieval,
from which we will use the vector model [10,12] providing qualitatively better
results than the boolean model [13], which combines word matching with boolean
operators.

In vector model, we have to solve several problems. The ones addressed in
this article are the size of resulting index, search efficiency and precision and
search for documents similar to the query.

To measure the improvement of a new indexing method, we can use several
measures, both quantitative and qualitative. The quantitative measures show us
the performance of an indexing structure, they can be for example number of
disc accesses – disc access cost (DAC) – or total time of performed indexing and
search – wall clock time. The qualitative measures tell us how good does this
new indexing structure reflect the reality when obtaining an answer set A for a

? This paper was partially supported by GAČR 201/03/1318 grant.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 18–26, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval 19

given query Q. The most commonly used qualitative measures are precision (P)
and recall (R) [3], where precision is a fraction of relevant documents in answer
set and recall is a fraction of retrieved relevant documents in all relevant ones.

In second chapter, we will describe classic vector model and above mentioned
problems. In third, we will describe latent semantic indexing (LSI). In fourth
chapter a basic description of English WordNet ontology will be given. In fifth
chapter we will offer a way how to use WordNet for concept creation instead
of LSI and in sixth we will present comparison of our approach with LSI and
random projection on real documents from TREC collection.

2 Vector Model

In vector model, a document Dj is represented as a vector dj of term weights,
which record the extent of importance of the term for the document.

To portrait the vector model, we usually use an n × m term-by-document
matrix A, having n rows – term vectors t1 . . . tn – where n is the total number
of terms in collection and m columns – document vectors d1, . . . dm, where m is
the size of collection C.

Term weights can be calculated in many different ways – ti ∈ {0, 1}, as a
membership grade to a fuzzy set, or as a product of functions of term frequency
both in a document and in the whole collection [11] (usually tf ∗ idf – count
of term occurrences in the document multiplied by a logarithm of the inverse
portion of documents containing the term). Sometimes is the normalisation of
document vectors applied during index generation phase to make the calculation
in retrieval phase faster.

A query Q is represented as an n-dimensional vector q in the same vector
space as the document vectors. There are several ways how to search for relevant
documents. Generally, we can compute some Ln metrics to represent similarity
of query and document vectors. However, in text retrieval can be better results
obtained by computing cosine measure:

simcos(dj , q) =
djq

||dj || × ||q||
=

∑n
i=1 wi,j × wi,q√∑n

i=1 w2
i,j ×

√∑n
i=1 w2

i,q

As one can see, we do not only obtain documents which are considered rele-
vant, but according to their distance (or similarity) to the query vector, we can
order them and obtain rank for every document in answer set. We can define a
threshold t, too, meaning that all documents closer than this threshold will be
considered relevant, whilst the rest will be irrelevant. However, the choice of the
threshold is not exact and its value is usually determined experimentally.

The main problem of vector model is, that the document vectors have a big
dimension (e.g. 150,000) and are quite sparse (i.e. most coordinates are zero). If
we store them as classical vectors, the storage volume is huge – consider size of
a term-by-document matrix consisting of 100,000 terms and 200,000 documents.

20 Pavel Moravec, Michal Kolovrat, Václav Snášel

We can use existing compression schemes for the term-by-document matrix
representation like the compressed column storage (CCS) to conserve memory,
but the co-ordinate access time is much longer and we are limited by the fact,
that we cannot access the term vectors quickly. Or we can use combined storage
with both CCS and compressed row storage (CRS). Anyway, updating would
still be a problem.

The second problem is the so-called “curse of dimensionality”, which causes
classical indexing structures like M-trees, R-trees [6], A-trees, iDistance, etc. to
perform same or even worse than sequential scan in higher dimension. More-
over, the vectors are placed almost equidistantly from each other, which makes
clustering ineffective.

Third, even there is a better chance that we can find relevant documents
when using some terms which are not contained in them, the synonyms and
other semantically related words are not taken in account.

The first two problems can be addressed for queries containing only a few
words by inverted list, which is in fact compressed storage of term vectors. Only
term vectors for terms contained in a query Q are loaded and processed, comput-
ing rank for all documents containing at least one of the terms at once. However,
the inverted list is not efficient when searching for similar documents, because
significant part of index must be processed.

