
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

LSTM-based Intrusion Detection System
for In-Vehicle CAN Bus Communications

MD DELWAR HOSSAIN1, (Student Member, IEEE), HIROYUKI INOUE2, (Member, IEEE),

HIDEYA OCHIAI3, (Member, IEEE), DOUDOU FALL1, YOUKI KADOBAYASHI1, (Member, IEEE)
1
Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan

2
Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan

3
Graduate School of Information Science, The University of Tokyo, Tokyo, Japan

Corresponding author: Md Delwar Hossain (e-mail: hossain.md_delwar.hi5@is.naist.jp).

ABSTRACT

The modern automobile is a complex piece of technology that uses the Controller Area Network (CAN) bus

system as a central system for managing the communication between the electronic control units (ECUs).

Despite its central importance, the CAN bus system does not support authentication and authorization

mechanisms, i.e., CAN messages are broadcast without basic security features. As a result, it is easy for

attackers to launch attacks at the CAN bus network system. Attackers can compromise the CAN bus system

in several ways including Denial of Service (DoS), Fuzzing and Spoofing attacks. It is imperative to devise

methodologies to protect modern cars against the aforementioned attacks. In this paper, we propose a Long

Short-Term Memory (LSTM)-based Intrusion Detection System (IDS) to detect and mitigate the CAN bus

network attacks. We generate our own dataset by first extracting attack-free data from our experimental car

and by injecting attacks into the latter and collecting the dataset. We use the dataset for testing and training

our model. With our selected hyper-parameter values, our results demonstrate that our classifier is efficient

in detecting the CAN bus network attacks, we achieved an overall detection accuracy of 99.995%. We

also compare the proposed LSTM method with the Survival Analysis for automobile IDS dataset which is

developed by the Hacking and Countermeasure Research Lab, Korea. Our proposed LSTM model achieves

a higher detection rate than the Survival Analysis method.

INDEX TERMS
Modern Car Security, Controller Area Network, Deep Learning, LSTM, Intrusion Detection System

I. INTRODUCTION

The car is arguably the most important means of transporta-

tion of the modern era. It is said that the modern car’s

inception dates back to 1886, when Karl Benz introduced a

patent for his invention called the Benz Patent-Motorwagen.

Since then, the modern car has gone through numerous

transformations to become more efficient, reliable and se-

cure. The Controller Area Network (CAN) bus protocol is

one the most important transformations introduced to the

car industry. Developed by Robert Bosch in the 1980s, the

CAN is an International Standardization Organization (ISO)

defined serial communication bus that is in charge of the

flow of information between the Electronic Control Units

(ECUs) of a car. In simpler words, the CAN bus coordinates

the movements between the engine, the brakes, the steering

wheel, etc., i.e., it makes the modern car connected. The CAN

protocol was initially engineered for industrial machinery,

FIGURE 1. CAN message format in 11bit mode with DLC=8. There are no

security features implemented in this protocol.

however it has been adopted for vehicular network commu-

nications.

The modern car is comprised of about 50 to 100 ECUs,

some of which are connected through the CAN bus. The

CAN bus protocol is effective for vehicular network systems

because of its low cost and centralized system. The ECUs

communicate with messages by using the CAN protocol.

Each ECU receives messages with unique CAN bus IDs

which are used for intra-interactions. Fig. 1 shows the 11 bit

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

mode CAN message format.

• Start of Frame. The Start of Frame bit is used to

synchronize and notify all nodes regarding the start of

the CAN messages transmission.

• CAN ID (Arbitration Field). CAN ID is used for an

identification number to which ECU the message should

be received. The size is 11 bits. The priority of the

message is established by this field, in general, a lower

value indicates a higher priority.

• DLC Field. Data Lenght Code (DLC) is a part of the

control field, which indicates the byte length of the Data

Field. It ranges between 0 to 8.

• Data Field (Payload). It contains the application pay-

load data, which is interpreted by the received ECUs.

• CRC Field. It is used to detect the error regarding the

message transmission. CRC field size is 16 bits and it

contains the CRC sequence from the SOF to the Data

Field.

• Acknowledge Field. This filed is used to get the con-

firmation from the receiver node regarding the proper

reception of the CAN message. In case of transmission

error detection, the sender can send the CAN message

again.

• End of Frame. This field indicates the end of the CAN

message.

Despite its importance, the CAN bus network is designed

without security features, making it susceptible to confiden-

tiality, integrity, and availability attacks. In in-vehicle com-

munication systems, messages are transferred to the vehicle

system managed by the CAN bus protocol. Hundreds of

sensor data communicate to send messages to the CAN bus

system. An ECU can share control data with an outside

element of the vehicle through a network system. The later

possibility increases the attack surface of the CAN bus

protocol [1], [2]. The main security issues of the CAN bus

arise because it broadcasts all the ECUs’ messages without

encryption nor authentication [3]. Consequently, ECUs are

vulnerable to basic hacking techniques; thus, attackers can

easily take control of the car system and cause great damage.

Koscher et al. [4] demonstrated that it is possible to com-

promise the CAN bus system and ECUs by investigating

wireless attacks into the vehicle system. They examined

how CAN messages can be susceptible to Spoofing, and to

what extent the CAN bus protocol is vulnerable to Denial of

Service (DoS) attacks.

There are two obvious solutions for thwarting the attacks

on the CAN bus system: introducing a backward-compatible

authentication mechanism or developing an Intrusion De-

tection System (IDS). In this paper, as an extension of our

previous work [5] where we developed a CAN attack dataset

consisting of DoS, Fuzzing and Spoofing, we opt for the sec-

ond option. We propose Long Short-term Memory (LSTM)-

based IDS for detecting attacks in the CAN bus system of a

vehicle. In this extension, we obtain more fine-grained results

and we compare our method to the Survival Analysis method

FIGURE 2. Typical Architecture of Intrusion Detection for CAN bus Network.

The IDS monitors the messages exchanged in the CAN bus and gives an alert

if it encounters suspicious activities.

[2]. We provide more details later in this section. LSTM is a

powerful deep learning classifier that was created to address

the look-back-in-time issue of Recurrent Neural Networks

(RNN). We employ a deep learning algorithm because ar-

tificial intelligence (AI) is the contemporaneous dominant

technology with proven applications in various fields such

as image recognition, voice recognition, weather forecasting,

market analysis, etc., [6].

An IDS can play an essential role in regards to cyber-

attack detection and mitigation. A traditional IDS is unable

to detect malfunction attacks on the CAN bus; thus, it is

challenging for it to distinguish unknown attacks. Based on

the requirements and functionalities, there are different types

of IDS: signature-based, anomaly-based, misuse-based, and

hybrid [7], [8]. A signature-based IDS is unable to detect

unknown attacks, whereas an anomaly-based IDS is capable

of detecting unknown and malfunction attacks.

Fig. 2 shows the typical IDS architecture regarding in-

vehicle network attacks. By using an external connection

such as an OBD-II diagnostics port, a telematics unit, or in-

vehicle infotainment (IVI), an attacker may inject an attack

into the real car. An IDS can be placed in-between the CAN

bus and the external connection. It will be responsible for

filtering all the traffic into the CAN bus system; the IDS will

send an alert message when an attacker attempts to inject

malicious traffic.

In our setup, we collect raw CAN bus messages from a real

car, and we inject attacks to develop our own DoS, Fuzzing,

and Spoofing datasets. We train our LSTM model with

benign and attack classes. The proposed model effectively

classifies benign and attack instances with a high detection

accuracy of 99.995% and with low false positive and false

negative detection rates. We experiment with both binary

and multiclass classification models. We also investigate the

CAN bus attack detection performance by hyper-parameter

values tuning. Based on the systematic experimentation, we

select the best hyperparameter values to develop a robust

IDS regarding the CAN bus attack detection. Our experiment

results provide better directions on how fine-tuned hyper-

parameter values significantly affect the detection accuracy

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. Attack scenarios assumed in this paper. (a) DoS attack – an attacker floods messages to the CAN bus. (b) Fuzzing attack – an attacker injects random

CAN messages for changing the IDs, payload length. (c) Spoofing attack – an attacker generates fake messages that deceive the receiver’s ECUs.

