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LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE
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ABSTRACT

We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla
QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and
light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ∼1 day after
explosion show a bright and relatively fast initial peak, lasting for ∼15 days, prior to the usual slow rise to
maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models.
We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be
explained as a normal 56Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks
simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material,
and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of
2 1052~ ´ erg and a progenitor radius of a few hundred solar radii would be required to power the early emission.

The competing engine models involve rapidly spinning magnetars (neutron stars) or fallback onto a central black
hole. The prompt energy required may favor the black hole scenario. The bright initial peak may be difficult to
reconcile with a compact Wolf–Rayet star as a progenitor since the inferred energies and ejected masses become
unphysical.

Key words: supernovae: general – supernovae: individual (LSQ14bdq)

1. INTRODUCTION

Type Ic super-luminous supernovae (SLSNe) are hydrogen-
poor explosions reaching absolute magnitudes M 21peak < -
(Quimby et al. 2011; Gal-Yam 2012; Inserra et al. 2013). They
are intrinsically rare (less than ∼0.01% of the core-collapse
population; Quimby et al. 2013; McCrum et al. 2015), but their
enormous electromagnetic output is observable at cosmological
distances, and they show promise as standardizable candles
(Inserra & Smartt 2014). However, the power source remains
elusive. Viable models must account for the luminosity, blue
colors (Quimby et al. 2011), spectroscopic evolution to
resemble supernovae (SNe) Ic (Pastorello et al. 2010), diverse
light curves (Nicholl et al. 2015), and low-metallicity
environments (Neill et al. 2010; Chen et al. 2013, 2014;
Lunnan et al. 2014; Leloudas et al. 2015).

The slowest events, such as SN 2007bi (Gal-Yam
et al. 2009; Young et al. 2010) have been considered
candidates for pair-instability supernovae (e.g., Heger &
Woosley 2002): complete thermonuclear disruptions of stellar

cores with M 65core > M. However, early observations of
SLSNe apparently similar to SN 2007bi have shown rise-times
and blue colors discrepant with numerical simulations (Kasen
et al. 2011; Dessart et al. 2012; Nicholl et al. 2013; McCrum
et al. 2014).
Two further power sources have been proposed. One is a

central engine, which could be the rotation of a millisecond
pulsar with B 10 G14~ (Kasen & Bildsten 2010; Woos-
ley 2010), or accretion by fallback if the SN forms a black hole
(Dexter & Kasen 2013). The other is reprocessing of kinetic
energy as the ejecta expand into a massive, extended
circumstellar medium (CSM) (Woosley et al. 2007; Chevalier
& Irwin 2011; Ginzburg & Balberg 2012). Both classes of
models can fit SLSN light curves (Chatzopoulos et al. 2013;
Nicholl et al. 2014), but the spectra of SLSNe Ic do not show
clear signs of CSM.
Here we present the discovery, light curve, and analysis of

the SLSN Ic, LSQ14bdq. Dense photometric sampling reveals
an initial peak before the main light curve rise. We discuss
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physical interpretations of these data in the context of the
competing models.

2. OBSERVATIONS

2.1. Discovery and Spectroscopic Classification

LSQ14bdq was discovered by La Silla QUEST (LSQ;
Baltay et al. 2013), at coordinates 10 01 41. 60h m sa = ,

12 22 13. 4od = - ¢  (J2000.0), in images taken on April 5.1
UT (though earlier detections exist; Section 2.2). It was
classified by Benitez et al. (2014), as part of the Public ESO
Spectroscopic Survey of Transient Objects (PESSTO; Smartt
et al. 2014), as a SLSN Ic. This spectrum (1500 s) was taken
on 2014 May 4.9 UT with the ESO 3.58 m New Technology
Telescope, using EFOSC2 and Grism#13, and was followed by
a longer exposure (2 × 1800 s) on the next night. A third
spectrum was taken using Grism#11 (2400 s), on 2014 May
7.0 UT. These were reduced using the PESSTO pipeline,
applying bias-subtraction, flat-fielding, wavelength and flux
calibration and telluric correction (Smartt et al. 2014). The
absolute fluxes were matched to contemporaneous photometry.
PESSTO data are available from the ESO archive18 or
WISeREP19 (Yaron & Gal-Yam 2012).