3 Latent Semantic Indexing

Latent semantic indexing (LSI) [3,4] is an algebraic extension of classical vector
model. First, we decompose the term-by-document matrix A by either princi-
pal component analysis (PCA), which computes eigenvalues and eigenvectors of
covariance matrix or singular value decomposition (SVD), calculating singular
values and singular vectors of A. SVD is especially suitable in its variant for
sparse matrices (Lanczos [7]).

Theorem 1. (Singular value decomposition): Let A is an n × m rank-r
matrix. Be σ1 ≥ · · · ≥ σr eigenvalues of a matrix

√
AAT . Then there exist or-

thogonal matrices U = (u1, . . . , ur) and V = (v1, . . . , vr), whose column vectors
are orthonormal, and a diagonal matrix Σ = diag(σ1, . . . , σr). The decompo-
sition A = UΣV T is called singular decomposition of matrix A and numbers
σ1, . . . , σr are singular values of the matrix A. Columns of U (or V) are called
left (or right) singular vectors of matrix A.

Now we have a decomposition of original term-by-document matrix A. Need-
less to say, the left and right singular vectors are not sparse. We have at most r
nonzero singular numbers, where rank r is smaller of the two matrix dimensions.
However, we would not conserve much memory by storing the term-by-document
matrix this way. Luckily, because the singular values usually fall quickly, we
can take only k greatest singular values and corresponding singular vector co-
ordinates and create a k-reduced singular decomposition of A.

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval 21

Definition 1.: Let us have k, 0 < k < r and singular value decomposition of A

A = UΣV T = (UkU0)
(

Σk 0
0 Σ0

) (
V T

k

V T
0

)
We call Ak = UkΣkV T

k a k-reduced singular value decomposition (rank-k SVD).

We would not conserve any space with the matrix Ak. So instead of the Ak

matrix, a concept-by-document matrix Dk = VkΣk with k concepts is used. To
convert a query Q to the concept-space, we create qk = UT

k q 1. The similarity of
terms in concept space can be calculated from UkΣk

2.
If every document contains only one topic (for more details see [9]), we obtain

a latent semantics – semantically related terms will be close in concept space
and will result in similar answer set when querying. This addresses the third
of above mentioned problems. And since the first co-ordinates of Dk have the
greatest influence on similarity, the clustering results are better.

Experimentally was k determined to several tens or hundreds (e.g. 50–250),
exact value of k is however a mystery; it is dependent on the number of topics
in collection. For a illustration of rank-k SVD see Figure 1.

Fig. 1. k-reduced singular value decomposition

Rank-k SVD is the best rank-k approximation of original matrix A. This
means, that any other decomposition will increase the sum of squares of matrix
A−Ak. However, this does not mean, that we could not obtain better precision
and recall values with a different approximation.

The LSI is hard to compute and once computed, it reflects only the decom-
position of original term-by-document matrix. If several hundreds of documents
1 The second approach is to use a matrix D′

k = Vk instead of Dk and q′k = UT
k Σ−1

k
2 or Uk in second approach

22 Pavel Moravec, Michal Kolovrat, Václav Snášel

or terms have to be added to existing decomposition (folding-in), the decom-
position may become inaccurate. The recalculation of LSI is expensive, so it is
impossible to recalculate LSI every time documents and terms are inserted. The
SVD-Updating [8] is a partial solution, but since the error slightly increases with
inserted documents and terms, the recalculation of SVD may be needed soon or
later.

4 WordNet Ontology

WordNet is an online lexical reference system whose design is inspired by cur-
rent psycholinguistic theories of human lexical memory. English nouns, verbs,
adjectives and adverbs are organised into synonym sets, each representing one
underlying lexical concept.

The goal of WordNet project is the creation of dictionary and thesaurus,
which could be used intuitively. The next purpose of WordNet is the support
for automatic text analysis and artificial intelligence. WordNet is also useful for
determining semantic connections between sets of synonyms, for tracing mor-
phological connections between words.

