

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript

The version presented in WRAP is the author’s accepted manuscript and may differ from the

published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/132690

How to cite:

Please refer to published version for the most recent bibliographic citation information.

If a published version is known of, the repository item page linked to above, will contain

details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the

University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the

individual author(s) and/or other copyright owners. To the extent reasonable and

practicable the material made available in WRAP has been checked for eligibility before

being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit

purposes without prior permission or charge. Provided that the authors, title and full

bibliographic details are credited, a hyperlink and/or URL is given for the original metadata

page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/132690
mailto:wrap@warwick.ac.uk

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2952917, IEEE

Transactions on Industrial Informatics

1

LSTM Learning with Bayesian and Gaussian Processing for

Anomaly Detection in Industrial IoT

Di Wu Member, IEEE, Zhongkai Jiang, Xiaofeng Xie, Xuetao Wei Member, IEEE,

Weiren Yu Member, IEEE, and Renfa Li Senior Member, IEEE

Abstract—The data generated by millions of sensors in Indus-
trial Internet of Things (IIoT) is extremely dynamic, heteroge-
neous, and large scale. It poses great challenges on the real-time
analysis and decision making for anomaly detection in IIoT. In
this paper, we propose a LSTM-Gauss-NBayes method, which
is a synergy of the long short-term memory neural network
(LSTM-NN) and the Gaussian Bayes model for outlier detection
in IIoT. In a nutshell, the LSTM-NN builds model on normal time
series. It detects outliers by utilising the predictive error for the
Gaussian Naive Bayes model. Our method exploits advantages of
both LSTM and Gaussian Naive Bayes models, which not only
has strong prediction capability of LSTM for future time point
data, but also achieves an excellent classification performance of
Gaussian Naive Bayes model through the predictive error. We
evaluate our approaches on 3 real-life datasets that involve both
long-term and short-term time-dependency. Empirical studies
demonstrate that our proposed techniques outperform the best-
known competitors, which is a preferable choice for detecting
anomalies.

Index Terms—Industrial Internet of Things (IoT), anomaly
detection, deep learning.

I. INTRODUCTION

Industrial Internet of Things (IIoT) has been popularized

and developed over the past years [1], such as food processing

industry, smart cities and urban informatics. The data trans-

mission and processing plays a key role in IIoT applications

as large-scale data and information are produced by massive

sensors in IIoT [2], [3]. Highly useful and valuable information

could be derived to make intelligent automation and decisions

for these IIoT applications. However, data anomalies inevitably

appear due to the scale, computation and storage complexi-

ties [4], which could pose great risks on IIoT applications,

Manuscript received December 01, 2017; revised May 04, 2018, January 30,
2019 and October 03, 2019; accepted November 05, 2019. Date of publication
XXXX XX, 2019; date of current version XXXX XX, 2019. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61602168, Grant 61972145 and Grant 61932010, and in part by the
HuXiang Youth Talent Program under Grant 2018RS3040. Paper was with
no. TII-17-2875 and now no. TII-19-4519. (Corresponding author: Di Wu).

D. Wu is with the ExponentiAI Innovation Lab, and also with the Key
Laboratory for Embedded and Network Computing of Hunan Province, Hunan
University, Changsha 410082, China (e-mail: dwu@hnu.edu.cn).

Z. Jiang, X. Xie and R. Li are with the Department of Computer En-
gineering, and also with the Key Laboratory for Embedded and Network
Computing of Hunan Province, Hunan University, Changsha 410082, China
(e-mail: {peter bon, xietls, lirenfa}@hnu.edu.cn).

X. Wei is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
(e-mail: xuetao.wei@gmail.com).

W. Yu is with the Department of Computer Science, University of Warwick,
Coventry CV4 7AL, UK (e-mail: ywr0708@hotmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier XX.XXXX/TII.XXXX.XXXXXXXX

especially safety-critical applications [5]. Thus, a surge of

efficient techniques for detecting outliers are desired to ensure

the quality of collected data.

Data Storage

And Processing

Data

Transmission

Data Sensing

Indutrial

Applications
Anormaly detection State Monitor

Sensor

Stastics Analysis

Fig. 1. The architecture of Industrial Internet of Things (IIoT).

In IIoT, time series data generated by massive sensors are

becoming the most widespread [6]. As illustrated by the IIoT

scenario in Figure 1, the data collected by different types

of industrial sensors are transmitted to nearby edge nodes

or remote data servers through heterogeneous communication

and networking technologies. These IIoT data are stored and

processed on demand or constantly for various industrial

applications, such as anomaly detection, statistic analysis,

and state monitoring. In comparison with the traditional

Internet, the sampling frequency, measurement location and

transmission rate during data sensing and transmission have

a huge influence on the quality of raw data. These intrinsic

characteristics of IIoT also make its data dynamic, large

scale, time-dependent and high-dimensional, presenting strong

correlation for learning meaningful information. Therefore,

efficient data processing and learning techniques can not only

present an intelligent analysis to support various industrial

applications, but also diagnose the state of IIoT during data

sensing and transmission through mining data features and

their correlation.

Time-dependency is a very important feature for the IIoT

data, which has great influence on data prediction and anal-

ysis [6]. For example, the data at current time point are

likely to be related to previous time point or a time point

in the long past. This is called short-term and long-term

time dependency [7]. Such dependencies indicate that the

abnormal occurrence of current time point may also be related

to the data at previous time point, so we can make good

use of this feature for anomaly detection. The anomalies we

want to detect and tackle in IIoT fall into two categories

in general. One is hardware anomalies, especially generated

from different types of sensors, with potential problems such

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2952917, IEEE

Transactions on Industrial Informatics

as environmental interference, device malfunction and reading

errors. Another is software anomalies, impacted by program

exception, transmission error and malicious attack, resulting

in abnormal or manipulated data collection.

Traditional time series techniques detect variations of the

distribution by employing EWMA (exponentially weighted

moving average) and CUSUM (cumulative sum) within a

given time interval [8]. The size of the time interval often

requires to be determined in advance. One typical model for

the time series approach is the autoregressive moving average

model (ARIMA) [9], which transforms time series from non-

stationary into stationary and predicts future values from past

and present values of time series. However, it provides low

accuracy and is limited to the short-term prediction only. There

are also some anomaly detection algorithms based on the

distance, such as [10]. Although these algorithms have low

complexity, they are dependent on the threshold so that the

accuracy of anomaly detection is not high and stable. A simple

feed-forward neural network was proposed in time series data

processing [11]. It predefined sliding windows to build fea-

tures in order to make use of the relation between time series.

