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ABSTRACT In the past years, traditional pattern recognition methods have made great progress. However,

these methods rely heavily on manual feature extraction, which may hinder the generalization model

performance. With the increasing popularity and success of deep learning methods, using these tech-

niques to recognize human actions in mobile and wearable computing scenarios has attracted widespread

attention. In this paper, a deep neural network that combines convolutional layers with long short-term

memory (LSTM) was proposed. This model could extract activity features automatically and classify them

with a few model parameters. LSTM is a variant of the recurrent neural network (RNN), which is more

suitable for processing temporal sequences. In the proposed architecture, the raw data collected by mobile

sensors was fed into a two-layer LSTM followed by convolutional layers. In addition, a global average

pooling layer (GAP) was applied to replace the fully connected layer after convolution for reducing model

parameters. Moreover, a batch normalization layer (BN) was added after the GAP layer to speed up the

convergence, and obvious results were achieved. The model performance was evaluated on three public

datasets (UCI, WISDM, and OPPORTUNITY). Finally, the overall accuracy of the model in the UCI-HAR

dataset is 95.78%, in the WISDM dataset is 95.85%, and in the OPPORTUNITY dataset is 92.63%. The

results show that the proposed model has higher robustness and better activity detection capability than some

of the reported results. It can not only adaptively extract activity features, but also has fewer parameters and

higher accuracy.

INDEX TERMS Human activity recognition, convolution, long short-term memory, mobile sensors.

I. INTRODUCTION

Human activity recognition (HAR) plays an important role

in people’s daily lives because it has the ability to learn pro-

found advanced knowledge about human activities from raw

sensor data [1]. With the development of human-computer

interaction applications, the technology of HAR has become

a popular research direction at home and abroad. People

could automatically classify the type of human motion and

obtain the information that the human body needs to convey

by extracting features from daily activities, which in turn

provides a basis for other intelligent applications. Hitherto,

this technology has been widely used in the fields of home

behavior analysis [2], video surveillance [3], gait analysis [4],

and gesture recognition [5], etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongping Pan .

Due to the rapid development of sensor technology and

ubiquitous computing technology, sensor-based HAR has

become more and more popular, and it is widely used with

privacy being well protected. Researchers have explored the

role of different types of sensing technology in activity recog-

nition to improve recognition accuracy. According to the

manner in which sensors are employed in an environment, the

technologies of human activity recognition could be widely

divided into two categories: approaches based on fixed sen-

sors and approaches based on mobile sensors [6].

The methods based on fixed sensors mean that the

information is obtained from sensors mounted at a fixed

position, involving acoustic sensors [7], radars [8], static

cameras [9], and other ambient-based sensors. Among them,

camera-based methods are the most popular methods, among

which background subtraction method, optical flow method

and energy-based segmentation method are usually applied
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to extract features [10]–[13]. Representative is an image

processing method based on Kinect sensors which could

acquire the depth image features of moving targets whereby

Jun Liu et al. [10] proposed a space-time short-term memory

(ST-LSTM) network to recognize activities. Kitani et al. [11]

presented a sparse optical flow algorithm to acquire the his-

togram of human motion features and proposed an unsuper-

vised Dirichley hybrid model to classify 11 human activities.

Although these activity monitoring methods can provide

better recognition accuracy, they are not suitable in many

indoor environments, especially where privacy is a concern.

Furthermore, the results of vision-based approaches are easily

affected by illumination variations, ambient occlusion, and

background change. This greatly limits their practical use.

The other methods of activity recognition are to use mobile

sensors. In these methods, the information from different

kinds of behaviors is usually collected from a set of dedicated

body-worn motion sensors, such as accelerometers, gyro-

scopes, and magnetometers. Acceleration and angular veloc-

ity data would change according to humanmotion. Therefore,

they could be used to infer human activities. The miniatur-

ization and flexibility of sensors allow individuals to wear or

carry mobile devices embedded with various sensing units.

This is different from fixed sensor-based approaches [14].

Moreover, these sensors have the characteristics of low cost,

low power consumption, high capacity, miniaturization, and

less dependence on surroundings [15]. Therefore, activity

recognition based on mobile sensors has received widespread

attention because of its portability and high acceptance in

daily life. Correspondingly, a large number of researches

have been carried out to explore the potential of mobile

sensors for activity recognition in a ubiquitous and pervasive

way. Margarito et al. [16] put accelerometers on the wrist of

subjects to collect acceleration data and then used template

matching algorithm to classify 8 common sports activities.