FIGURE 4. Injection of Messages with Timing Regarding DoS, Fuzzing and Spoofing attacks.

and overall performance. We evaluate our model’s perfor-

mance based on F1 score, AUC-ROC curve, and false pos-

itive and false negative rates. We also evaluate our method

against the Survival Analysis Dataset for automobile IDS

[2] which was developed by the Hacking and Countermea-

sure Research Lab, Korea. The proposed model provides

reasonable detection accuracy and detection rates against the

Survival Analysis Datasets and the LSTM model achieves

a higher detection rate compared to the Survival Analysis

method.

Our major contributions are as follows:

• We develop CAN system attacks (DoS, Fuzzing, Spoof-

ing) datasets by using the CAN messages of a real car.

• To the best of our knowledge, we are the first to propose

an effective LSTM-based IDS for in-vehicle CAN bus

systems to detect well-known network attacks: DoS,

Fuzzing and Spoofing.

• We provide an effective pre-processing method to de-

velop an effective LSTM-based supervised classifica-

tion model regarding the CAN bus attack detection.

• We select the best hyper-parameter values to develop an

effective CAN bus IDS based on LSTM.

The remainder of this paper is organized as follows.

Section II discusses the related works. In Section III, we

describe the overview of the dataset we use for deep learning

before proceeding to Section IV to explain our proposal.

Section V contains the experimental results and performance

evaluations. In Section VI, we provide discussions and future

works, and Section VII concludes this manuscript.

II. RELATED WORKS

In this section, we discuss the essence of the related work

regarding network anomaly detection of in-vehicle systems.

Koscher et al. are the first to demonstrate attack injec-

tion through wireless communication in in-vehicle network

systems during an investigation of the security of modern

vehicles [4]. They employed the CARSHARK tool to de-

bunk numerous security vulnerabilities on the CAN bus,

and they showed that the CAN broadcasting characteristics,

when applied to all nodes, makes it easy for an attacker

to intrude into the communication messages. Kleberger et

al. investigated the security threats and attacks of in-vehicle

network systems, they afterwards discussed the problems and

solutions [9]. They also argued about IDS and architectural

security features. Loukas et al. [10] proposed a deep learning-

based Intrusion Detection System for the in-vehicle network

systems by leveraging several machine learning classifiers.

They conducted their experiment by injecting cloud-based

attacks to a robotic vehicle. Their results show that LSTM

is more suitable for in-vehicle intrusion detection with an

overall accuracy of 86.9%. Kim et al. [1] proposed Genera-

tive Adversarial Networks (GAN)-based IDS (GIDS) for in-

vehicle networks. They studied four vehicular attacks: DoS,

Fuzzy1, RPM, and Gear. As per their experiment results

for the second discriminator in GIDS, they obtained attack

detection rates of 99.60%, 99.50%, 99.00%, and 96.50%,

respectively. Han et al. proposed a survival analysis method

1We use “Fuzzy attack” to keep the same vocabulary as in the related
work, but we consider “Fuzzy attack” and “Fuzzing attack” to be the same
in this paper.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. NAIST CAN Attack Dataset - Benign and Attack Instances

Type of Attacks Number of Instances

Benign 947931 (69.22%)
DoS 286502 (20.92%)

Fuzzing 114027 (8.33%)
Spoofing 21072 (1.54%)

TABLE 2. Survival Analysis Dataset for automobile IDS - Benign and Attack

Instances

Type of Attacks Sonata Soul Spark

Benign 468527 717489 366510
Flooding 32422 33141 22587

Fuzzy 18118 39812 5812
Malfunction 15974 7401 8047

regarding intrusion detection for vehicular networks [2].

They extracted attack data from a real car, and they also in-

jected attacks to generate: Flooding, Fuzzy, and Malfunction

attack datasets. Kang et al. [11] devised an unsupervised deep

belief network (DBN)-based IDS for the CAN BUS. They

produced attack datasets by using a packet generator named

Open Car Test-bed and Network Experiments (OCTANE). In

paper [8], the authors studied several kinds of attacks against

the connected cars and provided an overview of Artificial

Neural Networks (ANN)-based IDS to mitigate cyberattacks

on modern vehicle systems. The researchers in [12] used

different machine learning algorithms to classify CAN bus

messages. Their results show that the k-nearest neighbor (k-

NN) algorithm performed better with an accuracy of 86.00%.

Song et al. [13] proposed an IDS for in-vehicle networks

based on a time interval analysis (TIA) of the CAN messages.

L. Hyunsang et al. [14] developed an IDS by analyzing

the request-response message in the CAN bus, based on

an offset ratio and time interval analysis. Khan et al. [15]

Khan et al. investigated SDN-based false data injection into

the brake-related ECUs. They developed false information

attack dataset and applied LSTM to detect the attack, and

they achieved a detection rate of 87%. Woo et al. [16]

developed an in-vehicle CAN security protocol and analyzed

the wireless attacks on the connected car. They discussed the

connected car environment, several kinds of attack models,

and security requirements. Taylor et al. [17] engineered an

IDS based on the LSTM model. Their proposal relies on the

prediction of the next data of the CAN bus network, while

acknowledging that the data originates from the senders.

In this section, we note that in an IDS for in-vehicle

networks (CAN bus), deep learning algorithms outperform

other methodologies. These methodologies include statisti-

cal analysis, frequency-based analysis, and Hidden Markov

Model (HMM), etc. Additionally, among the deep learning

algorithms, LSTM provides the best results. Hence, in this

paper, we propose an LSTM-based IDS for CAN bus net-

works that performs better than the related work due to our

systematic hyper-parameter values fine-tuning.

III. ATTACKS USED IN THE MODEL

We mainly experiment with three types of attacks in this

paper: DoS, Fuzzing, and Spoofing.

DoS Attack. The key objective of a DoS attack in the CAN

bus is to interrupt or disable the services between the ECUs.

During a DoS attack, attackers continuously send arbitrary

messages with high priority bits in the CAN ID. Thus,

high frequency and high priority CAN messages occupy the

CAN bus network system. As a result, legitimate messages

transmissions between the ECUs are obstructed.

Fuzzing Attack. Despite the absence of proper infor-

mation on the CAN messages, a malicious user can easily

attack an in-vehicle network with a Fuzzing attack. During a

Fuzzing attack, an attacker injects random ID, DLC, and data

fields into the CAN bus, which mimic the legitimate traffic,

in the CAN bus system. The Fuzzing attack’s disruptions

of the CAN bus system manifest as follows: shaking of the

steering wheel, signal lights turning on/off erratically, the

gear shift changing automatically, etc., [14]. Attackers aim to

compromise the ECUs by randomly injecting arbitrary mes-

sages. A vehicle controlled by an attacker may be identified

by comparing the original CAN ID to its actual CAN ID.

Spoofing Attack. In a Spoofing attack, an intruder targets

specific CAN IDs to inject modified messages; thus, the

ECUs get biased. Consequently, it becomes challenging to

identify legitimate messages, and the system may start to

malfunction.

FIGURE 5. Examples of NAIST CAN Attack Dataset

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 6. CAN bus Network System Defense Verification Platform. Consist of Two modules: Attack Verification and Intrusion Detection System

A. DATASET GENERATION

In this experiment, we collect the CAN message from an

actual Toyota hybrid car. We capture the attack-free messages

using a CAN analysis tool named Vehicle Spy 3 for a duration

of 120 seconds. We design three attack scenarios –DoS,

Fuzzing, and Spoofing– by creating the attack datasets based

on the real car messages. Fig. 5 depicts an example of the

NAIST CAN attack dataset. The dataset features contain

Timestamp, CAN ID, DLC, Payload Data [D0-D7], and

Label column. CAN ID is an identifier of the CAN messages.

