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ABSTRACT This paper presents the detection of High Impedance Fault (HIF) in solar Photovoltaic (PV)

integrated power system using recurrent neural network-based Long Short-TermMemory (LSTM) approach.

For study this, an IEEE 13-bus systemwas modeled inMATLAB/Simulink environment to integrate 300 kW

solar PV systems for analysis. Initially, the three-phase current signal during non-faulty (regular operation,

capacitor switching, load switching, transformer inrush current) and faulty (HIF, symmetrical and unsym-

metrical fault) conditions were used for extraction of features. The signal processing technique of Discrete

Wavelet Transform with db4 mother wavelet was applied to extract each phase’s energy value features for

training and testing the classifiers. The proposed LSTM classifier gives the overall classification accuracy

of 91.21% with a success rate of 92.42 % in identifying HIF in PV integrated power network. The prediction

results obtained from the proffered method are compared with other well-known classifiers of K-Nearest

neighbor’s network, Support vector machine, J48 based decision tree, and Naïve Bayes approach. Further,

the classifier’s robustness is validated by evaluating the performance indices (PI) of kappa statistic, precision,

recall, and F-measure. The results obtained reveal that the proposed LSTMnetwork significantly outperforms

all PI compared to other techniques.

INDEX TERMS Solar photovoltaic, high impedance fault, discrete wavelet transform, recurrent neural

network, long-short term memory.

ABBREVIATIONS

RE Renewable Energy

MG Microgrid

PVDG Photovoltaic Distributed Generation

HIF High Impedance Fault

PV Photovoltaic
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RNN Recurrent Neural Network

LSTM Long Short Term Memory

JDT J48 Decision Tree

WT Wavelet Transform

ANFIS Adaptive Neuro-Fuzzy Inference System

CNN Convolutional Neural Network

PMU Phasor Measurement Unit

MODWPT Maximum Overlap Discrete Wavelet Packet

Transform
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DFT Discrete Fourier Transform

KF Kalman Filter

DT Decision Tree

DWT Discrete Wavelet Transform

SVM Support Vector Machine

KNN K-Nearest Neighbors Network

Db4 Daubechies 4 mother wavelet

PIs Performance Indices

SPT Signal Processing Techniques

FFT Fast Fourier Transform

LLG Double Line to Ground fault

LLLG Three-phase fault

DC Direct Current

AC Alternating Current

VSI Voltage Source Inverter

MPPT Maximum Power Point Tracking

IGBT Insulated-gate Bipolar Transistor

PWM Pulse Width Modulation

THD Total Harmonic Distortion

NB Naïve Bayes

IEEE Institute of Electrical and Electronics Engi-

neers

I-V Current-Voltage

characteristics

P-V Power-Voltage characteristics

STC Standard Test Conditions of Solar PV with

temperature (T = 25oC) and irradiance

of 1000 W/m2

LG Single Line to Ground fault

LL Double Line Fault

CA Classification Accuracy

CWT Continuous Wavelet Transform

EV Energy Value

ANN Artificial Neural Network

RBF Radial Basis Function

LIBSVM A Library for SVM

KS Kappa Statistics

P,R Precision, Recall

I. INTRODUCTION

The ever-increasing load demand and a considerable decline

in fossil fuels over the last few decades pave the way

for adopting alternative energy sources to meet the energy

requirement. The effectiveness of distributed energy sources

involving RE or conventional synchronous generators into

distribution network for providing high-quality power led

to MG’s concept. In the present energy scenario, the solar

PVDG has been widely adopted in many countries compared

to other RE sources due to its abundance in nature, lower

weight, and economic feasibility [1]. Because of this, MG’s

secure and reliable operation is more important by designing

a proper protection scheme that can detect, classify, and locate

the system’s fault. However, the conventional protection relay

effortlessly can identify the low-impedance fault that occurs

in the network. But, the HIF was unidentified because of its

low magnitude of fault current. This induces a severe threat

to public safety.

Moreover, the escalation of HIF into a healthy part of

the grid system results in cascading failure of the power

network [2], [3]. Therefore, detection of HIF is more critical

in RE integrated distribution system. Also, most of the liter-

ature on the detection of fault was studied on a conventional

systemwithout considering RE sources. However, the present

work focuses on detecting HIF in solar PV power networks

using an RNN-based LSTM network. The detection of HIF

involves a two-stage process: feature extraction and classifier

construction [4].

Many SPT were proposed in the literature to extract fea-

tures to train and test the classifiers in the pattern recognition

stage. This process distinguishes the various disturbances by

obtaining appropriate patterns using time-frequency trans-

forms [5]. The FFT possesses spectral leakage and loss of

time information on analyzing the signal for feature extrac-

tion. The STFT was widely used for fault analysis. However,

it is also unsuitable because of its fixed window length for

analyzing the non-stationary transient signals that comprise

both time and frequency components [6].To resolve this,

WT based techniques have been widely used for analyzing

the transient signals that are non-periodic, which comprises

impulse and sinusoidal component [7]. The WT generally

exists in the continuous and discrete form; the latter was

extensively used in power system applications like power

quality and fault analysis. The DWT offers the advantages

of adaptive window size with a pre-defined filter design [8].