The ontology is organised not only by the ”is-the-synonym-of” relation; the
verbs and nouns are hierarchically organised via the hypernym/hyponym relation
(superior/inferior concepts), too. An example of hypernyms for “ontology” is
given in figure 2.

psychological feature

cognition, knowledge, noesis

content, cognitive content, mental object

knowledge domain, knowledge base

discipline, subject, field, study, bailiwick, ...

humanistic discipline, humanities, liberal arts, arts

philosophy

metaphysics

ontology

Fig. 2. Example of hypernyms of the term “ontology”

EuroWordNet is a multilingual database with WordNets for several European
languages (Dutch, Italian, Spanish, German, French, Czech and Estonian). The
WordNets are structured in the same way as the American WordNet for English
(Princeton WordNet) in terms of synsets (sets of synonymous words) with basic
semantic relations between them. Each WordNet represents a unique language-
internal system of lexicalizations.

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval 23

In addition, the WordNets are linked to an Inter-Lingual-Index, based on the
Princeton WordNet. Via this index, the languages are interconnected so that it
is possible to go from the words in one language to similar words in any other
language.

This index also gives access to a shared top-ontology of 63 semantic dis-
tinctions which provides a common semantic framework for all the languages,
while language specific properties are maintained in the individual WordNets.
The database can be used, among others, for monolingual and cross-lingual in-
formation retrieval, which was demonstrated by the users in the project.

5 Using WordNet Hypernyms instead of LSI Concepts

As mentioned above, the calculation of SVD is quite difficult and since the
resulting matrices U and V are dense, memory can be exhausted quite quickly.
So we face a question, how to create concepts for given document collection.

One possibility is the usage of Papadimitriou’s two-step algorithm [9] com-
bining random projection (see e.g. [1]) with LSI. Simply said, we first create a
pseudoconcept-by-document matrix A′ with a suitable number of pseudocon-
cepts by multiplication of a zero-mean unit-variance projection matrix and the
term-by document matrix A. In second step we calculate rank-2k LSI of A′,
which gives us a very good approximation of rank-k LSI of original matrix A.

We experimentally verified this method recently and showed that the ap-
proximation error against LSI is low, however we do not obtain same concepts
as with original LSI. Because there is usually not the same number of singular
values as for the original matrix A (e.g. 60’000), but only the number for the re-
duced dimension (e.g. 1000), the concepts are created differently and are almost
equal (having similar singular values). This results in poor clustering and worse
selection of k.

However, we know the hierarchy of concepts defined by the WordNet syn-
onym/hypernym organisation. We can use all hypernyms of given term from l
top levels, applying a fraction of term weight dependent on its level in WordNet
to hypernym weight in concept-by-document matrix. This would give us a dif-
ferent linear combination of term vectors than classical LSI, with non-negative
concept weights.

This way we can create a term-to-concept projection matrix, applying ade-
quate parts of each term to its hypernyms. The top l levels of hypernyms will
give us new concepts. The results may be worse than in case of LSI, but would
give us a better starting point than random projection which chooses the pseudo-
concepts as a random linear combination of terms.

Is the resulting dimension too high for convenient direct use (but not too
high to make the LSI calculation problematic as in case of original matrix A),
we can replace random projection in the Papadimitriou’s two-step approximate
LSI calculation method by the term-to-concept projection matrix and calculate
LSI on generated term-by-concept matrix, which will improve the response time.

24 Pavel Moravec, Michal Kolovrat, Václav Snášel

The problem is, that hypernym hierarchy was created only for nouns and
verbs. Adjectives and adverbs can’t be handled this way, which brings some
complications. We can either use all concepts from this area, or silently ignore
them, which will cause either an increase of reduced dimension or worse recall.
The same problem is with numbers and names. While a number can be easily
identified, we can create a category “Number” to place all numbers in, we cannot
do this with names, so we either ignore them, too, or we can create a predefined
number of random concepts which would contain terms not found in WordNet
with a given weight.

6 Experimental Results

For the comparability with LSI, 5000 Los Angeles Times articles from the
TREC 5 document collection were indexed. LSI into a dimension of 100 and 200
was calculated using both classical and two-step algorithm. For comparison, the
random projection was calculated, too.

Tests were run with English Wordnet version 2.0; the WordNet concepts
were used both directly and as the first step in the two-step algorithm instead of
random projection. In first case, two and three top levels were used. In second
case, four top levels of WordNet hierarchy were used. The term weight in a
concept was inversely proportional to a logarithm of concept level.

Tests were executed on AMD Athlon 2200+ with VIA KT-400 chipset and
1GB DDR-333 RAM. The LSI and random projection routines were written in
C/C++.

The average precision and recall for 50 TREC queries was calculated for all
mentioned methods and classical vector model. The results are summarised in
table 1.