In [17], a smart life assistant system (SAIL) for the elderly

and disabled was proposed. Zhu et al. [17] collected the fea-

tures by the way of multi-sensor fusion strategy and achieved

the target of recognizing 13 kinds of daily activities.

The rest of this paper is organized as follows. Section II

presents some current sensor-based activity recognition

researches that using machine learning methods and deep

learning methods. Section III presents the description of

three public datasets and data pre-processing for the imple-

mented network. Section IV gives details on the proposed

LSTM-CNN architecture. Section V shows the experimen-

tal results and compares them with some of the previously

reported works. Moreover, the impact of network structure

and hyper-parameters on model performance is discussed.

Finally, the last section summarizes this research with a brief

summary.

II. RELATED WORK

In recent years, an enormous amount of researches has

been conducted by researchers in exploring different sensing

technologies and a number of methods have been proposed

for modeling and recognizing human activities [18]. Early

researches mainly used decision tree, support vector machine

(SVM), naïve Bayes and other traditional machine learning

methods to classify the data collected by sensors [19]–[22].

In [19], gradient histogram and Fourier descriptor based

on centroid feature were used to extract the features of

acceleration and angular velocity data. Then Jain et al. [19]

used two classifiers, support vector machine and k-nearest

neighbor (KNN), to recognize the activities of two public

datasets. Jalloul et al. [20] used six inertial measurement

units to construct a monitoring system. After performing

network analysis, a number of network measures that satisfy

the statistical test were selected to form a feature set, and

then the authors used the random forest (RF) classifier to

classify the activities. Finally, an overall accuracy of 84.6%

was achieved. The paper [21] presented a wearable wire-

less accelerometer-based activity recognition system and its

application in medical detection. Relief-F and sequential for-

ward floating search (SFFS) were combined for feature selec-

tion. Finally, Naïve Bayesian and k-nearest neighbor (KNN)

were used for activity classification and comparative analysis.

Machine learning methods may rely heavily on heuristic

manual feature extraction in most daily human activity recog-

nition tasks. It is usually limited by human domain knowl-

edge [23]. To address this problem, researchers have turned

to deep learning methods that could automatically extract

appropriate features from raw sensor data during the training

phase and present the low-level original temporal features

with high-level abstract sequences. In view of the successful

application of deep learning models in image classification,

voice recognition, natural language processing, and other

fields, it is a new research direction in pattern recognition to

transfer it to the field of human activity recognition [24]–[27].

In [24], authors proposed to convert the data acquired by

three-axis accelerometers into an ‘‘image’’ format, and then

they used CNN with three convolutional layers and one

fully-connected layer to identify human activities. Ordóñez

and Roggen. [25] proposed an activity recognition classi-

fier, which combined deep CNN and LSTM to classify 27

hand gestures and fivemovements. Finally, simulation results

showed that the F1 score on the two classifiers were 0.93 and

0.958, respectively. Lin et al. [26] presented a novel iterative

CNN strategy with autocorrelation pre-processing capability,

instead of traditional micro-Doppler image pre-processing,

which can accurately classify seven activities or five subjects.

And this strategy used an iterative deep learning framework to

automatically define and extract features. Finally, traditional

supervised learning classifiers were used to mark different

activities based on the captured radar signals.

Although the above models could generally recognize

human activities, the overall network structure is relatively

complex. In addition, these models have a large number of

parameters, which results in high computational cost. It is

difficult to be used in occasions that require high real-time

performance. Many researchers have made great efforts in

this regard. Agarwal et al. [28] proposed a lightweight deep
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TABLE 1. Information of three public datasets.

learning model for HAR and deployed it on Raspberry Pi3.

This model was developed using a shallow RNN in combi-

nation with the LSTM algorithm, and its overall accuracy on

theWISDMdataset achieved 95.78%. Although the proposed

model has high accuracy and brief architecture, it was only

evaluated on one dataset which has just six activities, which

does not prove that the proposed model has good gener-

alization ability. The paper [29] proposed a deep learning

model (InnoHAR) based on the combination of inception

neural network and recurrent neural network to classify activ-

ities. The authors used separate convolution to replace the

traditional convolution, which achieved the goal of reducing

model parameters. The results showed an excellent effect, but

the model converged hardly, causing a lot of time to be wasted

in the training stage.