Figure 1 shows the spectrum summed over these three
nights. The Grism#11 spectrum (resolution 13.8 Å) shows
interstellar Mg II ll 2795.528, 2802.704 absorption, giving a
redshift of z = 0.345 from Gaussian fits. We estimate that the
mean rest-frame phase of the combined spectrum is 19 d before
maximum brightness (Section 2.2). Also shown are SLSNe Ic
PTF12dam (Nicholl et al. 2013) and PTF09cnd (Quimby et al.
2011). The broad absorption features in LSQ14bdq are
ubiquitous in such objects before maximum light. The O II

lines are a defining feature of the class (Quimby et al. 2011)

and the deep Mg II absorption matches that in PTF09cnd and
other objects with near-ultraviolet spectroscopy (e.g., Chomiuk
et al. 2011).

2.2. Photometry

The observed light curve of LSQ14bdq is shown in Figure 2.
The rise from 2014 March 22.1 UT was measured with the
automated LSQ pipeline (Baltay et al. 2013), employing point-
spread function (PSF) fitting forced photometry, and are
calibrated to SDSS r (AB system). Inspection of pre-discovery
LSQ data showed clear variable flux at the SN position before
this first pipeline detection. Applying manual PSF photometry
(using SNOOPY)20 revealed that this was an early peak prior to
the main rise. Non-detections (Table 1) suggest the explosion
occurred on MJD = 56721 ± 1, assuming a smooth rise to the
first peak. A stack of all LSQ images from 2012–2013 shows
no host galaxy to a limiting magnitude of r = 24.1, hence
image subtraction is unimportant.

Figure 1. Pre-maximum spectrum of LSQ14bdq (smoothed using 10 pixel
moving average), compared to PTF12dam (Nicholl et al. 2013) and PTF09cnd
(Quimby et al. 2011). The spectra are at similar phases from peak, and have
been corrected for Galactic reddening (E B V( ) 0.056- = ; Schlafly &
Finkbeiner 2011). The redshift is determined by fitting double-Gaussian
profiles (at instrumental resolution) to narrow Mg II absorption (inset,
including PTF09cnd); the components are blended for the LSQ14bdq
spectrum. Fluxes have been scaled to the same luminosity distance as
LSQ14bdq, and offsets added for presentation.

Figure 2. Light curve of LSQ14bdq. Top: observed photometry in griz.
Polynomial fitting suggests a peak on MJD 56807= , at r = 19.15. Middle:
absolute light curve in rest-frame g-band, after K-correction and de-reddening,
and resemblance to PTF12dam (Nicholl et al. 2013). SLSNe 2011ke (Inserra
et al. 2013) and 2006oz (Leloudas et al. 2012) have good coverage during the
rising phase. Bottom: the main peak of the bolometric light curve can be fit by
magnetar and interaction models (see Section 3.1). The rise of the PISN model
is too slow to match the observations. Empty circles indicate points that are
estimated from single-filter photometry (see Section 3.1).

18 See http://www.pessto.org.
19 http://www.weizmann.ac.il/astrophysics/wiserep/ 20 http://sngroup.oapd.inaf.it/snoopy.html
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We obtained multicolor imaging using EFOSC2, the 2.0 m
Liverpool Telescope and Las Cumbres Observatory Global
Telescope 1 m network. PSF magnitudes were calibrated using a
sequence of local field stars, themselves calibrated against
standard fields on photometric nights. LSQ14bdq set for the

season just before reaching maximum brightness. Subsequent
data are a combination of PESSTO, LSQ, Pan-STARRS1 (PS1;
Magnier et al. 2013), and GROND (Greiner et al. 2008) images.
The PS1 data were taken in the wP1-band (effectively a gri