However, it still has too much dependency on the parameters.

Moreover, there exist several sequence models dealing with

sequential data, e.g., Kalman filtering [12], conditional random

field model [13], Markov process [14], which are lacking the

ability to learn long-term dependency. Though recurrent neural

network (RNN) [15] can address the issue of long postponed

tasks with no need to define time steps beforehand, it is easy

for gradient explosion or vanishing gradient happen on time

series tasks that take longer [16]. This makes it difficult to

learn the time series of long-term dependency. Therefore, here

we want to address the problem of long-term time dependency,

which could cause instability and low accuracy in IIoT data

anomaly detection.

In this article, we devise a LSTM-Gauss-NBayes method for

outlier detection in IIoT. The LSTM-NN [17] is a variation of

the RNN that can address the issue of gradient vanishing or

explosion in an efficient manner by introducing a collection

of memory units. First, our method uses the LSTM-NN model

to predict the tendency of future time steps. Then, the stacked

LSTM model is employed to learn normal time series. The aim

to optimize the stacked LSTM prediction model is computing

only the losses in the last sequence step. Meantime, with the

aim to enhance the model extension capacity, the dropout [18]

method is applied to the training phase of the model. This

will enhance further the efficiency of model overfitting. We

introduce the predicted error of future time steps into the

Naive Bayes model [19] of normal distribution to find the

outlier behavior, as illustrated in Figure 2. In general, our

contributions are summarized as follows:

• The time-dependency is closely related to the outlier

detection of IIoT data. The reason is that the occurrence

of current anomalies is not only related to the current

state, but also related to a certain time point in the past.

Therefore, we first propose a stacked LSTM model to

use its strong learning capability to deal with time series

data with long-term time-dependency, short-term time-

dependency and even weak time-dependency.

• An LSTM-Gauss-NBayes method is proposed for the

anomaly detection in IIoT. We exploit advantages of

LSTM’s good prediction performance, and take advan-

tage of predicted error to build Gaussian Naive Bayes

model, which is well integrated into the excellent classi-

fication ability of the Bayesian model. Instead of simply

combining Gaussian and Bayesian processing, the two

models adopted here are connected by the predictive error

generated from our LSTM prediction model specifically

following the time series characteristics of IIoT data.

Therefore, the integrated method can fully exploited the

benefits of predicting residuals.

• A generic anomaly detection framework has been de-

signed for learning and processing IIoT time series data.

The framework is based on the LSTM-Gauss-NBayes

method and could adapt to different types of IIoT data.

We test our framework with comprehensive experiments

in 3 real-world data sets. The results demonstrate that

our approach outperforms the Stacked Bi-LSTM model,

LSTM-NN model and MLP model, with on average a

precision of 0.955 and a recall of 0.956.

The remainder of this article is organized as follows. Sec-

tion II introduces our LSTM framework. Section III describes

our outlier detection method. Section IV provides experimental

results. Section VI concludes our article.

II. LSTM LEARNING FRAMEWORK

A. Preliminary of LSTM Application

The LSTM-NN is a variation of the RNN. It can efficiently

address the issue of gradient vanished or explosion by ex-

ploiting a collection of memory units. It enables the network

to learn the appropriate time for 1) updating the memory unit

with up-to-date information, and 2) forgeting the historical

data from memory unit. At time t, the memory unit ct contains

the whole historical record till the present time, which relies

on three “gates”: the input gate it, the forget gate ft, and the

output gate ot. The entry values of these gates are between

0 and 1. The LSTM network structure is quite suitable for

datasets that include time dimensions (e.g., medical sensored

data, activity logs from web server, transactions in finance,

or phone call records); only the present state and several past

states are needed for network training. Since LSTM model

can keep track of relationships and dependencies among many

time-steps, it is widely adopted in a number of tasks for

sequence learning. Due to a variety of LSTM applications in

time-series data management and estimation [20], we propose

a new framework which adopts the benefits of LSTM neural

network and extends its structure specifically for the anomaly

detection in industrial IoT.

B. Overview of Our Framework

In the proposed framework as show in Figure 2, we first

process the initial data, with steps including data cleaning,

data down-sample, and data normalization. Then, we divide

the pre-processed data into training sets, validation sets and

test sets, where the training sets and validation sets contain

only the normal data. Later, these data sets are respectively

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2952917, IEEE

Transactions on Industrial Informatics

Initial

Data

Data Cleaning

Data Downsample

Data Normalization

Training Set

Stacked

LSTM Model

Trained

Model
Testing Set

Validation Set

Error

Dataset

Error

Training Set

Error

Testing Set

Gaussian

Distribution

Testing

Calculate Error

Likelihood

 Estimation

Maximun

Naive Bayes

Model
Testing

Recognition

Result

Fig. 2. Overview of our anomaly detection framework for IIoT time series
data: LSTM Learning with Bayesian and Gaussian Processing.

used to optimize and construct the stacked LSTM model, select

hyper-parameters, and obtain error data sets. Furthermore, the

error data sets are split into two sets: error training and error

test. We use the error training set to make the maximum

likelihood estimation to obtain the parameters of the Gauss

distribution. These parameters are fed to the Naive Bayes

model to build a Gaussian Naive Bayes model. After that,

classification results can be obtained when we import error

test sets into this Gaussian Naive Bayes model.

We have used the proposed LSTM learning with Gaussian

and Bayesian processing as a generic framework for anomaly

detection in industrial IoT. The details of our method will be

presented in following sections.

III. THE LSTM-GAUSS-NBAYES METHOD

Using a LSTM-NN. In order to cope with the long-term or

short-term time dependency in time series data from IIoT

applications, we advocate to use a LSTM-NN structure. In this

structure, the input layer is associated with a time series, and

the amount of each hidden layer’s LSTM cells is associated

with the time step of time series. 2 hidden layers are utilized

to form a stacked LSTM network, as depicted in Figure 3 (a),

for outlier detection. The stacked LSTM network can enhance

a model’s performance on learning more complex features in

comparison with single LSTM network. For the output layer,

an inter-connected layer is built on the top LSTM layer, which

is used to take the data from different time points into account,

and evaluate their impact on the data at the next time point.