DLC data bytes range from 0-8. The data field contains

64 bits in maximum, and we position each byte in specific

columns such as D0-D7. The label represents the original

data or the attack data which are added for an experiment.

We also study the Survival Analysis datasets for automo-

bile IDS which consist of Flooding, Fuzzy and Malfunction

attacks in different car models: Sonata, Soul and Spark [2].

B. ATTACK SCENARIOS

CAN messages are broadcast in the in-vehicle network sys-

tem; there are no adequate security measures regarding the

CAN messages. In fact, there are lackings of authentication

and encryption mechanisms into the CAN bus system. As a

result, it is easy for attackers to disrupt the CAN bus system’s

confidentiality, integrity, and availability. We consider three

critical attacks: DoS, Fuzzing, and Spoofing. The aforemen-

tioned attacks are considered critical because they can render

the CAN system useless. We develop two datasets in the

experiment for each scenario for comparison, one in which

we collect data from a real car without any attack data; we

obtain the second dataset by injecting attacks. Fig. 3 and Fig.

4 depict the attack injection scenarios on CAN messages.

With the existing algorithm we can develop a single attack

at a time. Regarding the DoS attack, we use 0.5 ms as the

interval time. The DoS attack interval time can be between

0.1 ms and 1.0 ms. The DoS attack interval time 0.5ms

produces less amount of DoS attack elements. We use the 1.0

ms interval time to generate the Fuzzing attack; this interval

time allows us to inject the maximum amount of Fuzzing

attack elements to make the CAN bus system malfunction.

We develop the Spoofing attack for a 5-second period and a

5-second duration to produce a smaller amount of Spoofing

attack classes (1.54%) compared to the benign classes. We try

to mimic real-life scenarios to analyze the imbalance impacts

in our experiments and evaluate the performance of the IDS.

DoS Attack

During a DoS attack, the CAN bus system is flooded with

messages; thus, the ECUs’ regular communications trigger

an interruption and the CAN network becomes unavailable

to legitimate users. We develop the DoS attack dataset by

injecting a large number of messages with the CAN ID 00,

DLC 8, data 00. In our experiment, an attack typically starts

from 20 seconds for a 10-second period and the interval time

is 0.5 ms and the attack duration is 5 seconds. Fig. 5(a)

depicts the example of the NAIST DoS attack dataset.

Fuzzing Attack

Regarding the Fuzzing attack, an attacker randomly injects

a vast amount of CAN messages with arbitrary data. We use

random CAN IDs between 0x000 and 0x7FF with arbitrary

lengths. The attack starts from 20 seconds and lasts 5 seconds

before resuming after another 5 seconds, and so on and so

forth, the interval time is 1ms. Fig. 5(b) depicts the example

of the NAIST Fuzzing attack dataset.

Spoofing Attack

We inject handle angel and vehicle speed Spoofing attacks

into the Spoofing attack dataset. We inject Spoofing for

10 seconds, for a 5-second duration and 5-second rest(no

attack), and the attack starts from 20 seconds. Regarding

handle angle Spoofing, we use CAN ID 025, DLC 8, data

xx, yy, 00, 02, 5F, FE, 00, CS. The interval time is 12 ms.

Regarding vehicle speed spoofing, we use CAN ID 0B4, DLC

= 8, data 00, 00, 00, CT, 11, xx, yy, CS. Where xx and yy are

spoofed values, CS is a checksum, and CT is a counter value.

We consider a 25 ms interval for speed Spoofing attack.

Regarding the Survival Analysis datasets multiclass clas-

sification, we concatenate all the three attack classes for each

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Performance Evaluation based on the Number of LSTM Units, Batch Size and Learning Rate

car model. After concatenation, we observe from Table 2

that Sonata contains 468527 benign elements and Flooding,

Fuzzy and Malfunction (Malf.) elements are 32422, 18118

and 15974, respectively. The Soul car’s benign elements

are 717489, whereas its Flooding, Fuzzy and Malfunction

elements are 33141, 39812 and 7401, respectively. The Spark

car model has 366510 benign elements and 22587, 5812

and 8047 of Flooding, Fuzzy and Malfunction elements,

respectively. We observe that the number of benign class

elements is higher compared to the number of attack class

elements. As per Table 2, 89.44% of the elements belong to

the benign class, whereas we have 5.08%, 3.67% and 1.81%

of Flooding, Fuzzy and Malfunction elements, respectively.

IV. LSTM-BASED NETWORK INTRUSION DETECTION

SYSTEM

For our investigation, we use python PyCharm IDE 2019.2.2

and Keras [21] with TensorFlow as backend. We conduct our

experiment with Intel Core i7 CPU 2.20 GHz, 16 GB RAM,

Windows 10 (64-bit), and NVIDIA GeForce GTX 1050.

We use the categorical_cross entropy as loss function. The

Nadam optimizer is applied with a learning rate of 0.0001,

the rest of the parameters conserve their default values and

softmax is used as an activation function output. Tables 3

and 4 provide the experimental settings regarding attacks

detection based on LSTM binary and multiclass classification

models. We preprocessed raw CAN dataset before inputting

the model, we train the model by providing 80% of the

elements and we test the classifier with 20% of the elements.

After training, the classifier can classify the attack and benign

class elements. Fig. 10 schematizes the deep neural network

model wherein we can input the CAN bus data into the input

layer and, after preprocessing, the classifier will provide the

output as a benign or attack class.

Figure 6 depicts the architecture of the proposed defense

verification platform about in-vehicle CAN bus and ECUs.

Two modules compose the architecture: the attack verifica-

tion platform and the Intrusion Detection System. As per the

attack verification platform, we extract raw CAN bus data

from the real car. We develop the attack datasets by making

use of our attack creation algorithm. As per the connection

point, an attacker can compromise the CAN bus network

system by using the communication interfaces: Telematics

unit, Car Navigation System, Physical access to an OBD-II

port. We place an IDS into the CAN bus system, the IDS

filter module filters all the malicious traffic into the CAN

bus message communication and provides an alert message

in case of malicious traffic injection.

A. DATASET PREPROCESSING

For our experiment, we use NAIST CAN attack labelled

dataset to evaluate the performance of our proposed LSTM

model. We extract the attack-free dataset from a Toyota

Hybrid car and we develop attack datasets –DoS, Fuzzing

and Spoofing– by injecting attacks through a program written

with the Python programming language.

In Section III, we discuss in detail about the NAIST CAN

attack datasets. We use the Vehicle Spy3 Professional tool

to extract the raw data from a real car. The NAIST CAN

attack raw dataset only consists of the attack-free instances

extracted from the Toyota Hybrid car. For the attack dataset,

we develop a Python-based program for injecting attacks to

generate DoS, Fuzzing, and Spoofing datasets. The CAN

bus raw dataset is in hexadecimal format shown in Fig. 5;

we experiment with the attack dataset without decoding and

converting hexadecimal to decimal as per machine learning

requirement. In the CAN message format, the classification

label R represents the benign class message and T denotes

the injected attack message. In our experiment, we switch the

roles as follows: R as benign and T as an attack class name.

In our experiment, we only took into account 10 features in

the dataset –CAN ID, DLC, Data [D0-D7]– and the Label

column. CAN ID is an identifier of the CAN messages. DLC

data bytes is between 0-8. The data field contains 64 bits, and

we position each byte in specific columns such as D0-D7.

Since we did not consider time interval analysis to detect the

intrusion, we did not analyze the timestamp field.

We concatenate three attack datasets and apply the mul-

ticlass classification. From Table 1, the number of be-

nign instances is 947931 (69.22%), DoS instances, 286502

(20.92%), Fuzzing instances, 114027 (8.33%), and Spoofing

instances, 21072 (1.54%). We observe that the number of be-

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 8. Basic RNN Architecture

FIGURE 9. LSTM Cell Architecture

nign instances is higher than the number of attack instances.