To address the shortcomings of the above methods, a novel

deep neural network for human activity recognition was pro-

posed, which we referred to as LSTM-CNN. Themodel could

extract activity features automatically and classify them with

few parameters. In addition, it was evaluated on three of the

most widely used public datasets. The results show that the

proposed model not only has high accuracy but also has good

generalization ability and fast convergence speed.

III. DATASET DESCRIPTION

The information of three public information was summarized

in Table 1. It can be seen that there are some differences

between them. The UCI-HAR dataset has the largest num-

ber of volunteers, which means that this dataset was con-

structed from the recordings of 30 subjects. The WISDM

dataset consists of 6 activities as same as the UCI-HAR

dataset, but it has the largest number of samples. And it

is an unbalanced dataset, which would be mentioned later.

The OPPORTUNITY dataset consists of 17 activities. It was

collected by 5 types of sensors, namely accelerometers, gyro-

scopes, magnetometers, object sensors, and ambient sensors.

A. UCI-HAR

The UCI-HAR dataset [30] was built from the recordings

of 30 subjects aged 19-48 years. During the recording, all sub-

jects were instructed to follow an activity protocol. And they

wore a smartphone (Samsung Galaxy S II) with embedded

inertial sensors around their waist. The six activities of daily

living are standing (Std), laying (Lay), walking (Walk), walk-

ing downstairs (Down) and walking upstairs (Up). In addi-

tion, this dataset also includes postural transitions that occur

TABLE 2. Activities of UCI-HAR.

TABLE 3. Activities of WISDM.

between the static postures: standing to sitting, sitting to

standing, sitting to laying, laying to sitting, standing to lay-

ing, laying to standing. Specifically, in this paper, only six

basic activities were selected as input samples due to the

percentage of postural transitions is small. The experiments

had been video-recorded to manually label the data. Finally,

the researchers captured 3-axial acceleration and 3-axial

angular velocity data at a constant rate of 50Hz. According

to statistics, the number of samples in this dataset is 748406,

and the detailed information was shown in Table 2.

B. WISDM

The WISDM dataset [31] has a total of 1098209 samples,

and the percentage of the total samples associated with

each activity was shown in Table 3. It can be seen that

WISDM is an unbalanced dataset. Activity walking takes

up the most, reaching 38.6% while standing only accounts

for 4.4%. Its experimental object consists of 36 subjects.

These subjects performed certain daily activities with an

Android phone in their front leg pockets. The sensor used

is an accelerometer with a sampling frequency of 20 Hz.

It is also a built-in motion sensor of the smartphone. Six

activities were recorded: standing (Std), sitting (Sit), walking

(Walk), upstairs (Up), downstairs (Down), and jogging (Jog).

The data collection was supervised by a dedicated person to

ensure the quality of data. Fig. 1 shows the acceleration wave-

form of 2.56 seconds (128 points in total) of each activity with

the aim of visualizing the characteristics of the raw data on

each axis.

C. OPPORTUNITY

The OPPORTUNITY dataset [32], [33] was collected in a

sensor-rich environment, which includes 17 complex gestures

and modes of locomotion. Overall, it contains recordings of
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FIGURE 1. Acceleration waveform of 2.56 seconds of each activity.

FIGURE 2. Placement of on-body sensors used in the OPPORTUNITY
dataset.

four subjects who perform morning activities in daily life

scenes. Different modalities of sensors had been integrated

into the environment, objects and on the body. In terms of the

sensor setting, theOPPORTUNITY challenge guidelines [33]

were adopted. We only considered the sensors on the body,

including 5 inertial measurement units on the sports jacket,

2 InertiaCube3 sensors on the feet and 12 Bluetooth 3-axis

acceleration sensors. As shown in Fig. 2, the yellow oval

blocks denote 3-axis accelerometers and red round blocks

represent inertial measurement units, where ‘‘RSHOE’’ and

‘‘LSHOE’’ are two InertiaCube3 sensors. During the record-

ing, five activities of daily living (ADL) sessions and one

drill session were conducted for each subject. Each sensor

axis is considered as a separate channel, resulting in an input

space of 113 channels in size. Specifically, these sensors

have a sampling rate of 30 Hz. In this paper, we focused

only on the recognition of sporadic gestures. Thus, this is an

18-class (including the Null class) segmentation and classifi-

cation problem. The gestures included in this dataset were

TABLE 4. Activities of OPPORTUNITY.

summarized in Table 4 and the characters in parentheses

denote the symbols of gestures.