These impact will be modeled and integrated as a predicted

value, which is the output value at the next time point. For

the LSTM cell, it controls the input, storage and output of

data by introducing a set of gate mechanisms. As shown in

Fig. 3(b), the LSTM gate units receive the output of the LSTM

internal unit of the past time step and the input of present

time step sample. However, if the previous layer of the LSTM

cell layer is not the input layer, its various gate units accept

both the output of its previous layer’s LSTM internal unit at

present time step and the output of this LSTM internal unit at

past time step. Specifically, the three gates (input, forget, and

output) update their internal values as follows:

The values of these internal structures in the Fig.3 (a) and

(b) can be calculated with following steps in Eq. 1, where

weight matrices W and bias vectors b are utilized to build

Xt-1

LSTM

LSTM

Ot-1

Xt

LSTM

LSTM

Ot

Xt+1

LSTM

LSTM

Ot+1

σ tanhσ σ

tanh

ht

ht-1 ht

StSt-1

Xt

(a) Stacked LSTM. (b) LSTM Internal Structure.

Fig. 3. (a) depicts the staked LSTM model that is unrolled (or unfolded)
into an entire inter-linked network, where the LSTM cells in the hidden layer
are inter-linked by recurrent connections. Through the feed-forward linkage,
every cell of the lower LSTM hidden layer in the stacked LSTM layer is linked
to every cell in the LSTM hidden layer above it. Besides, (b) illustrates the
LSTM layer’s inner structure, in which σ and tanh denote the function of
activation. Xt represents the model input. ht is the output of LSTM cell in
the t-th time step and ht−1 is derived in the past sequence step. St represents
the value of LSTM memory cell in the t-th time step.

connections between the input layer, output layer and memory

block. s
(l)
t stands for the memory cell’s state of the t-th time

steps of the l-th layer. h
(l)
t is the output of memory cell at

the t-th time step of the l-th layer. σ represents an entry-wise

application of the sigmoid (logistic) function, φ denotes an

element-wise application of the tanh function, and ⊙ is the

entry-wise Schur product. The three gates (input, output, and

forget) are respectively represented by i, o, f , and g is the

input node with a tanh activation.

g
(l)
t = φ(W

(l)
gx h

(l−1)
t +W

(l)
gh h

(l)
t−1 + b

(l)
g)

i
(l)
t = σ(W

(l)
ix h

(l−1)
t +W

(l)
ih h

(l)
t−1 + b

(l)
i)

f
(l)
t = σ(W

(l)
fxh

(l−1)
t +W

(l)
fhh

(l)
t−1 + b

(l)
f)

o
(l)
t = σ(W

(l)
ox h

(l−1)
t +W

(l)
oh h

(l)
t−1 + b

(l)
o)

s
(l)
t = g

(l)
t ⊙ i

(l)
t + s

(l)
t−1 ⊙ f

(l)
t

h
(l)
t = φ(s

(l)
t)⊙ o

(l)
t

(1)

Data preprocessing. To process time series data, the down

sampling technique is first employed to get the characteristic

subsequence from the original time series, which enables a

reduction in the dimensionality of the original time series

and makes patterns easy-to-learn. Meanwhile, with the aim to

accelerate the convergence of the model, a min-max normal-

ization approach is applied for time series data normalization,

which can be viewed as a linear map of the original time series

data onto [0, 1].
After completing above feature engineering for the IoT

data, the next step is to construct a data set to contain

the relationship between the time series and the time

dependency of the IoT time series data. When predicting

the data at the next time point, the model needs to use

the data from the previous time point as reference, and

the length of this time period is defined as the time step.

The input structure of the LSTM model is generally a

three-dimensional array as [samples, timesteps, features].

We propose a sliding regression method to construct the input

for our LSTM model. That is, for the original time series

S = {x1, x2, x3, · · · , xi, · · · , xL}, where L is the length

of the time series, and xi represents the data of the i-th

time point, we consider it as a d-dimensional vector and d

represents the number of features. Given a sliding window

T , which is set as our time step, the sliding regression

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2952917, IEEE

Transactions on Industrial Informatics

is performed on the original time series to construct

sequential samples as {(x1, x2, · · · , xi, · · · , xT), y
(1)},

{(x2, x3, · · · , xi, · · · , xT+1), y
(2)}, · · · · · · ,

{(xT+L, xT+L−1, · · · , xT+L−i−1, · · · , xL−1), y
(T+L)},

where (x1, x2, · · · , xi, ...xT) can be abbreviated as x(1),
namely the input of the first sample, and y(1) represents the

label of the first sample, namely the target of the output. By

doing so, we could use the data of the previous T time points

to predict the data of the next time point.

Dividing the dataset, training models and obtaining the error

dataset. The dataset is partitioned into a training set containing

normal data, a validation set containing normal data, a test set

containing normal data, and a test set containing abnormal

data. Meantime, since abnormal samples are relatively small

in the real IIoT time series, the stacked LSTM prediction

model is only allowed for training by utilising the normal

data training set, whose hyper-parameters are specified by the

validation set. In addition, the test set containing normal data

and the test set containing abnormal data are respectively put

to the trained model. The prediction outcomes of both normal

and abnormal data are derived, respectively. Then, the absolute

gap between the real and predicted data can be computed,

and the error dataset (that contains the error of normal and

abnormal data) can be constructed.

Taking advantage of the error. Next, the error at every time

point is taken from test sets containing both normal data and

abnormal data as the numerical attribute of the prediction error

data set. The error dataset is split to two sets (error training

and error testing), in which the label value y ∈ {0, 1} and

1 indicates abnormal. A Bernoulli model is created for the

label value y as: p (y) = ϕy(1− ϕ)
1−y

, where ϕ stands for

the probability of the labels y = 1 in the error training set.

At the same time, it is tacitly assumed that every numerical

attribute in the error dataset follows the normal distribution.

Actually, this assumption is often highly efficient and may

yield stable outcomes. The associated normal PDF (probability

density function) is built for the conditional probability of

every attribute, as follows in Eq. 2:

p(x
(i)
j |y(i) = 1) = 1√

2πσ
(1)
ij

exp
(

−
(x

(i)
j

−µ
(1)
ij

)
2

2(σ
(1)
i

)
2

)

p(x
(i)
j |y(i) = 0) = 1√

2πσ
(0)
ij

exp
(

−
(x

(i)
j

−µ
(0)
ij

)
2

2(σ
(0)
ij

)
2

)

(2)

where x
(i)
j is the j-th attribute of the i-th sample in the error

training set. y(i) stands for the label value of the i-th sample in

the error training set. µ
(1)
ij and σ

(1)
ij are respectively the means

and variance of the j-th attribute of the i-th sample when its

label value is 1. Otherwise, it is µ
(0)
ij and σ

(0)
ij respectively

when the sample’s label value is 0.