CAN ID data fields range from 1-8 bytes. As per machine

learning requirement, we fill up the CAN bus data fields with

blank values by -1, which helps to keep the integrity of the

datasets intact. We use 10 features that we label as benign,

DoS, Fuzzing, and Spoofing attacks. We use 80% of the data

for training, and the remaining 20% of the data is used for

the testing set. There are 1095625 instances in the training

set and 273907 instances in the testing set.

B. APPLICATION OF THE LONG SHORT-TERM MEMORY

(LSTM) MODEL

LSTM is a special kind of recurrent neural networks. It was

introduced by Hochreiter and Schmidhuber in 1997 [18].

We contend that LSTM is suitable for this research because

the LSTM performs well regarding Time Series data and

Sequence Classification.

As per the recurrent neural network (RNN) architecture

(Fig. 8), we can process a sequence of data x1, ...xn by

applying RNN and it will produce a sequence of outputs

y1, ...yi.

ht = fW (ht−1, xt) (1)

ht = New state

fW = Function with parameter W

FIGURE 10. LSTM IDS Architecture Regarding the Attack Classification

ht−1 = old state

xt = Input vector at some time step

By applying the recurrence equation, Equation 1, at every

time step, we can process a sequence of vectors x1, ...xn. The

same function and set of parameters fw are used in every time

step with the input xt and the old state ht−1 and we get output

ht, new state.

The standard recurrent sigma cell’s mathematical expres-

sions are as follows:

ht = σ(Whht−1 +Wxxt + b) (2)

yt = ht (3)

Where xt represents the input, ht the recurrent informa-

tion, and yt the output of the cell at time t, Wh and Wx are

the weights and b is the bias.

However, standard recurrent cells of the recurrent net-

works are incompetent to handle long-term dependencies;

since the gap between the associated inputs grows, it is com-

plicated to learn the connection information. Hochreiter and

Schmidhuber (1997) proposed the LSTM cell to overcome

the “long-term dependencies” problem. They introduced the

“gate” into the cell; thus, it facilitates the standard recurrent

cell to retain memory. Generally, the LSTM cell signifies

LSTM with a forget gate [19].

Three gates are available in LSTM and they are responsible

for the cell state protection and control [20]. Figure 9 depicts

the LSTM cell architecture consisting of the input vector xt,

hidden input vector ht−1 and output vector ht.

it = σ(Wi.[ht−1, xt] + bi) (4)

ft = σ(Wf .[ht−1, xt] + bf) (5)

C̄t = tanh(Wc.[ht−1, xt] + bc) (6)

Ct = ft ∗ Ct−1 + it ∗ C̄t (7)

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Ot = σ(Wo[ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

Wf , Wi and Wc are weights, and bf , bi and bc are bias.

The sigmoid layer makes the decision, it is called the “forget

gate layer” and it outputs between 0 and 1.

Ct is the new cell state, it is obtained from the old cell state

Ct−1 and is regulated by the input it and forget ft gates.

We employ the LSTM model for supervised binary and

multiclass classification. Regarding supervised learning, we

have input variables (X) and an output variables (Y). We

use the LSTM model to learn the mapping function from the

input to the output: Y = f(X). The objective is to determine

the mapping accurately; hence, we can predict the output

variables (Y) when we input the new input data (X).

X =

X1

X2

X3

.

.

.

Xi

=

x11 x12 x13 ... x1n

x21 x22 x23 ... x2n

x31 x32 x33 ... x3n

.

.

.

xi1 xi2 xi3 ... xin

Y =

y1
y2
y3
.

.

.

yi

We give an input sequence X = (X1, X2, X3, . . . , Xi)
and Xj = (xj1, xj2, xj3, . . . , xjn), j ∈ [1, . . . , i], where

xjz , z ∈ [1, . . . , n], is an element of the input variables (X),

and we obtain an output sequence Y = (y1, y2, y3, . . . , yi),
where yq , q ∈ [1, . . . , i], is an element of the output variables

(Y). For each time step, the input Xj is each row/CAN packet

payloads of the corresponding CAN ID of the dataset. Each

row/CAN packet is an observation comprised of ten features

as input variables (X) and one output variable to be predicted

(Y).

We have to reshape the input because the input shape for

the LSTM model must be three-dimensional (Samples, Time

Steps, and Features). We use single time steps and define a

3D array of the LSTM input layer regarding the fitting of the

model and when making the predictions.

We experiment with changing the different hyper-

parameter values such as optimizer, learning rate, units,

activation function, etc. We select the best hyper-parameter

values based on the systematic experimentation for our ex-

periment to achieve the best detection accuracy.

TABLE 3. LSTM Parameters for Binary Classification

Parameters Value

Activation Function Input tanh
Epoch 200
Activation Function Output sigmoid
Optimizer Adam
Learning Rate 0.0001
Batch Size 512
Loss Function binary_crossentropy
Encoder Label Encoder

TABLE 4. LSTM Parameters for Multiclass Classification

Parameters Value

Activation Function Input sigmoid
Epoch 200
Activation Function Output softmax
Optimizer Nadam
Learning Rate 0.0001
Batch Size 512
Loss Function categorical_crossentropy
Encoder Label Encoder

We train our LSTM classifier with benign and CAN bus

attack instances; 80% of the dataset is used for training the

classifier, and 20% is used for the testing. We evaluate to

which degree the classifier is capable of detecting the attack

instances. We conduct our experiment with a Vanilla LSTM

model, and we also use the Stacked LSTM model with single

to five hidden layers and arbitrary unit settings: 512-512-256-

128-64, and we apply binary and multiclass classifications.

As per Fig. 7(c), we observe that it is better to use bigger

units –512-256– instead of lower units to achieve the best

detection accuracy with low variance. Fig. 7(a) shows that

256-512 batch size provides better detection accuracy. Table

3 and Table 4 describe the LSTM parameter details which

we use for our experiment. We use a single to five LSTM

stacked layers on top of each other; the final result is a dense

layer with softmax activation, which gets input from the last

layer output, the LSTM layer.

In this experiment, we use the Keras [21] API. Keras

is written in Python; hence, it is easy to use it along

with Tensorflow. Table 3 provides the parameter values

that we use in our binary classification experiment. We

select the best hyper-parameters values by experimenting

with hyper-parameter value changes. We utilize the Adam

optimizer with a learning rate of 0.0001. We employ the

binary_crossentropy as the loss function and the sigmoid

as an output activation function. In the proposed multiclass

LSTM model experiment, we use the Nadam optimizer.

We use the optimizer’s learning rate of 0.0001, and the

remaining parameters of the optimizer are used with their

default values. In Fig. 7(b), we see that 0.0001 provides

the highest detection accuracy with the lowest variance. The

categorical_crossentropy optimizer is used as loss function.

We set the number of iterations to 200 epochs.

We perform a validation through the fit() function by

using validation data. After training and testing, we calcu-

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5. Binary Classification Results - NAIST CAN Attack Dataset

Attack Acc TPR TNR FPR FNR AUC

DoS 100% 1.00 1.00 0.00 0.00 1.00
Fuzzing 99.98% 0.9993 1.00 0.00002 0.0007 1.00
Spoofing 100% 1.00 1.00 0.00 0.00 1.00

FIGURE 11. NAIST CAN Attack Dataset Classification Receiver Operating

Characteristics (ROC)

late the accuracy and loss based on a number of correctly

classified instances. It is challenging to optimize the model

loss and achieve the best detection accuracy for the best

hyper-parameter values selection. Hyper-parameter values

are strong indicators for gaining better accuracy and detec-

tion rates when using a deep learning model. We have to

find out the right optimizer, activation function, learning rate,

and loss functions to develop a useful model and efficient

design. Nadam and Adam are both appropriate optimizers

concerning large datasets and efficient models. We fine-tune

the hyper-parameter values such as layers, activation func-

tions, learning rates, and loss functions. We experiment with

hype-parameter tuning by using layer 1 with 512 arbitrary

units. In Section V, we discuss the details regarding how

hyper-parameter values change the experiment settings and

results.