D. DATA PRE-PROCESSING

In order to feed the proposed network with a certain data

dimension and improve the accuracy of the model, the raw

data collected by motion sensors need to be pre-processed as

follows.

1) LINEAR INTERPOLATION

The datasets mentioned above are realistic and the sensors

worn on the subjects are wireless. Therefore, some data may

be lost during the collection process, and the lost data is

usually indicated with NaN/0. To overcome this problem,

the linear interpolation algorithm was used to fill the missing

values in this paper.

2) SCALING AND NORMALIZATION

Using large values from channels directly to trainmodels may

lead to training bais, So it is necessary to normalize the input

data to the range of 0 to 1, as shown in (1):

Xi =
Xi − ximin

ximax − ximin
(i = 1, 2, · · ·, n) (1)

where n denotes the number of channels, and ximax, ximin

are the maximum and minimum values of the i − thchannel,

respectively.

3) SEGMENTATION

In this paper, an end-to-end human activity recognitionmodel

was implemented. The input to the model consists of a data

sequence. The sequence is short time series extracted from

the raw sensor data. In the process of data collection, the data

were recorded continuously. In order to preserve the temporal

relationship between the data points in an activity, a sliding

window with an overlap rate of 50% was used to segment

the data collected by motion sensors. For the WISDM and

UCI-HAR dataset, the length of the sliding window is 128.

For theOPPORTUNITYdataset, the recordings of each activ-

ity only last for a short period of time, and a short sliding win-

dow is needed to segment the data to obtain more samples.
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FIGURE 3. Segmentation of sensor data.

FIGURE 4. Frame diagram of the LSTM-CNN model.

In this paper, the length of the slidingwindow for theOPPOR-

TUNITY dataset is chosen to be 24. It is worth noting that our

choice on the optimal window size was made in an adaptive

and empirical manner [29] to generate good segments for

all the activities considered. Fig. 3 shows the details of the

segmentation. The horizontal data represents the sampling

points and the vertical data represents the sensor channels.

IV. PROPOSED ARCHITECTURE

The network structure of the LSTM-CNN model is as shown

in Fig. 4. It consists of eight layers. Firstly, the preprocessed

data is fed into a two-layer LSTM with 64 neurons in total.

It is used for the extraction of temporal features. Following

LSTMs are two other convolutional layers, and it is used

for extracting spatial features. The first convolution layer has

64 filters while the other has 128. And between the two con-

volutional layers is the max-pooling layer. At the end of the

model, there is a global average pooling layer (GAP) followed

with a batch normalization layer (BN). Finally, the output of

the model is obtained from an Output layer (a dense layer

with a Softmax classifier), yielding a probability distribution

over classes.

A. LSTM LAYERS

RNN could take advantage of the chronological relationship

between sensor readings. Although RNN has the ability to

capture temporal information from sequential data, it has the

problem of gradient vanishing, which hinders the ability of

the network to model between raw sensor data and human

activities in a long context window. LSTM is a variety of

RNN, which could eliminate this limitation. LSTM has great

advantages in feature extraction of sequence data than con-

volutional neural networks due to its special memory cells.

In this paper, the input data first passes through two layers of

LSTMs to better extract the temporal features in the sequence

data. Each layer of LSTMs has 32 memory cells. The inputs

are sent to different gates, including input gates, forgetting

gates and output gates, to control the behavior of each mem-

ory cell. The activation of each LSTM unit is calculated by

the following formula:

ht = σ (wi,h · xt + wh,h · ht−1 + b) (2)

where ht and ht−1 represent the activation at time t and t − 1,

respectively, σ is a non-linear activation function, wi,h is the

input-hidden weight matrix, and wh,h is the hidden-hidden

weight matrix, and b is the hidden bias vector.

The output of the LSTM layer has three dimensions (sam-

ples, time steps, input dimension), while the size of the input

sample of CNNneeds four. In order to adapt to the input shape

of the convolutional layer, the output of the second layer of

LSTM is dimensionally expanded, which could be presented

as (samples, 1, time steps, input dimension).

B. CONVOLUTIONAL AND POOLING LAYERS

CNN has gained increasing popularity because of its ability

to learn unique representations from images or speech [34].