Therefore, DWT has been used in the pre-processing stage

of the classifier compared to other SPTs. Hence, the energy

value feature was extracted from each phase’s current signal

using DWT analysis to train and test the proposed LSTM

classifier to identify the HIF in the PV power network.

Various intelligence classifier approaches with SPTs were

adopted for identifying the HIF in the power system. The

literature studied in [9]–[15], applied a DWT analysis with

multi-layer perceptron neural network, Fuzzy approach,

ANFIS, SVM, Elman neural network to detect and clas-

sify the HIF in power distribution network. In [16], a WT

and CNN were used for identifying the HIF in distribution

network with real-time data acquisition using PMU. The

MODWPT has been employed for detection of HIF in 13-

bus distribution network with non-linear load to prove its

adaptability in [17]. However, this study gives a HIF detection

accuracy of 85.86%. On the flip-side, a combination of DFT

and KF was used to detect the HIF and other conventional

symmetrical and unsymmetrical faults in distribution net-

work. The feature extracted is used to frame the digital logic

to detect the faults in the system which gives the accuracy of

97 % [18]. However, this method is complex for large-scale

system due to the multiple logics presented to detect the HIF.

The authors in [19], presents a DWT based CNN for detection

of HIF by combining the features from various distribution

networks through the cloud-edge-collaboration framework

with the development of internet of things. In [20], a modified
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FFT based technique was used to identify the occurrence

of HIF in IEEE 13-bus distribution network considering the

non-linear loads and switching transients. A combination of

variational mode decomposition and Teager-Kaiser energy

operators were used to discriminate HIF from other transient

phenomenon (load and capacitor switching) and normal con-

ditions [21]. However, the study cannot consider the con-

ventional symmetrical and unsymmetrical faults besides HIF.

A mathematical morphology was used for identification of

HIF in low voltage DC distribution network [22]. The study

in [23], presents a Hibert-Huang Transform and machine

learning techniques for detection of HIF and conventional

faults in MG. This study reveals that the extreme learning

machine gives an accuracy of 93% and also outperforms than

SVM and NB classifier. However, superior performance was

seen using NB classifier for identification of symmetrical and

unsymmetrical faults in a series compensated transmission

system [24].The authors in [25], studied the detection of HIF

using mathematical morphology during high penetration of

solar photovoltaic (PV) in distribution network. However, the

study does not consider the impact of conventional faults and

switching events. But, this paper considers the identification

of HIF in PV integrated distribution network by considering

the switching events (capacitor and load switching), trans-

former inrush current, symmetrical and unsymmetrical faults.

Even though, many techniques were presented for identifica-

tion of HIF using various SPT andmachine learningmethods.

The DWT based SPT was widely used in the pre-processing

stage of classification model for the decomposition of signal

into high and low frequency band in both time and frequency

domain.

The evolution of the deep learning method for processing

sequential data plays a vital role in applications like solar

PV fault identification, electricity price prediction, short-term

wind power forecasting, and so on [26]–[29]. Long Short-

Term Memory is a unique recurrent neural network and

powerful deep learning technique. This method differs from

traditional neural networks because the neurons have a con-

nection in forward as well as backward either to the same or

previous layers. The LSTM can also better capture the fea-

tures and handle data with irregularities than other machine

learning techniques. This characteristic helps to detect the

intermittent, asymmetry, random behavior possessed by the

HIF current waveform, which the conventional protection

scheme cannot detect. Thus, this paper proposes a DWT

and LSTM based detection of HIF in PV integrated power

network. The main contributions of this paper are:

• A deep learning method of RNN based LSTM network

has been developed with feature extraction using DWT

analysis to detect and classify the HIF in PV integrated

power network.

• The extracted energy value features from DWT analysis

of the current signal is used to train and test the proposed

LSTM and other intelligent classifiers such as KNN,

SVM, JDT, and NB. Then, the results obtained from

TABLE 1. Specification of PV panel.

various classifiers to detect HIF in PV power networks

are compared.

• To validate the proposed classification model’s per-

formance, a comprehensive evaluation of classification

accuracy, success rate, and other performance indices of

Precision, Recall, F-Measure, and Kappa statistics were

examined.

This paper is organized: Section II describes an IEEE 13-bus

system model and solar PV system, also explains the mod-

eling of HIF. Section III explains the proposed methodology

for detecting and classifying HIF, and the detailed descrip-

tion of feature extraction using DWT analysis is presented

in section IV. Section V portrays the proposed LSTM and

other intelligence classifiers such as KNN, SVM, JDT, and

NB. The results obtained from MATLAB simulation of PV

integrated power network and classification output of var-

ious classifiers are discussed in section VI with a conclu-

sion and future scope of this work presented in the last

section.