composite; Tonry et al. 2012) from the Pan-STARRS NEO

Table 1

Observed Photometry of LSQ14bdq

Date MJD Phasea g r i z Telescope

2014 Mar 02 56718.0 −66.2 L >22.85 L L LSQ
2014 Mar 04 56720.0 −64.7 L >22.40 L L LSQ
2014 Mar 06 56722.0 −63.2 L 21.78 (0.32) L L LSQ
2014 Mar 08 56724.0 −61.7 L 21.24 (0.20) L L LSQ
2014 Mar 10 56726.0 −60.2 L 21.08 (0.32) L L LSQ
2014 Mar 12 56728.0 −58.7 L 21.16 (0.25) L L LSQ
2014 Mar 14 56730.0 −57.3 L 20.99 (0.23) L L LSQ
2014 Mar 18 56734.0 −54.3 L 22.04 (0.08) L L LSQ
2014 Mar 20 56736.1 −52.7 L 22.05 (0.28) L L LSQ
2014 Mar 22 56738.1 −51.2 L 22.21 (0.21) L L LSQ
2014 Mar 24 56740.1 −49.7 L 22.21 (0.03) L L LSQ
2014 Mar 26 56742.1 −48.3 L 22.06 (0.08) L L LSQ
2014 Mar 28 56744.1 −46.8 L 21.55 (0.16) L L LSQ
2014 Mar 30 56746.1 −45.3 L 21.44 (0.10) L L LSQ
2014 Apr 03 56750.1 −42.3 L 21.05 (0.02) L L LSQ
2014 Apr 05 56752.1 −40.9 L 20.84 (0.15) L L LSQ
2014 Apr 07 56754.0 −39.4 L 20.67 (0.08) L L LSQ
2014 Apr 09 56756.1 −37.9 L 20.47 (0.03) L L LSQ
2014 Apr 13 56760.1 −34.9 L 20.18 (0.06) L L LSQ
2014 Apr 15 56762.1 −33.4 L 20.12 (0.03) L L LSQ
2014 Apr 17 56764.0 −31.9 L 19.93 (0.05) L L LSQ
2014 Apr 19 56766.0 −30.5 L 19.88 (0.02) L L LSQ
2014 Apr 21 56768.0 −28.9 L 19.89 (0.07) L L LSQ
2014 Apr 23 56770.0 −27.5 L 19.74 (0.01) L L LSQ
2014 Apr 25 56772.1 −25.9 L 19.71 (0.05) L L LSQ
2014 Apr 28 56775.5 −23.4 L 19.64 (0.19) L L PS1
2014 May 06 56783.1 −17.8 19.55 (0.09) 19.35 (0.12) 19.45 (0.05) NTT
2014 May 07 56784.7 −16.6 19.29 (0.11) 19.31 (0.20) LCOGT
2014 May 12 56789.9 −12.7 19.27 (0.04) 19.26 (0.12) 19.18 (0.06) 19.48 (0.12) LT
2014 May 20 56797.9 −6.8 19.27 (0.04) 19.16 (0.02) 19.16 (0.06) 19.40 (0.04) LT
2014 Nov 23 56984.2 131.8 L 21.15 (0.23) L L LSQ
2014 Nov 23 56984.3 131.8 L 20.99 (0.10) 20.89 (0.06) L NTT
2014 Nov 27 56988.2 134.7 L 21.05 (0.24) L L LSQ
2014 Nov 28 56989.2 135.5 L 21.36 (0.30) L L LSQ
2014 Dec 18 57009.2 150.3 L 21.27 (0.33) L L LSQ
2014 Dec 20 57011.5 152.0 L 21.51 (0.24) L L PS1
2014 Nov 23 57024.2 161.5 L 21.78 (0.38) L L LSQ
2015 Jan 02 57033.2 168.2 L 21.65 (0.23) L L LSQ
2015 Jan 20 57042.0 174.3 L 22.16 (0.20) L L PS1
2015 Feb 12 57065.3 192.0 23.29 (0.11) 22.41 (0.04) 22.30 (0.08) 22.00 (0.17) GROND
2015 Feb 26 57079.2 202.4 23.74 (0.14) 22.89 (0.13) 22.82 (0.31) 22.79 (0.41) NTT
2015 Mar 13 57094.1 213.5 24.35 (0.13) 23.43 (0.16) 22.87 (0.24) 22.45 (0.32) NTT