V. EXPERIMENT RESULTS AND PERFORMANCE

EVALUATION

Performance measurement is an essential aspect in machine

learning. We evaluate the CAN bus network attack detection

performance by using the detection accuracy, detection rate,

Area Under The Curve (AUC)-Receiver Operating Charac-

teristics (ROC) curve, and F1 scores [22].

We use the AUC-ROC curve to perform visualizations for

multiclass classification at all the classification thresholds.

We plot the True Positive Rate (TPR) against the False

Positive Rate (FPR) in the AUC-ROC curve wherein FPR

and TPR are on the x-axis and y-axis, respectively. A higher

AUC-ROC is better because it demonstrates the strength of

the model. In other words, the model is strong when AUC-

ROC is close to 1.0, and the model is weak (worse model)

when AUC-ROC is close to 0.0. Based on the number of

TABLE 6. LSTM Layer(s) Multiclass Classification Results - NAIST CAN

Attack Dataset

Layer Attack Acc Recall F1 FPR FNR

Benign 1.0000 1.0000 0.0002 0.0000
DoS 1.0000 1.0000 0.0000 0.0000

L1 Fuzzing 99.995% 0.9994 0.9997 0.0000 0.0006
Spoofing 1.0000 1.0000 0.0000 0.0000

Avg 0.9998 0.9999 0.00004 0.0002

Benign 1.0000 0.9999 0.0004 0.0000
DoS 1.0000 1.0000 0.0000 0.0000

L2 Fuzzing 99.988% 0.9986 0.9993 0.0000 0.0014
Spoofing 1.0000 1.0000 0.0000 0.0000

Avg 0.9997 0.9998 0.0001 0.0003

Benign 1.0000 0.9998 0.0007 0.0000
DoS 1.0000 1.0000 0.0000 0.0000

L3 Fuzzing 99.978% 0.9974 0.9987 0.0000 0.0026
Spoof 1.0000 1.0000 0.0000 0.0000
Avg 0.9993 0.9996 0.0002 0.0007

Benign 1.0000 0.9999 0.0004 0.0000
DoS 1.0000 1.0000 0.0000 0.0000

L4 Fuzzing 99.987% 0.9985 0.9992 0.0000 0.0015
Spoofing 1.0000 1.0000 0.0000 0.0000

Avg 0.9996 0.9998 0.0001 0.0004

Benign 1.0000 0.9999 0.0003 0.0000
DoS 1.0000 1.0000 0.0000 0.0000

L5 Fuzzing 99.989% 0.9990 0.9993 0.00004 0.0010
Spoofing 1.0000 1.0000 0.0000 0.0000

Avg 0.9997 0.9998 0.0001 0.0003

TABLE 7. Layer(s) Multiclass Classification results - NAIST CAN Attack

Dataset

Layer Accuracy TPR TNR FPR FNR

L1 99.995% 0.9998 1.0000 0.00004 0.0002
L2 99.988% 0.9997 0.9999 0.0001 0.0003
L3 99.978% 0.9993 0.9998 0.0002 0.0007
L4 99.987% 0.9996 0.9999 0.0001 0.0004
L5 99.989% 0.9997 0.9999 0.0001 0.0003

classes, we can plot AUC-ROC curves for multiclass clas-

sification.

The F1 score is an essential factor for measuring machine

learning performance evaluation when the datasets are im-

balanced. In the case of an imbalanced dataset, we cannot

evaluate the performance by only detecting the accuracy

(Acc). Similar to AUC-ROC, the model is strong if the F1

score is around 1.0, and the model is weak if the F1 score is

close to 0.0. The F1 score is the weighted average results of

the precision and recall [23], [24].

We visualize the model’s performance by using the AUC-

ROC multiclass curve and also the class-specific multiclass

curve. In the following section, we discuss the experimental

results and the effectiveness and performance of the model

based on hyper-parameter tuning.

We conduct our experiment with the binary classification

parameter settings depicted in Table 3. Table 5 shows the bi-

nary classification results, we observe that DoS and Spoofing

attacks are classified with 100% accuracy, and Fuzzing is

detected with a 99.98% accuracy. FPR is zero for the DoS

and Spoofing attacks, wherein few false positive and false

negatives are available for the Fuzzing attack.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 12. Gradient Descent Optimizer Confusion Matrix - NAIST CAN Attack Dataset

A. LSTM LAYER(S) - ATTACKS CLASSIFICATION

EXPERIMENT RESULTS

There are two main hyper-parameters in Artificial Neural

Networks which control the network’s topology: the number

of layers and number of nodes in the respective hidden layer.

The most effective approach is to select the number of layers

and nodes for each hidden layer and other hyper-parameter

values, we have to proceed with systematic experimentation

for the particular predictive models [25].

To achieve an effective detection accuracy and detection

rate, we have to select and find out the LSTM layer’s number

providing the best accuracy and detection rates. We study a

single to five LSTM layers based on the parameter settings

in Table 4, and we compare the performance among them.

In Table 6, according to our experiment results, Vanilla

LSTM with a single hidden layer provides the best detection

accuracy wherein the FPR and FNR are lower. Table 6 shows

the layer-wise results wherein L1 provides the best detection

accuracy, 99.995%, and when we increase the layer size to

L2-L5, we notice a decrease of the detection accuracy and an

increase of the false positive and false negative rates.

Fig. 12 shows the LSTM multiclass confusion matrix

(CM). For the Nadam optimizer, which we consider for

this research, we observe that DoS and Spoofing attacks

are accurately classified (100%), but few false negatives (14

instances) are available regarding the Fuzzing attack. Based

on the CM and Table 7 (L1), we detect DoS and Spoofing

attacks more accurately without false positives and false neg-

atives wherein the FPR and the FNR are 0.00004 and 0.0002,

respectively. Still, some false negatives are available regard-

ing Fuzzing attack detection. Our model’s overall detection

accuracy and the detection rate are adequate to classify the

CAN bus network attacks efficiently. We observe that L1

TABLE 8. Nadam Learning Rate LSTM Classification Results - NAIST CAN

Attack Dataset

Learning Acc Recall F1 FPR FNR

Rate

0.0001 99.995% 0.9998 0.9999 0.00004 0.0002
0.001 99.87% 0.9981 0.9979 0.0006 0.0019
0.01 99.18% 0.9868 0.9862 0.0043 0.0132
0.5 91.57% 0.9317 0.7844 0.0273 0.0683

provides the best detection rate regarding the Fuzzing attack

detection wherein L2-L5 decrease the detection rate. That

is why it is better to use L1 for CAN bus attack detection;

additionally, it requires less computation cost compared to

L2-L5 layers. Fig. 11 depicts the ROC curve, and we observe

that AUC is 1.0 for all the classes, which indicates that all

the instances are almost classified accurately, it demonstrates

that our proposed model is quite effective to classify the CAN

bus network attacks.

We assume that in case of using the 30% testing data set.

The FPR and FNR may increase slightly based on a large

testing set, and also it may degrade the detection accuracy a

bit.