II. SYSTEM MODEL STUDIED

In this study, the proffered RNN classifier’s classification

performance was tested on an IEEE 13-bus network model

with high impedance fault, symmetrical and unsymmet-

rical faults, switching events (heavy load and capacitor

bank), and transformer current. The IEEE 13 bus network

model shown in Figure 1 has been developed in MAT-

LAB/Simulink software environment to integrate a 300 kW

solar PV unit (operating under STC) and different load

facilities. The test system is interconnected with the pri-

mary grid source (100 MVA, 25 kV, 60 Hz) through an

interconnecting transformer (200 kVA, 4.16 kV/25 kV). The

detailed modeling of transmission line parameters and the

load was given in [30]. The performance of the proposed

RNN based classifier was evaluated while identifying HIF

under normal conditions, switching events (capacitor bank

and heavy load), transformer inrush current, and abnormal

conditions (symmetrical and unsymmetrical faults: single line

ground, double line, double line to ground and three-phase

fault).

A. DESCRIPTION OF SOLAR PV SOURCE

The 300 kWp solar PV includes 3 (100 kW each) PV units.

The specification of each solar cell used in the PV array
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FIGURE 1. IEEE 13-bus system with the solar PV system.

and the PV array’s configuration detail is listed in Table 1.

The current and power level of a single solar cell (concern-

ing the voltage) at different solar irradiance (W/m2) con-

ditions is portrayed in Figures 2(a) and 2(b), respectively.

The PV system comprises a DC-DC boost converter and

DC-AC VSI. The boost converter steps up the PV unit’s

output voltage (280 V DC at maximum power point) to

500 V. An incremental conductance method of the MPPT

controller was used to adapt the DC-DC boost’s duty cycle

converter concerning solar irradiance for tracking the max-

imum power from the panel. A 3 level IGBT bridge circuit

with PWM control (switching frequency of 1980 Hz) of PV

inverter (VSI) system was considered. The inverter has two

control loops (outer voltage and inner current control loop to

regulate the output AC voltage) based on synchronous ref-

erence frame theory. The conventional proportional-integral

controller was used in both the control loops of the inverter

with the proportional (Kp) and integral (Ki) gain values

of the outer controller: Kp = 7 and Ki = 800 and

inner controller: Kp = 0.3 and Ki = 20, respec-

tively. Inverter’s output voltage is 260 V AC, stepped up

using a step-up transformer (200 KVA, 4.16 kV/260 V) to

4.16 kV for interconnecting into IEEE-13 bus power system

network.
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FIGURE 2. (a) I-V characteristics of PV array (b) P-V characteristics of PV array.

FIGURE 3. HIF model.

FIGURE 4. V-I characteristics of HIF model for varying Vp, Vn, Rp, and Rn.

B. HIGH IMPEDANCE FAULT MODEL

The HIF occurs when a broken live overhead conductor has

contact with a high resistive surface such as sand, asphalt,

and tree, exhibiting non-linearity, randomness, asymmetry,

shoulder, buildup, and intermittence [31]. HIF current wave-

form properties are modeled using an anti-parallel diode

model depicting the HIF model’s natural form based on

the Emanuel model [3], [32] as given in Figure3. Using

this model, the V-I characteristics of HIF are obtained by

varying Vp, Vn, Rp, and Rn of HIF model between 500

FIGURE 5. (a) Current at HIF location (b) Voltage at HIF location.

to 8000 V, 1000 to 10000V, 120 to 5000 �, and 120 to

5000 �, respectively as depicted in Figure 4. The current

and voltage waveform of HIF recorded with Vp = 500V,

Vn = 1000 V, Rp = Rn = 120� is shown in Figure 5.

It is observed that the current waveform shows non-linearity,

asymmetry, and harmonic content for the HIF model con-

sidered. Further, the current waveform at the HIF location

was analyzed using FFT analysis and found that second and

third-order harmonic contents of 3.94% and 11.7%, respec-

tively, with the overall THD range of 14.6 % represented in

Figure 6.

III. PROPOSED METHODOLOGY

This section presents the detection and identification of HIF

using intelligent classifiers in solar PV integrated power net-

work. The detailed steps of the process of classification are

portrayed in Figure 7 and also explained:

Step-1: Data Acquisition – In this case, the IEEE 13-bus

system with solar PV network was simulated in MAT-

LAB/Simulink and various fault conditions such as LG, LL,

LLG, LLLG, and HIF. Then, each phase’s current features

during these conditions are recorded for feature extraction

using DWT analysis. Further, the Non-fault event of capacitor
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FIGURE 6. HIF current spectrum.

FIGURE 7. Schematic view of fault classification using intelligent
classifiers.

switching, load switching, transformer inrush current, and

change of irradiance of solar PV were considered normal

operating conditions of the system as the protective relay is

insensitive to changes.