Host (2012–2013 stack) >24.08 LSQ

K-correctionsb Kg u Kr g Ki r Kz i

Phase < 0 (LSQ14bdq spectrum, −19d) −0.30 −0.32 −0.49 −0.38
Phase > 0 (PTF12dam spectrum, +171d) −0.22 −0.16 −0.18 −0.20

Near-infrared (Vega system) J H K

2015 Feb 12 57065.3 192.0 20.70 (0.17) >20.03 >18.39 GROND

Notes.
a Rest-frame days relative to the estimated date of r-band maximum, MJD = 56807.
b Defined by m M Km= + + .
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Science Consortium survey (Huber et al. 2015), and also
calibrated to r.

We converted observed r-band magnitudes to rest-frame g-
band for comparison with other SLSNe (at this redshift,
observed g r i z, , , are similar to rest-frame u g r i, , , ). The K-
correction before peak is calculated from synthetic photometry
on the LSQ14bdq spectrum (K 0.3r g -  ). As we only have
one spectrum, our post-peak data use a K-correction calculated
in a similar manner, but from the spectrum of PTF12dam at
+171 d (Nicholl et al. 2013). LSQ14bdq has a broad light curve
like PTF12dam. A polynomial fit suggests M 21.96g = - at
maximum light. The initial peak (M 20.01g = - ) is much
faster, with a rise of 5 days and a total width of ∼15 days.

Leloudas et al. (2012) presented pre-rise data for SN 2006oz
with multi-color detections. Figure 3 shows that the two are
qualitatively similar. The rise to peak is not as pronounced as
for LSQ14bdq, although time-sampling was sparser. Leloudas
et al. (2012) suggested a luminosity plateau powered by
oxygen-recombination in extended CSM. Of the other SLSNe
with strict explosion constraints, SN 2011ke (Inserra
et al. 2013) shows a similar rise to SN 2006oz, but non-
detections shortly before discovery limit any early peak to be
fainter than those observed for LSQ14bdq and SN 2006oz.

3. ANALYSIS

3.1. Bolometric Light Curve and Main Peak

We constructed the bolometric light curve of LSQ14bdq in
two steps. First we integrated the flux in the rest-frame u- to i-
bands, following the procedure described in Inserra et al.
(2013). Before −20 d, we caution that points are derived using
the earliest available color information. To estimate the full
bolometric light curve, we take the fractional flux outside of
this range to be the same as for PTF12dam (Nicholl et al. 2013;

Chen et al. 2014). This seems reasonable, at least in the late-
time NIR, from the J-band detection at 192 days (Table 1).
Both the observed ugri-pseudobolometric and the estimated
full bolometric light curve are shown in Figure 2.
We can reproduce the main peak with models powered by a

central engine (we take a magnetar as representative) or by
ejecta–CSM interaction. For details of the models, see Inserra
et al. (2013), Chatzopoulos et al. (2012), and Nicholl et al.
(2014). The magnetar fit has magnetic field B 0.6 1014= ´
G, spin period P 1.7 ms= , and diffusion time 90mt = d. We
have fixed the time of explosion to coincide with the first
detection on the precursor peak. The CSM model has ejected
mass Mej 30.0= M, CSM mass MCSM 16.0= M (assuming

0.2 cm g2 1k = - ), density 3.0 10 g cmCSM
13 3r = ´ - - , and

explosion energy E 5.0 10k
51= ´ erg.