Buliding Guassian Naive Bayes model. These

parameters of the normal PDF can be obtained

from the maximum likelihood estimate in the

error training set as: L(ϕ, µ
(1)
ij , µ

(0)
ij , σ

(1)
ij , σ

(0)
ij) =

log
m
∏

i=1

(
n
∏

j=1

p(x
(i)
j |y(i);ϕ, µ

(1)
ij , µ

(0)
ij , σ

(1)
ij , σ

(0)
ij))p(y(i);ϕ).

Then, the maximum likelihood estimation of these parameters

is derived as follows:

ϕ = 1
m

∑m
i=1 I{y

(i) = 1}

µ
(1)
ij =

∑
m
i=1 I{y(i)=1}x(i)

j∑
m
i=1 I{y(i)=1}

µ
(0)
ij =

∑
m
i=1 I{y(i)=0}x(i)

j∑
m
i=1 I{y(i)=0}

σ
(1)
ij =

∑
m
i=1 I{y(i)=1}(x(i)

j
−µ

(1)
ij

)
2

∑
m
i=1 I{y(i)=1}

σ
(0)
ij =

∑
m
i=1 I{y(i)=0}(x(i)

j
−µ

(0)
ij

)
2

∑
m
i=1 I{y(i)=0}

(3)

where I{·} is an indicator function. When the conditions

inside the brackets are true, the value is 1, otherwise 0. x
(i)
j

represents the j-th attribute of the i-th sample in the error

training set. y(i) stands for the label value of the i-th sample

in the error training set.

Using the Naive Bayes model to calculate results. The

proposed LSTM prediction model introduced above has con-

sidered two relations: 1) the impact of historical data on the

current data, and 2) the impact of the current data on the later

data. Since the prediction error is produced based on the two

relations, we could assume that the prediction error generated

at each time point is conditionally independent, and apply the

Naive Bayes hypothesis here accordingly to calculate posterior

probabilities by multiplying these conditional probabilities. In

addition, making this assumption can facilitate the calculation

of conditional probability and reduce the complexity of our

model for the real-world application in IIoT scenario.

Specifically, for all the samples in the prediction error data

set, we use these parameters presented in Eq. 3 to compute

the conditional probability that an attribute of one sample

which occurs in the presence of a certain class. Furthermore,

according to the independent assumption of Naive Bayes, these

conditional probabilities of different attributes of one sample

can be multiplied together, which produces the conditional

probability that a sample occurs in the presence of a certain

class as: p(x(i)|y(i) = 1) =
∏n

j=1 p(x
(i)
j |y(i) = 1) and

p(x(i)|y(i) = 0) =
∏n

j=1 p(x
(i)
j |y(i) = 0).

Thereafter, based on the Bayes equation, the abnor-

mal probability of the category of every sample in

the error test set can be computed as p (y = 1|x) =
p(x|y = 1)p (y = 1)

p (x|y = 1) p (y = 1) + p(x|y = 0)p (y = 0)
.

Incremental training. We use the incremental training

mode [21] in our model. We first train the LSTM-Gauss-

NBayes model offline. In our training method, the update

for a layer of memory units in LSTM can be found in [22].

We select the adaptive gradient algorithm (Adagrad) [23] as

the optimization method to minimize the mean squared error

(MSE) loss, and the maximum number of iterations is set to

be 10000 by heuristic rules [24]. Then, the backpropagation

through time (BPTT) algorithm [25] is applied to update

the model parameters. With the aim to avoid over-fitting,

regularization techniques [26] and dropout are employed to

enable a reduction in the complexity of the models. Then,

we can deploy the trained model online and process the data

online, using the incoming new data to train and update the

model, which speeds up the learning efficiency.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2952917, IEEE

Transactions on Industrial Informatics

Anomaly detection using Gaussian Naive Bayes. Algorithm 1

describes the process of applying Gaussian Naive Bayes to de-

tect the error dataset generated by our stack-LSTM prediction

model. In the framework of the LSTM, given m samples where

each sample is a series of observations (x1, . . . , xt, . . . , xT),
a prediction model is learnt to generate hypotheses ŷ of the

true values y. Here, t represents sequence steps, and T stands

for the length of the sequence. We use the least squares

loss function loss(ŷ, y) =
1

2

∑m

i=1
(y(i) − ŷ(i))

2
as the cost

function for this model, where y(i) stands for true value of

the i-th sample, and ŷ(i) stands for predicted value of the i-th

sample.

Algorithm 1 Sensor data anomaly detection algorithm using

the Gaussian Naive Bayes

Input: Error Training data sets Etra ∈ R
m∗n

Error Testing data sets Etes

Output: Abnormal samples
1: for sample (x(i), y(i)) in Etra do

2: Build a Bernoulli model for the label value y(i) as: p(y(i)) =

ϕy(i)
(1− ϕ)1−y(i)

3: for feature x
(i)
j in x(i) do

4: Establish the corresponding Gaussian probability density function for

the conditional probability of each attribute x
(i)
j as Eq. (2):

5: end for
6: end for
7: for j = 1 to n do
8: for i = 1 to m do
9: Compute maximum likelihood estimation function for each fea-

ture x
(i)
j . Perform log transformation as: L(ϕ, µ

(1)
ij , µ

(0)
ij , σ

(1)
ij , σ

(0)
ij) =

log
∏

m

i=1 (
∏

n

j=1 p(x
(i)
j |y(i);ϕ, µ

(1)
ij , µ

(0)
ij , σ

(1)
ij , σ

(0)
ij))p(y(i);ϕ)

10: Derive the derivative for the likelihood function, and then get the
solution of each unknown parameter in Eq. (3)

11: Substitute the parameters to p(x(i)|y(i) = 1) and p(x(i)|y(i) = 0)
with the independence principle of Naive Bayes

12: Get the conditional probability of each sample
13: end for
14: end for
15: for each test sample in Etes do
16: Calculate the probability of belonging to anomaly by the Bayesian

formula p(y = 1|x)
17: if p(y = 1|x) > p(y = 0|x) then
18: Mark x is an abnormal sample
19: end if
20: end for

IV. EVALUATION

We adopt Tensorflow, an open source platform for machine

learning, to implement our proposed approaches, and utilise

NVIDIA GTX1070 to speed up the training process for the

model. We compare our models with these competitors:

• Stacked Bidirectional LSTM (Stacked Bi-LSTM) [20].