And the convolutional layer is the most important unit in

CNN, which uses convolution kernels to convolve the inputs.

It works as a filter and is then activated by a non-linear

activation function, as follows:

ai,j = f (

M∑

m=1

N∑

n=1

wm,n · xi+m,j+n + b) (3)

where ai,j is the corresponding activation, wm,n denotes the

m×nweight matrix of convolution kernel, xi+m,j+n indicates

the activation of the upper neurons connected to the neuron

(i, j), b is the bias value, and f is a non-linear function.

In this paper, the convolutional layers employ rectified

linear units (ReLU) to calculate the feature maps, and its

non-linear function is defined as:

σ (x) = max(0, x) (4)

Generally speaking, the more convolution kernels are used,

the more hidden features could bemined in the input samples.
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There are two convolutional layers in the LSTM-CNNmodel.

In the first convolutional layer, 64 convolution kernels are

used for feature extraction and the size of each convolution

kernel is 1 × 5. The sliding step of the convolution window

is 2. In the second, 128 convolution kernels are used to

perform a deeper feature extraction operation on the features

output from the upper layer. Each convolution kernel has a

size of 1 × 3 and the convolution window in this layer has a

sliding step size of 1. There is a max-pooling layer between

the two convolutional layers for performing the downsam-

pling operation. It serves two purposes. One is to reduce the

parameters while maintaining dominant features, the other is

to filter the interference noise caused by the unconscious jitter

of the human body.

C. GLOBAL AVERAGE POOLING LAYER

Different from classical CNN, the model mentioned in

this paper used a global average pooling layer (GAP) to

replace the fully-connected layer behind the convolutional

layer. At the end of CNN, there would usually be one or

more fully-connected layers, which could convert multi-D

feature maps into a 1D feature vector. Each node of the

fully-connected layer is connected with the nodes of the

upper layer, thus the weight parameters of the fully-connected

layer may occupy the most. For instance, in the model

Krizhevsky [35], the first fully-connected layer FC1 has

4096 nodes, and the output of the upper pooling layer Max-

Pool3 has 9216 nodes. Thus, there would be more than

37 million weight parameters between the MaxPool3 layer

and the FC1 layer, which would consume a lot of memory

and computational cost. Unlike the fully-connected layer,

the GAP layer performs a global averaging pooling operation

on each feature map. There is no parameter to optimize in

the GAP layer. Thus, it achieves the goal of reducing global

model parameters. Furthermore, GAP sums out the spatial

information, so it is more robust to the spatial transformation

of the input.

D. BATCH NORMALIZATION LAYER

During the training process, the distribution of input data

of each layer would continuously change due to the weight

parameters of the upper layer are constantly updated. There-

fore, it is necessary to change the weight parameters to adapt

to this new distribution, which leads to difficulty in network

training and slows down the convergence speed. To address

this problem, a batch normalization layer (BN) is added after

the GAP layer to accelerate the convergence of the model.

The BN layer normalizes and reconstructs the input data on

each batch of training samples to ensure the stability of the

output of the previous layer, so as to improve the training

speed and accuracy.

E. OUTPUT LAYER

In the LSTM-CNN model, the output layer consists of a

fully-connected layer and a Softmax classifier. There is an

important benefit to adding the fully-connected layer at the

TABLE 5. Instances of three public datasets.

end of the model. Each node of the fully-connected layer is

connected to the nodes of the upper layer so that the features

extracted from the upper layer could be merged. It makes up

for the shortcomings of the GAP layer in this regard.

Behind the fully-connected layer is the Softmax classifier

which converts the output of the upper layer into a probability

vector whose value represents the probability of classes to

which the current sample belongs. The expression formula is

as follows:

Sj =
eaj

∑N
k=1 e

ak
(5)

where N is the number of classes, a is the output vector of the

fully-connected layer, and aj is the j− th value of the output

vector.