We also compare to the brightest PISN model of Kasen et al.
(2011; a 130M bare helium core), which reproduces the peak
luminosity. However, the rise-time is discrepant: the well-
constrained main rise of LSQ14bdq lasts for 50 days, whereas
the PISN model rises for over 100 days, and declines more
slowly than LSQ14bdq. We therefore reach the same
conclusion as Nicholl et al. (2013) and McCrum et al.
(2014), who found that the rise-time ruled out PISN models for
two slowly declining SLSNe, PTF12dam and PS1-11ap.

3.2. A Nickel-powered Precursor?

The first scenario we investigate for the early peak is an
initially normal SN, powered by the radioactive decay of 56Ni,
before the mechanism powering the super-luminous second
peak kicks in. We compare our early light curve to 56Ni-
powered SNe (core-collapse and thermonuclear) in Figure 3,
choosing filters with similar effective wavelengths. As the late-
time spectra of Type Ic SLSNe closely resemble SNe Ic, we
first compare to SN 1994I, a well-observed object with a
narrow light curve, suggesting Mej 1 M (Richmond
et al. 1996). The width of the LSQ14bdq peak is slightly
narrower, but comparable to SN 1994I. However, it is 2.3
magnitudes brighter. Using the Arnett (1982) model, as
implemented by Inserra et al. (2013), we find that matching
the photometry21 requires an almost pure 56Ni ejecta of 1 M,
which is difficult to produce with core-collapse SNe. SNe Ia
produce 0.5» –1M of nickel, but comparing with SN 2005cf
(Pastorello et al. 2007) shows that SNe Ia have light curves that
are too broad. The fast rise of LSQ14bdq would necessitate a
very large explosion energy, even for the lowest possible ejecta
mass, Mej=MNi. A fit shows that we require E 25k = B, where

1 B(Bethe) 1051= erg. Because complete burning of 1M of
carbon/oxygen to nickel liberates only ∼1 B, an additional
energy source is required. Thus, if the early peak is “a
supernova in itself,” it cannot be a normal 56Ni-powered event.

3.3. Shock Cooling with a Central Engine

In Figure 4, we show an alternative scenario, comparing the
early emission from LSQ14bdq to other SNe with two observed
peaks. The basic light curve morphology of SNe 1987A, 1993J
and 2008D has been interpreted as an initial cooling phase,
releasing heat deposited by the shock wave, before a second
peak is driven by delayed heating from 56Ni (Shigeyama &

Figure 3. Nickel-powered model for the precursor peak. The early light curve
of LSQ14bdq is similar to SN 1994I (Type Ic) but is much brighter, whereas it
is much narrower than the SN Ia 2005cf. The combination of high luminosity
and very short rise-time rules out a physically plausible 56Ni-powered SN for
this peak (see Section 3.2).

21 Assuming a blackbody SED, we apply synthetic photometry to the model
using PYSYNPHOT (http://stsdas.stsci.edu/pysynphot/).
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Nomoto 1990; Woosley et al. 1994; Modjaz et al. 2009). The
light curve of LSQ14bdq is qualitatively similar to these objects,
suggesting that the light curve could be explained by a shock
cooling phase, followed by internal reheating. While bolometric
luminosity in the cooling phase should decline monotonically,
single-filter light curves showmaxima as the peak of the spectral
energy distribution moves into and out of the optical.

We fit the early rise using analytic approximations from
Rabinak & Waxman (2011), giving the parameters in Figure 4.
We use their blue supergiant (radiative envelope), red super-
giant (convective envelope), and Wolf–Rayet models for SN
1987A, 1993J and 2008D, respectively. The progenitor radius,
R, determines the slope and duration of the rise, while the
luminosity scale is set by both R and by the explosion energy
per unit mass, E Mk ej. The values of R and E Mk ej used to fit
the literature objects are in line with previous estimates. As
noted by Rabinak & Waxman (2011), the model assumptions
begin to break down after a few days; we end the simulations at
the cut-off time prescribed by their Equation (17). The model
for SN 1993J is still rising slowly as it goes through the peak.
The discrepancy with observations may be due to the very
simple density profile assumed in the model. Detailed models
of SN 1993J have had 0.1 M in the extended envelope, with
most of its mass in the core.