We adopt an input layer, two forward LSTM units and

two backward LSTM units consisting of a multiple hid-

den units as multiple hidden layers. At the output layer,

the sigmoid function is used as a two classification layer.

• LSTM Neural Network (LSTM NN) [17]. We construct

it by using an input layer, two concealed layers with

LSTM memory blocks and a classification layer. Its cost

function is a cross entropy loss function.

• MultiLayer Perceptron (MLP) [16]. We use an input

layer, multiple concealed layers, and a classification layer

to built it, where a multi-layer perceptron model is

built with three concealed layers. The cross entropy loss

function is also used as the cost function.

Moreover, based on experience and the amount of data in

our experiment, each model is trained on 80% of the data

and tested on 10% of the data. The rest of 10% is employed

as a validation set. Meanwhile, the training of each model

can be terminated early by setting the threshold of prediction

error, which is a hyper-parameter debugged and selected

according to the validation set. We utilise the validation set for

choosing the hyper-parameters of these models. For example,

the number of neurons in the hidden layers of the three models

is selected by the validation set.

A. Dataset Description

To evaluate the performance on anomaly detection, we

use our own real-life time time-series datasets: Power, Loop

Sensor, and Land Sensor. Due to various (e.g., cyclical,

irregular) patterns of time-series data, Table I shows the auto-

correlation coefficients (ACF) [9] of every dataset at different

delay cases. We use the delay with value k to calculate the

coefficient of current time step and past k time step, for

the evaluation of these data sets on short-term and long-term

time dependency. So the ACF can quantitatively describe the

relationship between previous and present events.

TABLE I
DATASET DESCRIPTION.

Delay k=1 Delay k=5 Delay k=10

Power dataset 0.79 -0.78 0.56 long

Loop sensor dataset 0.71 0.4 0.05 short

Land sensor dataset 0.32 0.13 0.08 very weak

Dataset
Autocorrelation coefficient(ACF) Time

dependency

1) Power: This dataset consists of a user’s power data

over one year. Each 15 minutes is a time-stamp. We down-

sample the raw data per week. Input samples are formed by

the resulting data. By normal conditions, power consumption

remains fairly high on weekdays (from Monday to Friday) and

fairly low on Saturdays and Sundays. It can be discerned from

Fig. 4 (a), the tendency of electricity consumption exhibits five

peaks for the first five days, followed by some depressions for

the following 2 days. Note that, since a user’s power data

often contains noise, the peak does not simultaneously appear

for different days. If there were depressions on weekdays,

or wave crest on weekends, it could be viewed as outlier

because it violates the normal tendency of a user’s electricity

consumption, as depicted in Fig 4 (b). This could occur due

to erroneous readings from the electric meter or manipulated

consumption data from the user.

2) Loop Sensor: The dataset records the number of ve-

hicles passing through near the stadium, which was collected

by loop sensor once a game is held in the stadium. It can

be observed from the Table I that, as the delay retains 5, the

ACF remains smaller than 0.5. This implies that Loop Sensor

is short-term time-dependent time series data. To serve the

purpose for high-quality data analysis, we chose the data with

just one hour before the game and two hours after the game.

The results are shown in Figure 4 (c). We see that there is a

tiny peak on Loop Sensor in the first half and the second half,

and the wavelet valley is in the middle of it. After the wavelet

valley, vehicle data grow dramatically. This agrees well with

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2952917, IEEE

Transactions on Industrial Informatics

(d) loopsensor-Abnormal

anomaly

(c) loopsensor-Normal(a) power-Normal

anomaly

(b) power-Abnormal

(e) landsensor-Normal

(f) landsensor-Abormal

anomaly

Fig. 4. LSTM Learning results of our model under three data sets. The orange lines represent the predicted results, and the blue lines represent the real
results. In addition, the figures on the upper side show the learning results of normal samples, and the figures on the bottom side show the learning result of
abnormal samples. The red arrow indicates potential anomalies.

a rapid increase in traffic after the game ends. This behavior

is regarded as normal for this dataset. The anomaly outcomes

illustrated in Fig 4 (d) as well.

3) Land Sensor: The dataset consists of land humidity

data. Each 12 minutes makes a time-stamp. Fig. 4 (e) illus-

trates its normal results. Unlike previous two data sets, this

is an irregular time series with rather weak time-dependency,

as depicted in Table I, which is due to the fact that the land

humidity is usually affected by some external factors, such

as irrigation behaviors, natural rainfall, and weather changes.

Though the values in Land Sensor may rise and fall at

random in some range along with the time increasing, we

could still conclude a general rule that the degree of land

humidity varies slowly in the early hours during the morning,

and decreases rapidly when the temperature increases during

the daytime. Other normally external factors as mentioned

above may impact land humidity temporarily, but still cannot

greatly change the general trend. Therefore, our task for

anomaly detection in land humility data set is to trace and

detect irregularly abnormal changes violating the general rule

through our model validation. To achieve this goal, likewise,

the original time series is down-sampled by 5, with one-day

humidity data as one sample, to train our model. We can

discern in Figure 4 (f) that an outlier could have happened in

the first part of Land Sensor, and its land humidity actually

decreases significantly in the early hours of the morning. This

may be an abnormal reading due to hardware malfunction,

transmission error or malicious attack.

B. Performance Evaluation of Anomaly Detection

1) Evaluation Metrics: We use six metrics, that is Accu-

racy, Precision, Recall, F1, ROC and AUC, to comprehensively

evaluate the peroformance of our model. These metrics have

been widely used [27], and the details of the metrics are

listed following Eq. 4, where TP, TN, FP and FN are four

classification results, respectively, denoting true positive (TP),

true negative (TN), false positive (FP), and false negative (FN).

Accuracy = TP+TN
TP+FN+FP+TN

Recall = TP
TP+FN

Precision = TP
TP+FP

F1 = 2·Precision·Recall
Precision+Recall

(4)

Accuracy is employed to judge a model, aiming at data

classification. As our objective is to find if the sample is

anomaly, we also use two metrics (precision and recall) for our

model evaluation. The Precision rate is utilised to determine if

the classifier is able to accurately detect the abnormality. This

is to say, its main focus is on detection of anomaly samples.