Step-2: Feature Extraction –During this phase, DWT

is used to transform the time domain current signal (dur-

ing faulty and non-faulty conditions) into a time-frequency

domain signal by decomposition. Different characteristics

have been observed from the decomposed current signal with

large coefficients in different frequency bands during the dis-

turbances. The extraction of features (energy value) from all

these frequency bands is applied to give good discrimination

results from the classifiers.

Step-3: Training Phase –The extracted energy values

under different system operating conditions are used to train

the intelligent classifiers. A total data set of 970 data samples

were obtained by varying the fault resistances from 20 � to

150 � in step 10 � during LG, LL, LLG, and LLLG type

of fault. Further, the perturbation of Rp, Rn, Vp, and Vn in

the HIF model whose information are detailed in Section 2.2

and for the case of normal operating conditions: capacitor

switching from 300 kVar to 500 kVar in the step of 50kVar,

load switching of 0.5 MW to 2 MW in the step of 0.25 MW,

transformer inrush current by switching the transformer of

4.16 kV/480 V at various buses, and change in irradiations of

the solar PV system from 750 to 1000W/m2 were considered

for collecting the data samples to train the classifier.

Step-4: Prediction Phase –In this condition, 20% of the

data sample was used to test the intelligent classifiers such as

LSTM, KNN, DT, SVM, and NB to identify different events

that occur in the developed power network.

IV. FEATURE EXTRACTION USING DWT ANALYSIS

Wavelet transform is one of the most widely used signal

processing tools for detecting the low amplitude, short dura-

tion, fast decaying and oscillating type of signals or tran-

sients encountered in the power system during a fault or

any other abnormal conditions [12]. The main feature of

the wavelet function is localization in both the time and

frequency domain. Hence, it applies to wideband signals that

are non-periodic and comprises both sinusoidal and impulse

components, as seen in fast power system transients [3].

In general, the WT exists in two forms: continuous and dis-

creteWT. The CWThas limitations of low redundancy during

the signal’s reconstruction, and hence DWT was used for

practical application. Thus, the DWT can be mathematically

defined for signal x(n) as:

DWT (m, k) =
1

√
a
m
0

∑

n
x(n) ∗ h

(

k − nam0
am0

)

(1)

where am0 and nam0 are the scaling and translation parameters,

n and m are the integer variables, and h is the mother wavelet,

k is an integer value that defines the particular sample number

in an input signal. The sampling frequency of 20 kHz and

mother wavelet of db4 was chosen for extracting the energy

value features to train the classifier. The detailed explanation

of mother wavelet choice, selection of sampling frequency,

number of levels, and bandwidth for each level are reported

in the previous work of authors in [3], [12].

A. ENERGY VALUES

The feature extraction was carried out to reduce the raw sig-

nal’s voluminous data to be analyzed. In this work, an energy

value (EV) was calculated from the detail coefficients and

approximations level of wavelet coefficients defined as [3]:

EV =
∑k

i=1

[

|Di|2
]

+|Ak|2 (2)

k depicts the number of levels and is chosen as 5,

d1, d2, d3, d4, and d5 represents the detailed coeffi-

cient level and ak is approximations of the signal’s final

level.
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V. MATERIALS AND METHODS OF CLASSIFICATION

This fragment describes the various classifier approaches

such as KNN, DT, SVM, NB, and the proposed LSTM recur-

rent network used to detect and classify the HIF and other

symmetrical and unsymmetrical faults that occur in the PV

integrated power network developed in MATLAB/Simulink

software environment. In a classification of different fault

events using disparate classifiers with an assumption of

system condition as several classes labeled: C1-Non-faulty

event, C2-HIF, C3- Single line to ground fault (LG),

C4- Double line fault (LL), C5-Double line to ground fault

(LLG) and C6- Three-phase fault (LLLG).

A. LONG SHORT-TERM MEMORY (LSTM) RNN

In recent years, the development of deep learning methods

has laid down the RNN as one of the most state-of-art models

for classification problems applied to sequential data. The

RNN is a particular form of standard artificial neural net-

work (ANN) with feedback loops to store the recent input

events as activation. Further, capable of creating a correla-

tion between the current and preceding information in the

network. However, the RNN can also learn any length but

suffer from limitations of gradient exploding and vanish-

ing [26]–[28]. This can be overcome by the particular form

of RNN proposed by Hochreiter and Schmidhuber (1997),

in which RNN cell is replaced by a gated cell called Long

Short-Term Memory network. The basic architecture of a

single LSTM network is portrayed in Figure 8.

FIGURE 8. Single LSTM cell architecture with gates [26].

An LSTM network comprises a memory cell illustrated by

Ct with self-loops, storing the temporal information encoded

on the cell state. Three gates, namely control the flow of

information in the network: forget gate ftǫ[0, 1], Input gate

itǫ[0, 1], and output gate Otǫ[0, 1]. During training, the

network learns what needs to be memorized and when to

allow reading/writing to minimize the misclassification rate.