B. NADAM LEARNING RATE - LSTM CLASSIFICATION

RESULTS

Gradient descent is one of the most popular and extensively

used optimizer algorithms for optimizing neural networks

[28]. The optimizer learning rate (LR) is one of the critical

factors regarding detection accuracy. Weights and bias are

radical changes in the case of the usage of a large learning

rate. A large learning rate may cause an overpass of the global

minima. To avoid the risk of an overpass, it is better to set the

minima to a smaller learning rate instead of a large value.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 9. Optimizers Classification Results - NAIST CAN Attack Dataset

Optimizer Accuracy Recall F1 FPR FNR

RMSprop 99.984% 0.9997 0.9997 0.0001 0.0003
Adam 99.993% 0.9998 0.9999 0.00005 0.0002
Nadam 99.995% 0.9998 0.9999 0.00004 0.0002
Adagrad 98.212% 0.9581 0.9632 0.0099 0.0419
Adadelta 97.756% 0.9457 0.9534 0.0126 0.0543
Adamax 99.987% 0.9997 0.9998 0.0001 0.0003

TABLE 10. Activation Function-wise Classification Results - NAIST CAN

Attack Dataset

Activation Accuracy Recall F1 FPR FNR

Function

sigmoid 99.995% 0.9998 0.9999 0.00004 0.0002
relu 99.988% 0.9998 0.9998 0.00007 0.0002
tanh 99.994% 0.9998 0.9999 0.00005 0.0002

The training period is longer and it also proliferates the time

to converge to a small learning rate [26], [27]. We compare

the performance by using a few learning rate values. Table 8

shows that the lower the learning rate, the better the detection

accuracy. We observe that a learning rate of 0.0001 achieves

a detection accuracy of 99.995% whereas a 0.5 learning

rate’s detection accuracy is 91.57%, and an LR of 0.5 cannot

classify any attack instances. An LR of 0.0001 provides

the best detection accuracy because a smaller learning rate

can thoroughly learn the dataset and be able to classify the

instances accurately.

C. OPTIMIZERS - CLASSIFICATION RESULTS

Regarding the deep learning model performance optimiza-

tion, we optimize the neural network by using one of the

most popular algorithms, which is gradient descent. There

are three different gradient descent algorithms: batch gradient

descent, stochastic gradient descent, and mini-batch gradient

descent. We have to select the gradient descent as per the

amount of data we would like to compute the gradient of the

objective function [28].

To achieve better accuracy, we need to select the right

optimizer(s) for the model. We study six optimizers: RM-

Sprop, Adam, Adagrad, Adadelta, Adamax and Nadam. As

per Table 9, Adam and Nadam provide high detection ac-

curacy regarding CAN bus attacks. We found that Adam

and Nadam are appropriate optimizers regarding binary and

multiclass classifications for CAN bus network attack detec-

tion. Both optimizers provide the best classification accuracy

[29]–[31]. Nadam and Adam provides the detection accuracy

of 99.995% and 99.993% and the detection rate for both

optimizers is 0.9998. We observe that Adagrad and Adadelta

optimzers provide lower detection accuracy as compared to

other optimizers. As per Figure 12, we observe that Nadam

and Adam classify most of the instances correctly with fewer

false positives and false negative instances.

TABLE 11. Loss Function-wise Classification Results - NAIST CAN Attack

Dataset

Loss Acc Recall F1 FPR FNR

Function

categorical 99.995% 0.9998 0.9999 0.00004 0.0002
_crossentropy

MAE 91.100% 0.6641 0.6830 0.0720 0.3359
MSE 99.990% 0.9997 0.9998 0.0001 0.0003
KL_divergence 99.995% 0.9998 0.9999 0.00004 0.0002

TABLE 12. LSTM Multicass Classification Results - Survival Analysis Dataset

for automobile IDS

Model Attack Acc Recall F1 FPR FNR

Benign 1.0000 1.0000 0.0001 0.00001
Flooding 1.0000 1.0000 0.0000 0.0000

Sonata Fuzzy 99.997% 0.9995 0.9996 0.00001 0.0005
Malf. 1.0000 1.0000 0.0000 0.0000
Avg 0.9999 0.9999 0.00004 0.0001

Benign 1.0000 0.9994 0.0116 0.0000
Flooding 1.0000 1.0000 0.0000 0.0000

Soul Fuzzy 99.707% 0.9469 0.9701 0.0003 0.0531
Malf. 0.9697 0.9087 0.0015 0.0303
Avg 0.9792 0.9696 0.0034 0.0208

Benign 0.9998 0.9997 0.0027 0.0002
Flooding 1.0000 1.0000 0.0000 0.0000

Spark Fuzzy 99.953% 0.9823 0.9831 0.0002 0.0177
Malf. 1.0000 1.0000 0.0000 0.0000
Avg 0.9955 0.9957 0.0007 0.0045

D. ACTIVATION FUNCTION - CLASSIFICATION RESULTS

We use sigmoid as an input activation function and softmax

as an output activation function for classifying the CAN

bus attacks in our model. We study with three input ac-

tivation functions by using L1 and we use the parameter

values settings in Table 4. In this experiment, softmax output

activation function remains the same, we only change the

input activation functions as tanh, relu and sigmoid. Table 10

shows that sigmoid and tanh provide the best performances

compared to relu.

The sigmoid and tanh input activation functions pro-

vide the best detection accuracy of 99.995% and 99.994%

whereas relu provides a detection accuracy of 99.988%.

E. LOSS FUNCTION - CLASSIFICATION RESULTS

In a deep learning approach, the loss function is an essential

factor that significantly impacts the detection accuracy. To

optimize the model and reduce the error, we need to select

the proper loss function for the model to predict the results

accurately. We have to consider various factors before choos-

ing the loss function. Based on the specific predictive model

such as regression or classification losses, we have to choose

the appropriate loss function [32].

We also change the loss functions and compare the

performance among them. Table 11 shows that categori-

cal_crossentropy and kullback_leibler_divergence perform

well compared to the other optimizers regarding CAN bus

attacks detection. Both optimizers provide similar detection

accuracy of 99.995%.

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 13. Detection Rate - Comparison with the Survival Analysis Dataset

for automobile IDS

F. RESULTS COMPARISON WITH THE SURVIVAL

ANALYSIS METHOD/DATASET

We apply the proposed LSTM IDS to the Survival Analysis

Dataset for automobile IDS [2]. The datasets contain three

different car models with Flooding, Fuzzy, and Malfunction

attacks. We use binary and multiclass classification according

to Tables 3 and 4 parameter settings. From the experiment

results, we observe that in Tables 12 and 13 LSTM can detect

the attacks with almost 100% accuracy wherein Flooding and

Malfunction detection rate is almost 1.00 and few false pos-

itives are visible regarding the Fuzzy attacks. The proposed

method is quite effective in classifying the attacks with a high

detection rate and it achieves a higher detection rate than

the Survival Analysis method’s average detection rate (Fig.

13). Our classifier can classify the Flooding and Malfunction

attacks with a high detection rate of 1.00 (Table 13). The

proposed method’s Fuzzy attack detection rate is also high

compared to the conventional method but it is not as good as

for Flooding and Malfunction attacks.

VI. DISCUSSION

Researchers whose work revolves around deep learning face

issues related to the availability of real-time public datasets.

We produce our CAN bus attacks datasets from an actual car.

We extract raw data from the real car, and we generate three

separate attack scenario datasets: DoS, Fuzzing, and Spoof-

ing. These types of attacks are considered the most prominent

in the CAN bus system in terms of damage capabilities. The

connected car market is rapidly growing; hence, the interest

of hackers is proportionally growing. CAN bus data security

is of utmost importance regarding safe driving.