Furthermore, the recall rate aims to determine if the classifier

can detect all anomaly samples. Fβ score is an integration of

the precision and recall metrics; if β < 1, then it indicates

more importance of the recall rate. In contrast, the precision

rate has a larger influence on the quality assessment of the

model. The F1 metric provides a balanced overview of the

algorithm performance.

The receiver operating characteristic (ROC) curve is a graph

consisting of a false positive rate (FPR) on the x axis and true

positive rate (TPR) on the y axis, where TPR = TP
TP+FN

and FPR = FP
FP+TN

. We can obtain different TPR and FPR

pairs by adjusting the classifier’s classification threshold. The

ROC data points are constituted by these data pairs and then

form a ROC curve. The area under curve (AUC) is the area

under the ROC curve, which reflects the performance of the

classification model. The closer the AUC value is to 1, the

better the classification is.

2) Results and Analysis: We use 4 classification metrics

(Accuracy, Precision, Recall, F1 to evaluate the performance

of each model over 3 datasets. The results are shown in

Table II, in which the highest scores for each metric on the

same dataset are underlined.

On Power, it can be noticed in Table I that, as the delay

reaches 10, the ACF is larger than 0.5. Therefore, it can be

inferred that there is a long-term dependency for the time on

this dataset, and its present data is connected to the data in

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2952917, IEEE

Transactions on Industrial Informatics

front of it in an inextricable manner. Nonetheless, as there

is a certain periodicity on Power, i.e., the electricity value

often becomes higher on weekdays and lower on weekends,

the periodic pattern is a key feature for time series data.

Therefore, it is easy to build a good time series model with

this feature. From Table II, we can observe the model having

the hidden layer of the LSTM cell, in general, outperforms the

general hidden layer in the outcomes of each of metrics. At the

same time, the model with the bidirectional LSTM unit will

perform better than the general LSTM NN model, but worse

than our LSTM model with enhanced Gaussian and Bayesian

processing. It can be noticed that the efficacy of the MLP

model is satisfactory as well with the corresponding recall

rate arriving at up to 88.2%.

On Loop Sensor, it is quite relevant to the time order as

well. Nevertheless, in contrast to Power, the features of Loop

Sensor are obscured, which makes it difficult to differentiate

its anomaly time series data from its normal counterpart.

Hence, we can see in Table II that the experimental results

of the other three models are unsatisfactory in this data set.

Since the Stacked Bi-LSTM model and LSTM NN model only

simply apply the existing LSTM structure without specific

design for the features of IoT data as mentioned in Section I,

they cannot well detect this kind of vague dataset. In par-

ticular, the precision rate of outlier detection for the MLP

model retains merely 79%. However, the proposed LSTM-

Gauss-NBayes model on Loop Sensor outperforms the three

competitors.

On Land Sensor, the data does not usually depend on the

order of time of occurrence. Thus, it poses challenges for

future values prediction based on past values only. We can

observe from Table II that the F1 scores of the LSTM-NN

and MLP models are ineffective for ourlier detection on Land

Sensor. The reason is that the features of Land Sensor are

vague with its value constantly fluctuated. The Stacked Bi-

LSTM model works better than the LSTM NN model due to

the its bidirectional structure, but still worse than the Stacked

LSTM model. This proves that bidirectional is not always

necessary to process time-series data. In addition, it can also

be found in Table II that MLP is better at precision rate of

anomaly detection than the LSTM-NN, which is perhaps due

to the weak time-dependency feature shown by Land Sensor.

TABLE II
EXPERIMENTAL RESULTS

Dataset Method Accuracy Precision Recall F1

Power
dataset

LSTM-Gauss-NBayes 0.969 1 0.941 0.962

Stacked Bi-LSTM 0.924 0.892 0.930 0.911

LSTM NN 0.905 0.846 0.931 0.886

MLP 0.873 0.843 0.925 0.882

Loop sensor
dataset

LSTM-Gauss-NBayes 0.952 0.931 0.975 0.953

Stacked Bi-LSTM 0.897 0.882 0.924 0.903

LSTM NN 0.870 0.867 0.897 0.881

MLP 0.823 0.789 0.818 0.803

Land sensor
dataset

LSTM-Gauss-NBayes 0.970 0.933 0.952 0.942

Stacked Bi-LSTM 0.905 0.920 0.872 0.895

LSTM NN 0.820 0.864 0.782 0.821

MLP 0.824 0.893 0.750 0.814

Due to the page limit, we only show the ROC curve under

the power data set for the analysis of the ROC curves of

different models. As shown in Fig. 5, the area under the

LSTM-Gauss-Nbayes curve is larger than the area under the

curve of the other two methods, and this can also be found

from the value of the AUC. This shows that our method is far

better than the other two methods. According to the definition

of ROC curve, we can see that ROC continuously reduces the

threshold of classification, and then calculates the values of

TPR (True Positive Rate) and FPR (False Positive Rate). TPR

shows the proportion of positive instances identified by the

classifier to all positive instances. FPR shows the proportion

of negative instances of the classifier that are considered to

be positive for all negative instances. Analyzing the ROC

curves of LSTM-Gauss-Nbayes, we can see that the TPR

value quickly reaches 0.9 during the process of continuously

lowering the threshold value. This shows that our approach is

more robust. While the other two methods perform well, the

growth rate of the TPR value is still slightly worse than ours.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve

LSTM-Gauss-NBayes, AUC=0.952
LSTM NN, AUC=0.892
MLP, AUC=0.881

Fig. 5. ROC and AUC analysis for the three models in the power data set.

V. RELATED WORK

1) Applying Statistical Learning Method in Time Series

Data: Traditional time series analysis uses mathematical sta-

tistical approaches for sequence analysis and future prediction.

They follow basic principles by detecting continuous changes

in the sequence and leveraging historical data to make a

prediction about the tendencies development. Furthermore,

the noise property of the time series is considered. Process

effects can be influenced by uncertain factors, for which the

weighted average approach is leveraged for statistical analysis

for handling past data. An appealing model of the conven-

tional approach for time series analytics is the auto-regressive

moving average (ARIMA) model [9]. ARIMA transforms the

time series from non-stationary to stationary via differential

operations. Then the auto-correlation coefficient (ACF) and

the Partial ACF (PACF) are proposed to deal with stationary

time series. By analysing the auto-correlation graph and the

partial auto-correlation graph, the optimal class and order can

be derived, based on which the ARIMA model is built up.