In particular, the Forget gate determines what information

from the last memory cell state is expired and should be

removed. The input gate updates the cell state by selecting

appropriate information from candidatememory cell state C∗
t .

The output gate filters the information from the memory cell

so that the model considers only the critical information for

the prediction task. The value of each gate is determined as

follows [26]–[29],














it = sigmoid(Wi[y(t−1),Xt ] + bi)

ft = sigmoid(Wf [y(t−1),Xt ] + bf )

C∗
t = sigmoid(WC [y(t−1),Xt ] + bC )

Ot = sigmoid(WO[y(t−1),Xt ] + bO)















(3)

W[i,f,C,O] are the weight matrices and b[i,f,C,O] are the net-

work’s bias vectors. The memory cell value (Ct ) and output

(yt ) of the network is obtained using the equations as follows,
{

Ct = C(t−1).ft + C∗
t .it

yt = Ot ∗ tanh(Ct )

}

(4)

The proposed LSTM network was trained with 970 samples

of EV data extracted using DWT analysis of current signal

under different operating conditions such as standard, LG,

LL, LLG, LLLG, and HIF. The training data is obtained by

changing fault resistances during LG, LL, LLG, and LLLG

type of fault. Also, the perturbation of Rp, Rn,Vp, and Vn

in the HIF model and for the case of non-faulty conditions:

capacitor switching, load switching, transformer inrush cur-

rent, and change of irradiations were considered.

B. K-NEAREST NEIGHBOR ALGORITHM (KNN)

KNN is a well-known non-parametric classification tech-

nique that gives high classification accuracy for a problem

with non-nominal and unknown distributions. It exhibits lazy

learning by imparting less effort during training and full

effort during the prediction phase. The classification task

is performed based on similarity index by considering the

distance measure in which ‘k’ refers to the integer value lies

between 3 to 10 [33].Generally, it is preferable to select the

odd value of ‘k,’ and the classifier’s output is predicted based

on majority votes cast by the neighbor class. In this work, the

value of k is chosen as 3, and the output for any test case X, the

probability of X belonging to class Ci should be maximum,

which can be defined as:

KNN (X ) = maxP(Ci,X ) (5)

where P(Ci, X) is the probability of X in class Ci. The nearest

neighbors’ weights are assigned based on Euclidean distance

and are defined in [34].

C. J48 DECISION TREE

The J48 decision tree algorithm follows the rule of C4.5.It

is a widely used algorithm since it has the features of high

reliability, easy implementation, canmanage easily with large

data quantities, and data set with missing values [35]. In gen-

eral, the JDT has the following elements: branches, nodes,

leaves, and roots. The decision tree is used to classify the

input feature vectors with a process that starts from tree root to

identification of leaf node, and it works based on the highest

entropy reduction. At each node of the tree, training instances

are passed into the branch and the value of test attributes.

Also, the subset of training instances is used recursively to

generate the new type of nodes. During the case of no change

in the output value, that output attribute is assigned for the
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FIGURE 9. Decision Tree based on energy value feature.

same class value, and a leaf is generated to end the nodes’

recursion. When there are no instances pass through, a leaf

node is generated with a typical class value for the output

attributes [36]. Finally, creating nodes continues recursively

until all the instances are exhausted. During the classification

process with JDT, the following factors are considered [37],

Confidence factor: The parameter of minimum value (0.25)

has been assigned for confidence factor to perform pruning

in DT, in such a way to remove any branch which does not

meet the ratio between the correctly and incorrectly classified

instances.

• The minimum number of leaf-level: Assigned level 2 for

the instances of DT and the value of fold parameter of 3

(determines the amount of data used for reducing the

pruning error)

• For the pruned tree, 7 numbers trees and 4 leaves have

been considered.

Thus, the DT for detecting HIF and other fault events of the

PV integrated power network is shown in Figure 9.

D. SUPPORT VECTOR MACHINE

The SVM is a well-known data-driven technique framed

using statistical learning theory. It was introduced by

Vapnik et al. as a binary classifier for the classification

of linear and non-linear data. The SVM finds an optimal

hyperplane to separate the data set into two distinct classes

{-1, +1}. This is done by mapping the linearly inseparable

input data set to a high dimensional feature space through a

kernel function K(ui,uj). Thus, it increases data dimensional-

ity by feature mapping, which helps construct the hyperplane

separating the classes [8], [12]. The misclassification of clas-

sifiers can be avoided by maximizing the margin between the

two data sets through the hyperplane, as depicted in Figure

10. The hyperplane that separate different classes of data can

be defined as,

f (x) = W T x + b (6)

where,

x ∈
{

ClassI , if f (x) = +1

ClassII , if f (x) = −1

}

f (x) is a linear hyperplane function with bias b, data points

x, and weight vector w, obtained via training [13]. The

most commonly used kernel functions are linear, polyno-

mial, radial basis function (RBF), and sigmoid. In this work,

an RBF reduces the search space of parameter sets and gives

a better accuracy rate than other functions [12], [13].The var-

ious procedures used to classify data using multi-class SVM

are one-against-all, one-against-one, and a directed acyclic

graph method. It was proved that the one-against-one method

is the best choice for practical applications with maximum

accuracy. Therefore, this work also adopts a one-against-

one method to classify faults and is implemented using the

LIBSVM toolbox in MATLAB.