V. EXPERIMENTAL RESULTS

In this paper, three widely used public datasets were used

to evaluate the generalization ability and the accuracy of the

LSTM-CNNmodel. Theywere all recorded continuously and

a common method is to use a fixed-length sliding window

to segment the sensor data. Here, the length of the window

is 128, with a step size of 64. But for the OPPORTUNITY

dataset, the length of the window is 24. To be specific, a sub-

set of the dataset was used to construct the test set that is

separated entirely from the training set to better evaluate the

model performance. For the UCI-HAR dataset, the database

was built from the recordings of 30 subjects who performed

6 activities. Among them, the recordings of 22 subjects were

used to build the training set, and the rest was used to build

the test set. The WISDM dataset consists of 6 activities

performed by 36 subjects. The training set is composed of the

recordings of 30 subjects and the remaining recordings of 6

subjects are used to build the test set. The two parts are com-

pletely separate. For the OPPORTUNITY dataset, the same

subset employed in the OPPORTUNITY challenge [33] was

used to train and test our models. The training set includes the

full recordings of Subject 1, as well as for three ADLs and

drill sessions of subjects 2 and 3. And the test set composes

of ADL4 and ADL5 for Subjects 2 and 3. Table 5 details

the number of instances of the test set and the training set

obtained on each dataset after segmentation.

A. MODEL IMPLEMENTATION

Keras was used to build the proposed network structure,

which is a high-level neural networks API written in

Python capable of running on top of TensorFlow, CNTK,

or Theano. In the experiments, TensorFlow was used as
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TABLE 6. List of selected hyper-parameters.

the backend. The model training and classification were on

a PC that has an E5-2620 Xeon CPU with 2.10 GHz, 64GB

RAM and an NVIDIA QUADRO P5000 graphics card with

16 GB memory. And the PC is equipped with an Ubuntu

operating system with 64 bits.

The model was trained in a fully-supervised manner,

and the gradient was back-propagated from the Softmax layer

to the LSTM layer. The weights and biases of each layer were

initialized by randomly selected values. Cross entropy is used

to evaluate the difference between the real distribution and

the probability distribution. In this paper, the cross-entropy

loss function was used to measure the error between the

prediction and the true values. Adam [36] is a stochastic

optimization algorithm based on the first-order gradient, here

it was selected as the optimizer. For the sake of efficiency,

in the training stage, the batch size was set to 192 and the

number of epochs was 200. Furthermore, a small learning

rate of 0.001 was used to enhance the fitting ability, and the

order of the training set was randomly shuffled to improve the

robustness of the model. The selected hyper-parameters were

listed in Table 6.

B. PERFORMANCE MEASURE

When collecting human activity data in natural environments,

imbalances often occur [37]. The WISDM and OPPORTU-

NITY mentioned above are both imbalanced datasets. If the

classifier predicts each instance as a majority class and uses

the overall classification accuracy to evaluate the model per-

formance, the results could achieve high accuracy. Therefore

the overall classification accuracy is not an appropriate mea-

sure of performance. F-measure (F1 score) takes both false

positives and false negatives into account and it combines two

measures defined based on the total number of correctly rec-

ognized samples, which is known in the information retrieval

community as ‘‘precision’’ and ‘‘recall’’. Thus, the F1 score

is usually a more useful performance indicator than accu-

racy. Precision corresponds to TP
TP+FP

, and recall is defined

as TP
TP+FN

, where TP, FP are the number of true and false

positives, respectively, and FN corresponds to the number

of false negatives. F1 score offsets imbalances in classes by

weighting classes based on their proportion of samples. The

formula of the F1 score is as follows:

F1 =

∑

i

2 ∗ wi
precisioni · recalli

precisioni + recalli
(6)

where wi = ni/N is the proportion of samples of class i, with

ni being the number of samples of the i− th class and N being

the total number of samples.

C. EVALUATION ON THREE PUBLIC DATASETS

In order to comprehensively verify the performance of the

proposed model, three public datasets were used for test-

ing. Table 7, 8, and 9 show the classification confusion

matrices obtained when the model was predicted with the

test set of the UCI-HAR, WISDM, and OPPORTUNITY

datasets, respectively. For the UCI-HAR dataset, there were

2940 instances that have been correctly classified, and the

overall accuracy reached 95.80%. There was relatively poor

discrimination between sitting and standing. The recall and

precision were in the range of 92%∼93%. The main rea-

son may be that the two activities are similar from the per-

spective of motion sensors. It is difficult to mine deeper

information only by acceleration and angular velocity data.

When the trained model was exposed to the test set that

contains approximately 3036 new instances, the overall accu-

racy of the WISDM dataset (an unbalanced dataset) reached

95.75%. The OPPORTUNITY dataset is just as unbalanced

as the WISDM and it contains 17 activities in the gesture

recognition case. Finally, an overall accuracy of 92.63% was

achieved. In addition, when the Null class is removed from

the classification task (see Table 10), our method achieved

an overall accuracy of 87.58% in the gesture recognition

task.