Despite its simple and easy-to-use advantages, the ARIMA

approach exhibits undesirable accuracy and it is not good for

long-term prediction. Moreover, once the data is unstable, the

performance of these the traditional statistical methods are

very poor. Our LSTM prediction model not only accommo-

dates the logical relationship between the time before and after,

but also extracts the characteristics of the current time point.

This avoids data instability.

2) Machine Learning Methods for Outlier Detection:

Outlier detection aims to identify patterns in data that deviate

from an a priori expected behavior [28]. Utilising graph theory

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2952917, IEEE

Transactions on Industrial Informatics

and spatiotemporal correlation analysis, [29] introduced a

decentralised general outlier detection method. There have

been several other approaches [30] using support vector ma-

chine (SVM) for outlier detection. Nevertheless, the methods

based on SVM seem very sensitive to missing values. [10]

considered the problem of distance-based outlier detection on

uncertain datasets with normal distribution, and devise a cell-

based method detect the outliers in a fast way. However, the

algorithm performance is not resilient as different parameters

selections will have a huge influence on the detection results.

[31] introduced a new scheme to detect outliers in noisy data

streams by employing a wavelet based soft-threshold filtering

approach that can remove uncertainties in time series data

streams, However, the method cannot always ensure high

accuracy on a variety of real datasets. Recently, the work of

[32] applied outlier detection in mobile computing via machine

learning based clustering techniques.

These traditional machine learning methods only considered

the characteristics of the current time point rather than the

time dependence of the time series feature. Therefore, anomaly

detection based on them for the Internet of Things time series

data is not very effective.

3) Applying Neural Network in IoT: The neural network is

an interconnected computing system and a back propagation

neural network (BP-NN) [25] can learn, remember, store,

extend, and extract features, tolerance faults and introspection.

Complicated relationships can be extracted between input and

output, even when the relationship itself is in flux. Recent

years have witnessed grow interest for BP-NN to address

the problem of identification and prediction [11], [18]. It has

accomplished in many economic fields that the traditional

economics approaches are unable to handle, e.g., economic

growth investigation, economic GNP forecasting, and stock

prices prediction. Meanwhile, as an appealing prediction tool,

BP-NN can guarantee high accuracy for nonlinear quantities

estimation. Through the use of the time series relations be-

tween before and after, we can take historical observations as

BP-NN’s input, and future data as the BP-NN’s output, which

constructs a prediction model for time series data.

When an ordinary neural network is applied to IoT data,

the relationship between the data at the time before and after

can be manually constructed by a sliding window to process

the IoT time series data [17], [21]. However, on one hand,

this window value is not well defined. On the other hand, this

method is still too simple and is only limited to short-term

dependent time series data. Our method presents an LSTM

prediction model with explicit internal LSTM unit structure,

which constantly updates the internal state values while getting

input data at each time point, thus ensuring the time-series data

before and after the time point can keep a strong connection.

4) Application of Recurrent Neural Network (RNN) in IoT:

Despite promising results achieved by BPNN to deal with

time series data, in traditional NN, it is tacitly assumed the

independence of all inputs and outputs, which seems not

suitable for a number of scenarios. The RNN [15], [22] differs

from the general feed-forward BPNN by memoising the past

data and leveraging it to the computation of the present output,

i.e., the nodes between the concealed layers are not linked any

more. The input of the concealed layer contains (i) the output

of the input layer and (ii) the output of the concealed layer at

the last time. In general, with the aim to tame the complexity

of the model, we usually assumed that the current state is

merely relevant to the past several states.

The simple RNN can build a dependency in theory among

states of the time windows with long length. However, there is

a high likelihood that the gradient explosion or gradient van-

ished will happen during the long-term time series processing

task [16]. As a result, only short-term dependencies could be

learned. Our model architecture contains the LSTM prediction

model, so we can solve this problem of gradient explosion and

gradient disappearance. In addition, while using the proposed

LSTM model to produce the prediction error, we adopt the

Gaussian distribution of the conditional probability of the

error, and then rely on Naive Bayes’ excellent classification

performance to achieve the detection of abnormal data in IIoT.

VI. CONCLUSION

In this paper, we propose a LSTM-Gauss-NBayes method,

which is a synergy of LSTM-NN and the Naive Bayes model

with nomoral distribution for outlier detection in IIoT. We first

use the training set to construct the stacked LSTM model. We

next import the test set into the trained predictive model to

build the error data set. Furthermore, the error training set is

used to build Naive Bayes model of normal distribution for

anomaly detection. Our extensive experiments show that our

model achieves the promising results.

REFERENCES

[1] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[2] Z. Qin, D. Wu, Z. Xiao, B. Fu, and Z. Qin, “Modeling and analysis
of data aggregation from convergecast in mobile sensor networks for
industrial iot,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 10, pp. 4457–4467, 2018.

[3] D. Wu, D. I. Arkhipov, M. Kim, C. L. Talcott, A. C. Regan, J. A.
McCann, and N. Venkatasubramanian, “Addsen: Adaptive data pro-
cessing and dissemination for drone swarms in urban sensing,” IEEE

Transactions on Computers, vol. 66, no. 2, pp. 183–198, 2017.
[4] D. S. Pham, S. Venkatesh, M. Lazarescu, and S. Budhaditya, “Anomaly

detection in large-scale data stream networks,” Data Mining and Knowl-

edge Discovery, vol. 28, no. 1, pp. 145–189, 2014.
[5] R. Mitchell and I. R. Chen, “Behavior-rule based intrusion detection

systems for safety critical smart grid applications,” IEEE Transactions

on Smart Grid, vol. 4, no. 3, pp. 1254–1263, 2013.
[6] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Sid-

diqa, and I. Yaqoob, “Big iot data analytics: Architecture, opportunities,
and open research challenges,” IEEE Access, vol. 5, pp. 5247–5261,
2017.

[7] J. G. D. Gooijer and R. J. Hyndman, “25 years of time series forecast-
ing,” International Journal of Forecasting, vol. 22, no. 3, pp. 443 – 473,
2006.