E. NAÏVE BAYES

NB is an extensively used statistics classifier for classifying

the linear and non-linear data because of its simplicity and

no parameter adjustment. NB is based on Bayes’ theorem

with an assumption of class conditional independence among

the features. The NB classifier will modify the marginal

probability of an event according to some extra information,

given that the attributes have independent properties and

are of equal importance. Initially, the classifier calculates

the probabilities of unclassified data corresponding to each

class and then classifies this data into the class having the
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FIGURE 10. Support vector machine.

highest probability. For classification, a prior distribution is

provided for each attribute in the class during the training

stage. In the testing phase, the classifier gives probabilities

of all the classes to which one testing instance belongs, and

then the class having the maximum probability of testing data

was set. The posterior probability of C at any instance of X

can be defined using Bayes’ theorem as [38], [39]:

P(C|X ) =
P(C).P(X |C)

P(X )
(7)

where P(C) is the prior probability, P(X|C) is the likelihood
of C = [C1, C2, . . .Cj] concerning X = {x1, x2, . . . xk}, j is

the number of fault classes (Normal, HIF, LG, LL, LLG, and

LLLG) and k is the attributes of data (Energy values). The

prediction is made for the class with the highest posterior

probability as [24], [35]:

CNB = argmaxP(C)
∏k

i=1
P(Xi|C) (8)

F. PERFORMANCE INDICES

The performance of intelligence classifiers has been evalu-

ated using various indices:

Kappa Statistics (KS): It is an alternative measure of

classifiers’ accuracy, which signifies an agreement between

the observed and expected type of fault in the system. The

performance of classifier can vary based onKS value: KS = 1

(excellent); KS = 0.4 to 0.75 (good); KS = less than 0.4

(poor). The KS index is defined as [12], [27].:

KS =
Observed Fault − Expected Fault

1 − Expected fault
(9)

Precision (P): It is the division of correctly predicted positive

observations between the total predicted positive observa-

tions and is given as follows [27]:

Precision =
TP

TP + FP
(10)

where TP is the true positive and FP is the false positive

FIGURE 11. Non-faulty event (a) Normal condition (b) Load switching.

Recall (R): The division of correctly predicted positive

observations among the class’s entire observations. It is

expressed as [27],

Recall =
TP

TP + FN
(11)

F-measure: It is a weighted average of precision and recall,

which is defined as [27],

F − measure =
(2 × P× R)

P+ R
(12)

where P is the Precision and R is the recall

VI. RESULTS AND DISCUSSION

This section describes the simulation results of the PV inte-

grated IEEE 13-bus power network presented in section 2.

For analysis, the fault is applied at different buses of the

13-bus system, and the data was collected for training and

testing the classifiers. In this work, 80% of data was used

for training, and 20% of data was used to test the classifiers.

Initially, the network was simulated in MATLAB/Simulink,

and the results were obtained during regular operation, a tran-

sient operation like load and capacitor switching, transformer

inrush current, conventional faults such as LG, LL, LLG, and

LLLG, and HIF occurrence. Figure 11(a) depicts the system’s

regular operation, and it is inferred that the current waveform

is unbalanced for unbalanced loading of the power network.

For analysis of the non-faulty event, capacitor and load

switching and transformer inrush current events were applied

to the system during 0.066 s to 0.15 s. A capacitor switching

of 300 kVar to 500 kVar in a step of 50kVar and load switching

of 0.5 MW to 2 MW in the step of 0.25 MW were used for

analysis. For instance, 1 MW of load and 300 kVar switching

of capacitor switching during 0.066s to 0.15 s are shown in

Figure 11(b) and 12(a), respectively. It is seen that the initial

transients are high during CS, and the magnitude of current

increases during these switching transients. On the other side,

32680 VOLUME 9, 2021



V. Veerasamy et al.: LSTM Recurrent Neural Network Classifier for High Impedance Fault Detection

FIGURE 12. Non-faulty event (a) Capacitor switching (b) Transformer
In-rush current.

FIGURE 13. Fault condition (a) HIF (b) LG fault.

the switching of the 4.16 kV/480 V transformer results in a

high inrush current, as shown in Figure 12 (b).