In order to further verify the performance of the model,

LSTM-CNN was compared with CNN of Yang et al. [38],

and DeepConvLSTM [25] under the same experiment sce-

nario. All the results were verified by the F1 score to ensure

the fairness and consistency of the following comparison

results. Fig. 5 shows the evaluation results of the deep mod-

els mentioned above. Compared with the CNN model of

Yang et al., LSTM-CNN has a significant increase of about

7% for the OPPORTUNITY dataset and is superior to the

DeepConvLSTMmodel. It can also be seen that LSTM-CNN

outperforms the other two models on the UCI-HAR and

WISDM datasets, with the best-reported result increasing by

an average of 3%. It should be noted that the model parame-

ters have been greatly reduced under adding the GAP layer to

the network. These results confirm our findings that support-

ing the use of the GAP layer instead of a fully-connected layer

brings significant advantages in HAR tasks. It also proves that

the proposed method has superior performance on different

public datasets.
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TABLE 7. Classification confusion matrix on the UCI-HAR.

TABLE 8. Classification confusion matrix on the WISDM.

TABLE 9. Classification confusion matrix on the OPPORTUNITY.

D. IMPACT OF NETWORK STRUCTURE ON

MODEL PERFORMANCE

In this section, we explored the impact of several network

structures on model performance. As shown in Table 11, five

kinds of model architectures (A, B, C, D, and LSTM-CNN)

were constructed respectively for experimental comparison,

and the classification results were evaluated by the num-

ber of model parameters and the F1 score on the test set.

Furthermore, in terms of training iterations, the computation

speed in the forward phase was given. The experiments were

implemented based on the UCI-HAR dataset.

The structure of model A belongs to the classical convo-

lutional neural network structure, in which the number of

nodes in the fully-connected layer is 128. In the classical

CNN structure, the last convolutional layer is usually fol-

lowed by a fully-connected layer to synthesize the features

extracted from previous layers. Although this could improve

the accuracy of the model, it also brings a huge number of
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TABLE 10. Classification confusion matrix on the OPPORTUNITY (without the null class).

TABLE 11. Experiments on different network architectures.

FIGURE 5. Performance of three models on three public datasets.

parameters. As can be seen that the F1 score of model A

reaches 91.88% when the trained model is exposed to the

test set of the UCI-HAR. Accordingly, there are more than

502 thousand model parameters, of which the parameters

of fully-connected layers occupy the most. And it takes

1681milliseconds per epoch in the training stage. Inmodel B,

the GAP layer is used to replace the fully-connected layer

behind the convolutional layer to perform a global averag-

ing pooling operation on each feature map output from the

upper layer, which structurally regularizes the entire network

to reduce the over-fitting problem. The parameters of the

model B are only 27462, which is about 94% less than that of

the model A while the performance remains almost the same.

It proves the feasibility of replacing the fully-connected layer

with the GAP layer. Accordingly, the computation speed has

also been improved, with an average of 1202 milliseconds

per epoch. However, the use of the GAP layer would focus

the training pressure of the model on the convolutional lay-

ers, which would cause the model to converge slowly. The

model C adds a BN layer after the GAP layer to stabilize

the output of the upper layer. It speeds up the convergence

of the model and improves accuracy. Finally, the F1 score of

this model reaches 93.35%. The recordings of activities based

on mobile sensors are temporal sequences and LSTM has the

ability to capture temporal information from sequential data.

In model D, the data captured from mobile sensors are firstly

fed into two layers of LSTMs and then transmitted to convo-

lutional layers for feature extraction. Finally, it outperforms
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FIGURE 6. Impact of optimizer on model performance.

themodel C by 1% on average. In our work, we added another

layer of LSTM, in a total of 2 layers, on the basis of model D

to further improve the model performance. Eventually, the F1
score on the test set reached the expected 95.78%. It could

be seen that the computation speed of the model D and

LSTM-CNN is greatly reduced. They are 5156 milliseconds

per epoch and 9416 milliseconds per epoch, respectively.

This is due to the LSTM layers added to the model. It is

because of its special network structure that LSTM could

extract temporal information effectively. However, every coin

has two sides. When training LSTM layers, the calculation

of each time step depends on the output of the previous time

step. As a result, it could not compute in parallel, which slows

down the computation speed of the model.