Table 1. Precision and recall of 50 executed TREC queries

Method Precision Recall

Original sparse term-by-document matrix 79% 74%

rank-100 LSI 74% 100%
rank-200 LSI 74% 100%
rank-200 LSI after RP to dim. 1000 75% 94%
Random projection to dimension 1000 77% 82%

rank-200 LSI of 5961 WordNet concepts 74% 96%
2747 WordNet concepts calculation 73% 100%
502 WordNet concepts calculation 73% 100%

Unfortunately, there are some problems which reduce usability of these re-
sults. First, the TREC queries consist of a small number of words, thus they
are not usable as document similarity queries. Second, because of the collection
size, there were between 1 and 5 relevant documents for each query and 0 to

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval 25

10 documents which are surly irrelevant. The rest is supposed to be irrelevant
but was not checked manually when the queries were created. When we treat
these documents as non-relevant, the precision for both LSI and WordNet-based
reduction and cosine measure is poor (around 1%).

Because the response times for TREC queries were too short and they did
not represent the similarity queries we are mainly focused on, we created a set of
1000 document similarity queries for following tests. The query times for these
query set are shown in table 2 together with index size and dimension reduction
time. The query times represent an average over 5 test runs.

Table 2. Dimension reduction and query times in seconds; document matrix
size

Method Reduction time Query time Index size

Original sparse term-by-document matrix N/A 33 8,3 MB

rank-100 LSI 2730 6 1,9 MB
rank-200 LSI 3784 11 3,8 MB
rank-200 LSI after RP to dim. 1000 2026 10 3,8 MB
Random projection to dimension 1000 20 44 19,0 MB

rank-200 LSI of 5961 WordNet concepts 3262 10 3,8 MB
2747 WordNet concepts calculation 267 50 16 MB
502 WordNet concepts calculation 227 23 5,15 MB

7 Conclusion

We have shown, that using WordNet ontology instead of random projections
offers better results and is even comparable with classical LSI. This could make
the dimension reduction feasible even for huge document collections.

The selection of concepts was very rough, we can employ a filtration step and
use concepts whose document frequency lies within given borders, which will
probably lead to improved precision. We can also filter out several inappropriate
meanings of given terms and use other lexical categories like antonyms. Both
weighting approach and similarity function may be further modified to provide
better precision.

With the use of EuroWordnet’s Inter-Lingual-Index for mapping of given
concepts, we may be even able to index texts written in different languages.

We are currently studying an interesting application offered by a reversed
approach – we try to verify an existing ontology with LSI. If a suitable mapping
could be found and formally described, it may become possible to create an
ontology on a collection of multimedia documents, e.g. images by calculation of
LSI of the collection or its randomly-selected sample [5].

26 Pavel Moravec, Michal Kolovrat, Václav Snášel

References

1. D. Achlioptas. Database-friendly random projections. In Symposium on Principles
of Database Systems, 2001.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

3. M. Berry and M. Browne. Understanding Search Engines, Mathematical Modeling
and Text Retrieval. Siam, 1999.

4. M. Berry, S. Dumais, and T. Letsche. Computation Methods for Intelligent Infor-
mation Access. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference,
1995.

5. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo Algorithms for Finding
Low Rank Approximations. In Proceedings of 1998 FOCS, pages 370–378, 1998.

6. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of ACM SIGMOD 1984, Annual Meeting, Boston, USA, pages 47–57.
ACM Press, June 1984.

7. R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. Techni-
cal report, University of Aarhus, 1998.

8. G. W. O’Brien. Information Management Tools for Updating an SVD-Encoded
Indexing Scheme. Technical Report ut-cs-94-258, The University of Tennessee,
Knoxville, USA, December, 1994.

9. C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent seman-
tic indexing: A probabilistic analysis. In Proocedings of the ACM Conference on
Principles of Database Systems (PODS), pages 159–168, 1998.

10. G. Salton. The SMART Retrieval System – Experiments in Automatic Document
Processing. Prentice Hall Inc., Englewood Clifs, 1971.

11. G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

12. G. Salton and M. Lesk. Computer evaluation of indexing and text processing.
Journal of the ACM, 15(1):8–39, January 1968.

13. G. Salton and G. McGill. Introduction to Modern Information Retrieval. McGraw-
ill, 1983.