The transformer’s switching has been done at various loca-

tions of the 13-bus system, and then the current signal is

recorded for further analysis. For analyzing low and high

impedance fault events, different faults were applied with

the fault inception angle of 0◦ and 45◦, for illustration the

occurrence of HIF and LG fault in Phase A of the three-phase

system (with an inception angle θf = 0◦) are shown in

Figure 13(a) and 13(b), respectively. It is observed that the

magnitude of fault current is high during the occurrence of LG

fault. On the flip-side, the magnitude of HIF current varies for

different fault resistance considered in the two diode models

assumed as given in Figure 3. The current magnitude is higher

or lower than the load current based on HIF parameters’

assumed value. In the proposed study, the model considers

the worst-case scenario of HIF, whose magnitude of fault

FIGURE 14. V-I characteristics of HIF model (Vp = 500V, Vn = 1000 V,
Rp = Rn = 120 �).

current is limited to be less than 10% of actual load current.

Figure 13(a) represents the fault current waveform due to HIF

(with following parameters: Rp = 120 �, Rn = 120 �,

Vp = 3000 V, and Vn = 2500 V). The magnitude of fault

current is less than the load current depicting the worst-case

scenario of HIF. The HIF model’s V-I characteristic recorded

during this case shows the non-linear relationship between

the voltage and current, as shown in Figure 14.

Further, irregularities in the HIF current (Figure 13 (a))

is masked substantially at the substation (i.e., IEEE 13-bus

system). However, the low amplitude of HIF current with

irregularities is a significant challenge to power engineers for

designing the protection scheme to detect the HIF. Therefore,

signal processing techniques were highly employed to extract

the features from these signals, which have small changes in

magnitude and help identify the events appropriately.

Therefore, DWT based SPT techniques were used to

extract features to train and test the intelligent classifiers. This

tool’s strength lies in the fact that the DWT can detect and

distinguish between infinitesimal wave-shape changes. The

current waveform at the substation (13-bus system) during

normal and HIF conditions looks similar. The current wave-

form at the substation during HIF may have slight distur-

bance, but extend of such distortion may change for several

pre-fault conditions. On processing such signals using DWT

analysis results in a more consistent signature.

For illustration, the DWT analysis of Phase A during

regular operation, capacitor switching, LG fault, and HIF

were shown in Figures 15 to 18. The result shows that the

wavelet coefficients (d1 to d5, and a5) have shown appropri-

ate changes corresponding to system operation. No spikes or

peaks are detected in the DWT analysis wavelet coefficients

in regular operation, as represented in Figure 15. In contrast,

during CS, the magnitude of wavelet coefficients (d1 to d5)

increases, as shown in Figure 16. Similarly, spikes have been

detected in wavelet coefficients (d1 to d5) during LG and

HIF occurrence, as given in Figures 17 and 18, respectively.

However, the amplitude of peak is high during CS and less

in HIF, but this value is greater than the system’s regular

operation. The low-impedance fault like LG has peaked in

wavelet coefficients during the start and end period of fault
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FIGURE 15. DWT analysis of Phase A during normal condition.

FIGURE 16. DWT analysis of Phase A during capacitor switching.

FIGURE 17. DWT analysis of Phase A during LG fault.

occurrence. Based on the value of spikes during different

disturbances, an EV feature has been extracted for each phase

of the three-phase system of the power network considered.

Then, the obtained feature was used to train and test the

classifiers to identify the disturbances appropriately.

FIGURE 18. DWT analysis of Phase A during HIF.

TABLE 2. Confusion matrix during the training of LSTM network.

A. CLASSIFICATION USING INTELLIGENT CLASSIFIERS

Here, the different system condition was analyzed by assum-

ing different classes: C1-Non-faulty event, C2-HIF, C3- Sin-

gle line to ground fault (LG), C4- Double line fault (LL),

C5-Double line to ground fault (LLG) and C6- Three-phase

fault (LLLG). An RNN based LSTM network was proposed

to detect and classify the HIF from other low-impedance

fault disturbances (symmetrical and unsymmetrical fault) and

switching transients in PV integrated IEEE 13-bus power

network. The input data of 970 data samples were used

for training the LSTM classifier, and the details of pre-

dictions during training are given in Table 2. For test-

ing the classifiers, a 20% data set (194 data samples)

was used, and the predictions obtained during this case

are illustrated using a confusion matrix given in Table 3.

The classification accuracy (CA) during testing and train-

ing is shown in Figure 19 and is calculated using (13).It

is seen that the proposed LSTM network obtain 91.23 %

and 91.75 % accuracy during testing and training of classi-

fier depicting its significant performance in classifying the

events.

CA =
Number of fault events correctly identified

Total number of events
× 100%

(13)

Further, the study was extended to compare the proposed

RNN based LSTM classifier’s performance with other intel-

ligent classifiers such as KNN, DT, SVM, and NB to
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FIGURE 19. Performance Accuracy during training and testing of LSTM
network.

TABLE 3. Confusion matrix during testing of proposed LSTM network.

FIGURE 20. Accuracy and Success rate of classifiers.

detect HIF in PV integrated IEEE 13-bus power network.