To model LSQ14bdq, we set E Mk ej C= B/M, where C is
arbitrary. To try to break the degeneracy between Ek and Mej,
we assume that the diffusion time during the early peak is the
same as in our central-engine fit to the main peak. We neglect
late-time kinetic energy input from the magnetar, ≈1051 erg for
our model, because this is small compared to the initial energy
found for the shock cooling, as will be seen below.We then have

c

M

E

1.05

(13.7 )
90 days. (1)m

1 2

1 2 ej
3

k

1 4

t k=
æ

è

ççççç

ö

ø

÷÷÷÷÷
=

For 0.2 cm g2 1k = - , this leads to

M C M40.1 ; (2)ej
1 2= 

E C40.1 B. (3)k
3 2=

The uncertainty in mt (taking the range where 22
min
2c c< ) is

30%~ , meaningM and Ek are constrained to within a factor of 2.
Figure 4 shows models for 3 progenitors: a Wolf–Rayet with

R 10= R, and extended stars with R 100, 500= R
(extended models are insensitive to the choice of radiative/
convective envelope). For the compact model, we derive Mej

270» M; depending on the precise mass, the implied
progenitor should either explode as a PISN or collapse totally
(hence invisibly) to a black hole (Heger & Woosley 2002),
neither being consistent with the light curve. The inferred
energy, Ek 1054> erg, is also unrealistic.
An extended envelope (or wind; Ofek et al. 2010) is

therefore a requirement in this scenario. The 100 Rmodel
requires Mej 60» M and Ek 150» B. This energy is greater
than the canonical neutron star gravitational binding energy of
1053 erg (of which 1%~ is normally accessible to power the
explosion). The energy released in black hole-formation is
higher than for neutron stars and could meet the requirement, if
it could couple to the ejecta. A possible mechanism is an
accretion disk, such as in the collapsar model (Woosley 1993)
of gamma-ray bursts (GRBs). In this case the engine would be
black hole accretion (Dexter & Kasen 2013) rather than a
magnetar. This accretion engine has a characteristic power law,
L t nµ - , similar to the magnetar, with n 2mag = and
n 5 3acc = . Therefore we would expect a similar mt , and that
Equations (2) and (3) would still hold.
The final model shown is for R 500= R. The inferred

mass is Mej 30» M, with Ek 20» B, which may also favor a
black hole engine over a neutron star (it is similar to the kinetic
energy in GRB-SNe), but not so definitively as in the more
compact models. The radius is very large for a hydrogen-free
star, but similar to SN 1993J, which had only a very diffuse
hydrogen envelope, and by maximum light had evolved to
resemble a SN Ib. For this model, the velocity,
v E M10 (3 ) 10,000k ej~ = km s−1, is in good agreement
with the observed spectrum.

3.4. Shock Cooling with CSM Interaction

An alternative scenario to consider is that the main peak
arises from CSM interaction on scales of 104~ R, as has been
suggested for other SLSNe (e.g., Chatzopoulos et al. 2013).
CSM fits for the main peak (Figure 2) require E Mk ej∼ 0.2 B/
M, lower than any of the shock cooling models shown in
Figure 4. This is fairly inflexible for the CSM model, as Ek and
Mej are the two strongest drivers of the peak luminosity—e.g.
models with E Mk ej∼ 0.4 B/M are too bright by about
0.5 dex (and rise too quickly). To reproduce the early emission
with shock cooling and E Mk ej∼ 0.2 B/M, we would need
initial radius R 2000~ R. This is uncomfortably large for
any reasonable progenitor. However models have been
proposed in which the cooling phase arises from shock
breakout in an inner region of dense CSM rather than the
progenitor envelope (Ofek et al. 2010); this may be a viable
explanation for LSQ14bdq, but would require a novel CSM
structure to get two distinct peaks.