[8] M. Basseville, I. V. Nikiforov et al., Detection of abrupt changes: theory

and application. Prentice Hall Englewood Cliffs, 1993, vol. 104.
[9] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series

analysis: forecasting and control. John Wiley & Sons, 2015.
[10] S. A. Shaikh and H. Kitagawa, “Efficient distance-based outlier detection

on uncertain datasets of gaussian distribution,” World Wide Web, vol. 17,
no. 4, pp. 511–538, 2014.

[11] B. Oancea and S. C. Ciucu, “Time series forecasting using neural
networks,” CoRR, vol. abs/1401.1333, 2014.

[12] S. S. Haykin, “Kalman filtering and neural networks,” Adaptive and

Learning Systems for Signal Processing Communications and Control,
pp. 170 – 174, 2013.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2952917, IEEE

Transactions on Industrial Informatics

[13] J. Glass, M. Ghalwash, M. Vukicevic, and Z. Obradovic, “Extending the
modelling capacity of gaussian conditional random fields while learning
faster,” in AAAI, 2016, pp. 1596–1602.

[14] M. S. Hwang, C. C. Yang, and S. F. Tzeng, “Fuzzy time series
forecasting with a probabilistic smoothing hidden markov model,” IEEE

Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 291–304, 2012.
[15] A. Graves et al., Supervised sequence labelling with recurrent neural

networks. Springer, 2012, vol. 385.
[16] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training

recurrent neural networks,” in ICML, 2013, pp. 1310–1318.
[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[18] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.

Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” Computer Science, vol. 3, no. 4, pp. pgs. 212–223,
2012.

[19] F. V. Jensen, An introduction to Bayesian networks. UCL press London,
1996, vol. 210.

[20] M. Sun, G. Strbac, P. Djapic, and D. Pudjianto, “Preheating quan-
tification for smart hybrid heat pumps considering uncertainty,” IEEE

Transactions on Industrial Informatics, vol. 15, no. 8, pp. 4753–4763,
2019.

[21] M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer, “Panfis:
A novel incremental learning machine,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 25, no. 1, pp. 55–68, Jan 2014.
[22] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell, “Learning to

diagnose with lstm recurrent neural networks,” in ICLR, 2016.
[23] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods

for online learning and stochastic optimization,” Journal of Machine

Learning Research, vol. 12, pp. 2121–2159, 2011.
[24] P. Joulani, A. Gyrgy, and C. Szepesvri, “Delay-tolerant online convex

optimization: Unified analysis and adaptive-gradient algorithms,” in
AAAI, 2016.

[25] P. J. Werbos, “Generalization of backpropagation with application to a
recurrent gas market model,” Neural Networks, vol. 1, no. 4, pp. 339–
356, 1988.

[26] M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Regularization with
stochastic transformations and perturbations for deep semi-supervised
learning,” in NIPS, 2016.

[27] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A
comparative study of anomaly detection schemes in network intrusion
detection,” in SIAM International Conference on Data Mining, 2003,
pp. 25–36.

[28] V. P. Illiano and E. C. Lupu, “Detecting malicious data injections in
wireless sensor networks: A survey,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, p. 24, 2015.

[29] P.-Y. Chen, S. Yang, and J. A. McCann, “Distributed real-time anomaly
detection in networked industrial sensing systems,” IEEE Transactions

on Industrial Electronics, vol. 62, no. 6, pp. 3832–3842, 2015.
[30] H. Martins, L. Palma, A. Cardoso, and P. Gil, “A support vector machine

based technique for online detection of outliers in transient time series,”
in Asian Control Conference (ASCC). IEEE, 2015, pp. 1–6.

[31] J. Ma, L. Sun, H. Wang, Y. Zhang, and U. Aickelin, “Supervised
anomaly detection in uncertain pseudoperiodic data streams,” ACM

Transactions on Internet Technology (TOIT), vol. 16, no. 1, p. 4, 2016.
[32] M. S. Parwez, D. Rawat, and M. Garuba, “Big data analytics for

user activity analysis and user anomaly detection in mobile wireless
network,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4,
pp. 2058–2065, 2017.

Di Wu (M’14) received his Ph.D. degrees in com-
puter science from the University of California,
Irvine, USA, in 2013. He was a Researcher with the
Intel Collaborative Research Institute for Sustainable
Connected Cites, a Research Associate with Imperial
College London, a Visiting Researcher with IBM
Research, and a Student Research Associate with the
SRI International. He is currently an Associate Pro-
fessor with Hunan University, China. His research
interests include future networking, intelligent ana-
lytics, and smart architecture.

Zhongkai Jiang received the B.S. degree in Inter-
net of Things Engineering from Suzhou University,
China in 2016. He is currently working toward his
M.S. degree in Computer Science and Technology
at Hunan University, China. His research interests
include machine learning and data mining.

Xiaofeng Xie received the B.S. degree in Network
Engineering from Hunan University of Science and
Technology, China in 2015, and the M.E. degree
in Computer Technology from Hunan University,
China in 2018. He is currently a Research Scientist
with the Vivo Communication Technology, China.
His research interests include machine learning and
IoT data analytics.

Xuetao Wei (M’14) received his Ph.D. degree in
computer science from the University of California,
Riverside, USA, in 2013. From January 2014 to
August 2019, he was an Assistant Professor and then
promoted to Associate Professor at the University
of Cincinnati, USA. He is currently an Associate
Professor with the Southern University of Science
and Technology, China. His research interests span
the areas of blockchain, Internet of Things and
security, which have been supported by federal and
state funding agencies, including NSF and DARPA.

Weiren Yu (M’13) received his Ph.D. degree in
computer science from the University of New South
Wales, Australia, in 2014. He was a Research Asso-
ciate with Imperial College London, and then a Lec-
turer of Computer Science with Aston University.
He is currently an Assistant Professor of Computer
Science with the University of Warwick, and an
Honorary Research Fellow with Imperial College
London. His current research spans graph data man-
agement, data mining, and Internet of Things. He is
a Fellow of Higher Education Academy.

Renfa Li (M’05-SM’10) received his Ph.D. degree
in electronic engineering from Huazhong University
of Science and Technology, Wuhan, China, in 2003.
He is currently a Professor with the College of
Computer Science and Electronic Engineering, Hu-
nan University, Changsha, China. He is the Director
of the Key Laboratory for Embedded and Network
Computing of Hunan Province, China, and an ex-
pert committee member of National Supercomputing
Center in Changsha, China. His major interests in-
clude computer architectures, embedded computing

systems, cyber-physical systems, and Internet of things.