To sums up, the strategy of using the global average

pooling layer and batch normalization layer to replace the

fully-connected layer is effective. Moreover, the method of

using LSTM to extract the temporal information to improve

model performance is favorable. The model proposed in this

paper not only could achieve high recognition accuracy but

also greatly simplify the model structure.

E. IMPACT OF HYPER-PARAMETERS ON

MODEL PERFORMANCE

Hyper-parameters have a great impact on the classification

model performance. This section presents the impact of the

important hyper-parameters such as the number of convo-

lution filters, the batch size and the type of optimizer on

model performance. The experiments were implemented on

the UCI-HAR dataset and the model performance was evalu-

ated by varying a number of model parameters. F1 score was

used as the measurement criteria.

1) EFFECT OF OPTIMIZER

Optimizer is used to update and calculate network parameters

that affect model training and the output, so as to approxi-

mate or reach the optimal value, thereby minimizing the loss

function. It is the essence of neural network training. Thus

it is important to choose a suitable optimizer to train deep

models. Several common optimizers such as SGD, Adagrad,

Adadelta, Adam, and RMSprop were experimentally ver-

ified, as shown in Fig. 6. It can be seen that the model

trained by Adam optimizer has the best fitting effect and the

FIGURE 7. Impact of increasing number of filters of the second
convolutional layer on model performance.

FIGURE 8. Impact of batch size on model performance.

fluctuation of gradient descent curve is the most stable. Here,

Adam was used as the optimizer when training the model

LSTM-CNN.

2) EFFECT OF NUMBER OF FILTERS

Themore filters (namely convolution kernels), the more com-

plex and deeper features the model may learn. But it also

increases the model parameters, which may lead to overfit-

ting. Thus, how to choose the number of filters is of critical

importance. Fig. 7 shows the accuracy and parameters of

the model LSTM-CNN with a varying number of filters of

the second convolutional layer. With an increasing number

of filters, the network parameters increase from 36614 to

62598. Absolutely, the accuracy of the model does increase

correspondingly. F1 score reaches 96.38% when the number

of filters is selected as 192, which outperforms when the

number of filters is 64 by 4%. However, the model parameters

increase by more than 70%.

3) EFFECT OF BATCH SIZE

Mini-batch processing is a common method in deep learning

when training neural networks. Optimizing the cumulative
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error over the entire training set would make the gradient

descent slowly, also may lead the model into local optimum.

If the error of only one sample is optimized in one iteration,

the gradient descent could fluctuate drastically, which would

eventually lead to difficulty in training. Fig. 8 presents the

accuracy varying with 5 different batch sizes. It can be seen

that the accuracy reaches the highest when the batch size is

selected as 192.

VI. CONCLUSION

A novel deep neural network that combines convolutional

layers with LSTM for human activity recognition was pro-

posed in this paper. The weight parameters of CNN mainly

concentrate on the fully-connected layer. In response to

this characteristic, a GAP layer is used to replace the

fully-connected layer behind the convolutional layer, which

greatly reduces the model parameters while maintaining a

high recognition rate. Moreover, a BN layer is added after the

GAP layer to speed up the convergence of themodel and obvi-

ous effect was obtained. In the proposed architecture, the raw

data collected by mobile sensors is fed into a two-layer

LSTMs followed by convolutional layers, which makes it

capable of learning the temporal dynamics on various time

scales according to the learned parameters of LSTMs so as

to obtain better accuracy. In order to prove the generalization

ability and effectiveness of the proposedmodel, the three pub-

lic datasets, UC-HAR, WISDM, and OPPORTUNITY, were

used for the experiment. Considering that the accuracy is not

an appropriate and comprehensive measure of performance,

the F1 score was used to evaluate the model performance.

Eventually, the F1 score reached 95.78%, 95.85% and 92.63%

on the UCI-HAR, WISDM and OPPORTUNITY datasets,

respectively. Furthermore, we also explored the impact of

some hyper-parameters on model performance such as the

number of filters, the type of optimizers and batch size.

Finally, the optimal hyper-parameters for the final design

were selected to train the model. To sum up, compared with

the methods proposed in other literatures, the LSTM-CNN

model shows consistent superior performance and has good

generalization. It can not only avoid complex feature extrac-

tion but also has high recognition accuracy under the premise

of a few model parameters.
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