Figure 4. Post-shock cooling models for LSQ14bdq and other double-peaked
SNe. We show both compact and extended models. Mass and energy can be
inferred from the fits together with Equations (2) and (3). More extended
progenitors can reproduce the peak brightness with lower Mej and Ek.
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A model was put forward by Moriya & Maeda (2012) to
explain the data for SN 2006oz, in which a single CSM
interaction produces a double-peaked light curve due to a
sudden increase in CSM ionization (and hence opacity) in the
collision. However, this model does not specify the source of
the early emission before the collision, which for LSQ14bdq
we have shown rises too steeply to be explained as a
conventional SN. Multi-peaked light curves from interaction
could also arise within the pulsational pair-instability model
(Woosley et al. 2007). Here, multiple shells are ejected and
could produce distinct interaction events with a range of
luminosities and timescales. Suppose SN ejecta collide with an
inner shell at the beginning of our observations, and the
resulting merged ejecta/shell then hit an outer shell fifteen days
later, generating the second peak. For a shell separation
R 10CSM

15~ cm (from our CSM fit and the Woosley
et al. 2007 models), this would require v 10ej inner

4~+ km s−1,
which is similar to the observed line widths. This may provide
a reasonable alternative to the shock cooling scenario, although
the massive outer shell must also be accelerated to avoid
showing narrow spectral lines. We note that the Woosley et al.
(2007) models are much redder than our observations. Hence,
further detailed modeling is needed to assess the viability of
this scenario for LSQ14bdq.

4. DISCUSSION AND CONCLUSIONS

The detection of a double-peaked light curve provides a new
opportunity to constrain the physics powering SLSNe Ic. We
find that the early peak is not likely to be a normal SN driven
by 56Ni. We also disfavor the CSM interaction model, since a
consistent physical scenario seems to require a helium star with
an extremely large radius R 2000> R, within a more
extended (and hydrogen poor) CSM of R 10CSM

4 R.
Pulsational pair-instability models remain a possibility, but
do not yet quantitatively reproduce the observed data.

We propose that the initial peak could arise from post-shock
cooling, and provide a simple physical interpretation consistent
with the main light curve. The first peak is itself remarkably
bright (M 20.0g = - ), suggesting a large stellar radius or high
explosion energy, or both. The broad width of the second peak
implies a large ejected mass, and can be powered by a central
engine. We find good fits for an explosion with E 20k ~ B, in a
star with R 500~ R, that ejected a mass of ∼30M. This
energy may favor a black hole accretion engine (Dexter &
Kasen 2013) rather than a magnetar, and is similar to kinetic
energies seen in long GRBs.

The extended radius is surprising, and argues against a
compact Wolf–Rayet progenitor (R  10 R) since it would
imply unrealistic ejecta mass and explosion energy. Although
such extended He stars are not known in the local universe, the
fact that SLSNe may be confined to very low metallicity
galaxies and are intrinsically rare (∼1 in 10,000 massive star
deaths) may explain the lack of known counterparts.

Further, early observations of SLSNe will determine whether
or not double-peaked light curves are common. Theoretical
stellar evolution models with binarity and rotation should be
explored for a viable progenitor.

Based on data from ESO as part of PESSTO (188.D-3003,
191.D-0935), 2.2 m MPG telescope (CN2014B-102, GROND
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Program. We acknowledge: EU/FP7-ERC grants [291222,
307260, 320360] (S.J.S., A.V.G., M.S.) and FP7 grant
agreement No. 267251 (N.E.-R.); CONICYT-Chile FONDE-
CYT grants 3140566, 3140534, Basal-CATA PFB-06/2007,
and the Millennium Science Initiative grant IC120009 to MAS
(L.G., S.S.); PRIN-INAF 2014 project Transient universe:
unveiling new types of stellar explosions with PESSTO (S.B.).
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