The CAN protocol broadcasts the messages to all nodes

without encryption or authentication. Hence, attackers can

easily inject malicious messages to the CAN bus system and

disrupt the confidentiality, integrity, and availability of the

said system. If an attacker succeeds in injecting an attack

and taking control of the CAN bus system, they can stop

TABLE 13. LSTM Binary Classification Results - Survival Analysis Dataset for

automobile IDS

Model Attack Acc Recall F1 FPR FNR

Flooding 100% 1.0000 1.0000 0.0000 0.0000
Sonata Fuzzy 99.996% 1.0000 0.9999 0.00004 0.0000

Malf. 100% 1.0000 1.0000 0.0000 0.0000
Avg 99.999% 1.0000 1.0000 0.00001 0.0000

Flooding 100% 1.0000 1.0000 0.0000 0.0000
Soul Fuzzy 99.62% 0.9763 0.9880 0.0000 0.0237

Malf. 100% 1.0000 1.0000 0.0000 0.0000
Avg 99.87% 0.9921 0.9960 0.0000 0.0079

Flooding 100% 1.0000 1.0000 0.0000 0.0000
Spark Fuzzy 99.60% 0.9780 0.9780 0.0022 0.0220

Malf. 100% 1.0000 1.0000 0.0000 0.0000
Avg 99.87% 0.9927 0.9927 0.0007 0.0073

the engine, disable the brakes, turn the lights on/off, etc. An

efficient IDS can protect the CAN bus systems. We conduct

research on hyper-parameter values tuning, and we observe

how the detection accuracy and detection rate vary depending

on the hyper-parameter value changes. Our investigation

results demonstrate that hyper-parameter values significantly

affect the IDS detection accuracy. In this study, we were

able to find the best hyper-parameter values for designing

an effective Intrusion Detection System for the CAN bus

network system. In this Investigation, we have taken multi-

classification approach for detecting the type of attacks in

CAN bus network. There might be a discussion that multi-

label approach may be able to pick up several types of

attacks if the attacks are mixed. But our focus was not in that

direction in this paper.

An effective IDS is essential regarding the in-vehicle CAN

bus attack detection, and it will make a significant impact

for the safe driving of the car. An anomaly-based IDS can

play a vital role in mitigating the known and unknown

attacks in the CAN bus network system. Preprocessing is

one of the key facts regarding the IDS system to achieve

the best performance. Our proposed preprocessing system is

effective and it’s working fine in LSTM for CAN bus network

attack detection. We achieve the best detection rate regarding

Toyota and Survival Analysis dataset experiment.

Our proposed LSTM-based IDS is effective and efficient.

Without decoding the raw messages of the CAN bus, we can

detect CAN bus network attacks. The proposed model detects

DoS and Spoofing attacks with a detection rate of 1.00, and

the Fuzzing detection rate is 0.9994.

Although we use datasets from a specific vehicle, we

believe that our model can work for the CAN bus system

for any vehicle. To evaluate the performance of the proposed

IDS, we also experiment with the Survival Analysis CAN

bus attack dataset which is developed by the Hacking and

Countermeasure Research Lab, Korea. The proposed LSTM

models can classify the attack instances with high detection

rates. We also compare our detection rate with the one of the

Survival Analysis method, and our results show that LSTM is

quite effective compared to the Survival Analysis method. As

per our binary experiment results with the Survival Analysis

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

datasets, we are able to detect Flooding and Malfunction

attacks with 100% accuracy. We also observe the presence

of few false negatives and false positives for the Fuzzy at-

tacks. Our proposed LSTM model achieves higher detection

accuracy compared with the conventional methods.

Hyper-parameter values selection is essential to develop a

robust IDS by deep learning models. We select the hyper-

parameter values based on the systematic experimentation

and fine-tuning of the values. The proposed hyper-parameter

values are quite effective regarding in-vehicle CAN bus

attack detection for the LSTM deep learning approach. We

provide detailed experiment results regarding the hyper-

parameter values tuning, and we select the best values from

them. As per our experiment results, Layer 1 combined with

the Nadam optimizer with a learning rate of 0.0001, the cate-

gorcal_crossentropy loss function, and the Sigmoid activation

function provide the best detection accuracy regarding CAN

bus IDS.

Our assumption is that the proposed LSTM model achieves

a higher detection accuracy regarding DoS and Spoofing at-

tacks because these attacks consist of specific CAN IDs with

similar repeated attack patterns. The LSTM model is a robust

deep learning algorithm, and after training, the proposed

LSTM model can classify those attack traffic effortlessly.

The Fuzzing attack dataset is developed based on the use

of random CAN IDs and messages, and the attack pattern

is almost similar to the legitimate traffic. Hence, the model

faces difficulties in learning the intricate attack patterns, so

the proposed model’s Fuzzing attack detection rate is lower

compared to the DoS and Spoofing attacks, and the classifier

is unable to achieve 100% detection accuracy for the Fuzzing

attack. The proposed LSTM model’s performance regarding

the detection accuracy may slightly degrade, and the FNR

and FPR may increase when using a large testing set.

The major limitation of our model resides in the fact

that we experiment in offline mode with labeled datasets,

we are concerned regarding the performance of the IDS on

online mode and also about the IDS effectiveness regarding

unknown attacks detection. Additionally, we have not defined

how to recover the vehicle system after injecting the attacks,

i.e., the CAN bus system must be available even after our at-

tack injections. Another key challenge is about how to embed

the deep learning-based IDS with the CAN bus system.

In our future work, we will consider implementing this

LSTM-based IDS to real CAN bus systems to evaluate IDS’s

performance in real-time. Furthermore, we will investigate

how to detect unknown attacks in real vehicles. Finally, we

will consider how to return the vehicle to a working condition

after an injection attack incident.

VII. CONCLUSION

In this paper, we propose an effective long short-term mem-

ory (LSTM)-based Intrusion Detection System (IDS) for in-

vehicle CAN bus network attack. We develop the CAN bus

attack dataset by extracting the attack-free traffic from a

real car. We generate attack datasets by injecting three kinds

of attacks –DoS, Fuzzing, and Spoofing– into the attack-

free dataset. We effectively preprocess the dataset, and our

proposed LSTM model can classify benign and attack classes

with a high accuracy of 99.995% and low false positive and

false negative rates for the layer and optimizer we considered.

We thoroughly study the hyper-parameter values changing,

and we select the best parameter values to achieve efficient

detection accuracy and detection rates. As per the experiment

results, Vanilla LSTM provides the best detection accuracy

with sigmoid activation function and the Nadam optimizer

with a learning rate of 0.0001. We also conduct experiment

with the Survival Analysis datasets to show that our proposed

model detection rate outperforms the related works regarding

the CAN bus attack detection.

.

ACKNOWLEDGMENT

Part of this study was funded by the ICS-CoE Core

Human Resources Development Program. Additional sup-

port was provided by the JST CREST Grant Number JP-

MJCR1783, JSPS KAKENHI Grant Number JP18K11299,

Japan, and the Ministry of Posts, Telecommunication

and Information Technology, ICT Division, Grant Number

56.00.0000.028.33.002.19.8, Bangladesh.

REFERENCES

[1] Seo, Eunbi, Hyun Min Song, and Huy Kang Kim, "Gids: Gan based

intrusion detection system for in-vehicle network," In 2018 16th Annual

Conference on Privacy, Security and Trust (PST), pp. 1-6. IEEE, 2018.

[2] Han, Mee Lan, Byung Il Kwak, and Huy Kang Kim, "Anomaly intrusion

detection method for vehicular networks based on survival analysis," Ve-

hicular communications 14 (2018): 52-63.

[3] Mo, Xiuliang, Pengyuan Chen, Jianing Wang, and Chundong Wang,

"Anomaly Detection of Vehicle CAN Network Based on Message Content,"

In International Conference on Security and Privacy in New Computing

Environments, pp. 96-104. Springer, Cham, 2019.

[4] Koscher, Karl, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Ta-

dayoshi Kohno, Stephen Checkoway, Damon McCoy et al., "Experimental

security analysis of a modern automobile," In 2010 IEEE Symposium on

Security and Privacy, pp. 447-462. IEEE, 2010.

[5] Md Delwar Hossain, Hiroyuki Inoue, Hideya Ochiai, Fall Doudou, Youki

Kadobayashi, “Long Short-Term Memory-based Intrusion Detection Sys-

tem for In-Vehicle Controller Area Network Bus,” In the 44th IEEE

Computer Society Signature Conference on Computers, Software, and

Applications (COMPSAC 2020). Madrid, Spain, July 2020.

[6] Mohammadi, Mehdi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani.

"Deep learning for IoT big data and streaming analytics: A survey," IEEE

Communications Surveys Tutorials 20, no. 4 (2018): 2923-2960.