The training and testing of different classifiers were done as

like LSTM network. For instance, the prediction of the KNN

classifier during testing is shown in Table 4. The results of CA

obtained by different classifiers are shown in Figure 20. The

result shows that the proposed LSTM possesses higher accu-

racy of 91.21%, and the KNN performs to give 90.72%. The

classifiers such as SVM, JDT, and NB have CA of 81.44%,

78.35 %, and 77.83 %, respectively. Figure 21 depicts the

number of instances (53) misclassified by the NB classifier

and a smaller number of instances (17) by the proposed

classifier. The performances of other classifiers are not signif-

icantly appreciable except the KNN classifier. This inference

TABLE 4. Confusion matrix of KNN during testing.

FIGURE 21. Misclassification instances and the error rate of classifiers.

was also interpreted as error rate defined as:

Error Rate

=
Number of fault events incorrectly identified

Total number of events
× 100%

(14)

The proposed LSTM network has a minimum error rate of

8.79%, and NB has a maximum of 22.17 %, as portrayed in

Figure 21. SVM and JDT have a moderate performance on

the flip side, and KNN has 9.28% showing better response.

In particular, the analysis was carried out to detect the number

of HIF event correctly identified using the index:

Success Rate=
Number ofHIF events detected

Total number ofHIF events
×100%

(15)

The result obtained in Figure 20 reveals that the proffered

LSTM gives a maximum success rate of 92.42 % by iden-

tifying the HIF events in the 13-bus PV integrated power

network. The performance was worst in the JDT classifier

case and was comparatively good for other classifiers such as

KNN, SVM, and NB.

B. PERFORMANCE ANALYSIS OF CLASSIFIERS

The classifier’s robustness was further examined by evalu-

ating the PI of Kappa Statistic (KS), Precision, Recall, and

F-measure. Figure 22 portrays the KS index for all the intel-

ligent classifiers used for fault classification. The proposed

LSTM performs to give a maximum value of 0.891, and com-

parative performance was also observed in KNN of 0.882.

On the flip-side, SVM, JDT, and NB give a moderate perfor-

mance with the index value of 0.7637, 0.7205, and 0.7208,

respectively. Thus, it is inferred that the classifier with a
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TABLE 5. PI of different classifiers-precision index.

TABLE 6. PI of different classifiers-recall index.

TABLE 7. PI of different classifiers- F-measure index.

FIGURE 22. Kappa statistic performance of classifiers.

maximum value of KS index depicts excellent performance in

classification, which is observed in the proposed RNN based

LSTM network.

Further, the precision index depicted in Table 5 presents the

CA obtained by the classifier for each event. It is seen that the

proffered technique identifies several HIF events compared to

other classifiers presented. Similarly, the other indices such as

Recall and F-measure were measured, and the performance

was observed to be superior for the proposed classifier than

other classification approaches as presented in Table 6 and 7.

Further, to validate the proposed classifier’s performance,

the fault detection time was compared for each classifier

(LSTM, KNN, DT, SVM, and NB: 76 ms, 81.5 ms, 110 ms,

80 ms, and 82 ms, respectively). The time includes the SPT of

DWT analysis and fault detection by the classifier. The results

reveal that the proposed deep learning method of recurrent

LSTM classifier detects quickly compared to other intelligent

classifiers. The results of detection time were taken in a

personal computer with the following specifications: 32-bit

OS with x64-based processor (Intel (R) core (TM) i5-2410M

CPU @2.30 GHz) and has memory capacity of 8 GB.

VII. CONCLUSION

The HIF procedure’s detection relies on various conditions,

some of which are network-specific and present exclusive

characteristics. In this work, a more realistic PV-integrated

IEEE 13-bus system was considered for the HIF study using

the proposed RNN based LSTMnetwork. Initially, the 13-bus

distribution network was developed inMATLAB/Simulink to

introduce various events (Non-faulty events: Normal opera-

tion, transformer inrush current, load switching, and capacitor

switching, faulty-events: HIF, LG, LL, LLG, and LLLG).

The three-phase current signal under these conditions was

analyzed using DWT analysis with the mother wavelet of

db4. The wavelet coefficients (d1, d2, d3, d4, d5, and a5)

obtained was used to extract the energy value features for

various phases to train and test the classifiers. The classifiers’

result shows that the proposed RNN based LSTM performs

better to give the classification accuracy of 91.21% than other

classifiers such as KNN, SVM, JDT, and NB.

Further, the success rate on detecting specific HIF events

was 92.42 % for the proffered technique, and the rate was

reasonably good for other classifiers presented. The PI of

KS, precision, recall, and F-measure were also examined to

validate different classifiers’ robustness. The result shows

that the propounded LSTM classifier outperforms signifi-

cantly in terms of all PI and also detects the fault quickly

compared to other classification approaches. The detection

of HIF using advanced signal processing techniques and the

hybrid classifier method is the future scope of the presented

work.
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