[7] Lokman, Siti-Farhana, Abu Talib Othman, and Muhammad-Husaini Abu-

Bakar, "Intrusion detection system for automotive Controller Area Network

(CAN) bus system: a review," EURASIP Journal on Wireless Communica-

tions and Networking 2019, no. 1 (2019): 184.

[8] Haas, Roland E., Dietmar PF Möller, Prateek Bansal, Rahul Ghosh, and

Srikrishna S. Bhat, "Intrusion detection in connected cars," In 2017 IEEE

International Conference on Electro Information Technology (EIT), pp.

516-519. IEEE, 2017.

[9] Kleberger, Pierre, Tomas Olovsson, and Erland Jonsson, "Security aspects

of the in-vehicle network in the connected car," In 2011 IEEE Intelligent

Vehicles Symposium (IV), pp. 528-533. IEEE, 2011.

[10] Loukas, George, Tuan Vuong, Ryan Heartfield, Georgia Sakellari, Yongpil

Yoon, and Diane Gan,"Cloud-based cyber-physical intrusion detection for

vehicles using deep learning," IEEE Access 6 (2017): 3491-3508.

[11] Kang, Min-Joo, and Je-Won Kang, "Intrusion detection system using deep

neural network for in-vehicle network security," PloS one 11, no. 6 (2016):

e0155781.

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[12] Jaynes, Michael, Ram Dantu, Roland Varriale, and Nathaniel Evans,

"Automating ECU identification for vehicle security," In 2016 15th IEEE

International Conference on Machine Learning and Applications (ICMLA),

pp. 632-635. IEEE, 2016.

[13] Song, Hyun Min, Ha Rang Kim, and Huy Kang Kim, "Intrusion detection

system based on the analysis of time intervals of CAN messages for in-

vehicle network," In 2016 international conference on information network-

ing (ICOIN), pp. 63-68. IEEE, 2016.

[14] Lee, Hyunsung, Seong Hoon Jeong, and Huy Kang Kim, "OTIDS: A novel

intrusion detection system for in-vehicle network by using remote frame,"

In 2017 15th Annual Conference on Privacy, Security and Trust (PST), pp.

57-5709. IEEE, 2017.

[15] Khan, Z., Chowdhury, M., Islam, M., Huang, C.Y. and Rahman, M., 2019.

Long Short-Term Memory Neural Networks for False Information Attack

Detection in Software-Defined In-Vehicle Network. arXiv, pp.arXiv-1906.

[16] Woo, Samuel, Hyo Jin Jo, and Dong Hoon Lee, "A practical wireless

attack on the connected car and security protocol for in-vehicle CAN,"

IEEE Transactions on intelligent transportation systems 16, no. 2 (2014):

993-1006.

[17] Taylor, Adrian, Sylvain Leblanc, and Nathalie Japkowicz, “Anomaly de-

tection in automobile control network data with long short-term memory

networks,” In 2016 IEEE International Conference on Data Science and

Advanced Analytics (DSAA), IEEE, pp. 130-139., 2016.

[18] Hochreiter, Sepp, and Jürgen Schmidhuber, “Long short-term memory,”

Neural computation 9, no. 8 (1997): 1735-1780.

[19] Yu, Yong, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. "A review of

recurrent neural networks: LSTM cells and network architectures." Neural

computation 31, no. 7 (2019): 1235-1270.

[20] colah’s blog, Understanding LSTM Networks. URL:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/. (accessed:

15.08.2020).

[21] “Keras: The Python Deep Learning library,” https://keras.io/.

[22] Scikit-Learn Project, “Receiver Operat-

ing Characteristic (ROC),” URL: https://scikit-

learn.org/stable/auto_examples/model_selection/plot_roc.html. (accessed:

03.03.2020).

[23] Renuka Joshi, "Accuracy, Precision, Recall F1 Score: Interpretation of

Performance Measures," URL: https://blog.exsilio.com/all/accuracy-

precision-recall-f1-score-interpretation-of-performance-measures/.

(accessed: 04.11.2019)

[24] Koo Ping Shung, "Accuracy, Precision, Recall or F1?," URL:

https://towardsdatascience.com/accuracy-precision-recall-or-f1-

331fb37c5cb9. (accessed: 01.11.2019).

[25] Jason Brownlee, "How to Configure the Number of Layers and Nodes in

a Neural Network," URL: https://machinelearningmastery.com/how-

to-configure-the-number-of-layers-and-nodes-in-a-neural-network/.

(accessed: 02.03.2020).

[26] Darken, Christian, Joseph Chang, and John Moody, “Learning rate sched-

ules for faster stochastic gradient search,” In Neural networks for signal

processing, vol. 2. 1992.

[27] Rohith Gandhi, "A Look at Gradient Descent and RMSprop Optimiz-

ers," URL: https://towardsdatascience.com/a-look-at-gradient-descent-and-

rmsprop-optimizers-f77d483ef08b. (accessed: 05.11.2019).

[28] Sebastian Ruder:, "An overview of gradient descent optimization al-

gorithms," URL: https://ruder.io/optimizing-gradient-descent/. (accessed:

02.11.2019).

[29] Duchi, John, Elad Hazan, and Yoram Singer, "Adaptive subgradient meth-

ods for online learning and stochastic optimization," Journal of machine

learning research 12, no. 7 (2011).

[30] Zeiler, Matthew D., “Adadelta: an adaptive learning rate method,” arXiv

preprint arXiv:1212.5701 (2012).

[31] Kingma, Diederik P., and Jimmy Ba., “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980 (2014).

[32] Jason Brownlee, "How to Choose Loss Functions

When Training Deep Learning Neural Networks," URL:

https://machinelearningmastery.com/how-to-choose-loss-functions-when-

training-deep-learning-neural-networks/. (accessed: 26.04.2020).

MD DELWAR HOSSAIN received the M.Sc.

in Engineering in Information Systems Security

degree from the Bangladesh University of Profes-

sionals in 2018. He is currently a Research Assis-

tant and Ph.D. Student at the Nara Institute of Sci-

ence and Technology, Japan. His research interests

include Cybersecurity, Deep Learning, Smart Car

Security, Smart Grid Security, Industrial Control

Systems Security and Smart City Security.

HIROYUKI INOUE (Member, IEEE) received

the Ph.D. degree in engineering from the Nara

Institute of Science and Technology, in 2000. He

has been an Associate Professor with the Graduate

School of Information Science, Hiroshima City

University, since 2010. His research interests in-

clude technologies for embedded security, espe-

cially automotive network security, and network

protocol of the Internet.

HIDEYA OCHIAI is an associate professor of

the University of Tokyo, Japan. He received B.E.

in 2006, M.E. in 2008, and Ph.D. in 2011 from

the same university. His research interests have

been sensor networking, delay tolerant network-

ing, and building automation systems, IoT proto-

cols, and cyber-security. He involves in the stan-

dardization of facility information access protocol

in IEEE1888, ISO/IEC and ASHRAE. He is the

head of LAN-security monitoring project of the

University of Tokyo.

DOUDU FALL received the M.E. degree in

data transmission and information security from

Cheikh Anta Diop University, Senegal, in 2009,

and the M.E. and Ph.D. degrees in information

science from the Nara Institute of Science and

Technology (NAIST), Japan, in 2012 and 2015,

respectively, where he is currently an Assistant

Professor with the Division of Information Sci-

ence. His research interests include cloud com-

puting security, IoT security, Blockchain security,

vulnerability and security risk analysis.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029307, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

YOUKI KADOBAYASHI received his Ph.D. de-

gree in computer science from Osaka University,

Japan, in 1997. He is currently a Professor in

the Graduate School of Information Science, Nara

Institute of Science and Technology, Japan. Since

2013, he has also been working as the Rappor-

teur of ITU-T Q.4/17 for cybersecurity standard-

ization. His research interests include cybersecu-

rity, web security, and distributed systems. Prof.

Kadobayashi is a member of IEEE Communica-

tions society.

VOLUME 4, 2016 15

