
LSTM TIME AND FREQUENCY RECURRENCE FOR AUTOMATIC SPEECH

RECOGNITION

Jinyu Li, Abdelrahman Mohamed, Geoffrey Zweig, and Yifan Gong

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052

{ jinyli, asamir, gzweig, ygong}@microsoft.com

ABSTRACT

Long short-term memory (LSTM) recurrent neural networks

(RNNs) have recently shown significant performance

improvements over deep feed-forward neural networks

(DNNs). A key aspect of these models is the use of time

recurrence, combined with a gating architecture that

ameliorates the vanishing gradient problem. Inspired by

human spectrogram reading, in this paper we propose an

extension to LSTMs that performs the recurrence in

frequency as well as in time. This model first scans the

frequency bands to generate a summary of the spectral

information, and then uses the output layer activations as the

input to a traditional time LSTM (T-LSTM). Evaluated on a

Microsoft short message dictation task, the proposed model

obtained a 3.6% relative word error rate reduction over the T-

LSTM.

Index Terms— LSTM, RNN, time and frequency

1. INTRODUCTION

Recently, significant progress has been made in automatic

speech recognition (ASR) thanks to the application of deep

neural networks (DNNs) [1][2][3][4][5][6]. Unlike in the

1990s, today’s DNN systems often contain tens of millions of
parameters and are more powerful than their counterparts two

decades ago [7][8] in modeling speech signals. DNNs,

however, only consider information in a fixed-length sliding

window of frames and thus cannot exploit long-range

correlations in the signal. Recurrent neural networks (RNNs),

on the other hand, can encode sequence history in their

internal state, and thus have the potential to predict phonemes

based on all the speech features observed up to the current

frame. Unfortunately, simple RNNs, depending on the largest

eigenvalue of the state-update matrix, may have gradients

which either increase or decrease exponentially over time.

Thus, the basic RNN is difficult to train, and in practice can

only model short-range effects. Long short-term memory

(LSTM) RNNs [9][10] were developed to overcome these

problems. LSTM-RNNs use input, output and forget gates to

achieve a network that can maintain state and propagate

gradients in a stable fashion over long spans of time. These

networks have been shown to outperform DNNs on a variety

of ASR tasks [11][12][13] [14][15][16]. All previously

proposed LSTMs use a recurrence along the time axis to

model the temporal patterns of speech signals, and we call

them T-LSTMs in this paper. The main contribution of this

paper is the proposal of a two-level network where the first

level performs recurrence along the frequency axis, and the

second performs time recurrence. We term this the

frequency-time LSTM or F-T-LSTM.

Our model is inspired by the way people read

spectrograms. Note that in common practice, log-filter-bank

features are often used as the input to the neural-network-

based acoustic model [19][20]. In standard systems, the log-

filter-bank features are independent of one-another, i.e.

switching the positions of two filter-banks won’t affect the
performance of the DNN or LSTM. However, this is not the

case when a human reads a spectrogram: a human relies on

both patterns that evolve on time, and frequency, to predict

phonemes. Switching the positions of two filter-banks will

destroy the frequency-wise patterns. Our model addresses

this phenomenon by explicitly modeling the frequency-wise

evolution of spectral patterns. Evaluated on a Microsoft

internal short message dictation task, the proposed F-T-

LSTM obtained 3.6% relative word error rate (WER)

reduction from the T-LSTM.

The rest of the paper is organized as follows. In Section

2, we briefly introduce LSTMs and then we present the

proposed model which combines frequency LSTM and time

LSTM in Section 3. We differentiate the proposed method

from the convolutional LSTM DNN (CLDNN) [16] and

multi-dimensional RNN [17][18] in Section 4. Experimental

evaluation of the algorithm is provided in Section 5. We

summarize our study and draw conclusions in Section 6.

2. THE LSTM-RNN

An RNN is fundamentally different from the feed-forward

DNN in that the RNN does not operate on a fixed window of

frames; instead, it maintains a hidden state vector, which is

recursively updated after seeing each time frame. The internal

state encodes the history all the way from the beginning of an

utterance up to the last input, and can thus potentially model

much longer span effects than a fixed-window DNN. In other

words, an RNN is a dynamic system and is more general than

the DNN which performs a static input-output

transformation. The inclusion of internal states enables RNNs

to represent and learn long-range sequential dependencies.

However, the simple RNN suffers from the

vanishing/exploding gradient problem [21] when the error

signal is back-propagated through time. This problem is well

handled in the LSTM-RNNs through the use of the following

four components:

 Memory units: these store the temporal state of the

network;

 Input gates: these modulate the input activations into

the cells;

 Output gates: these modulate the output activations

of the cells ;

 Forget gates: these adaptively reset the cell’s
memory.

Taken together as in Figure 1 below, these four components

are termed a LSTM cell.

Figure 1. Architecture of LSTM-RNNs with one recurrent

layer. 𝑍−1 is a time-delay node.

Figure 1 depicts the architecture of an LSTM-RNN with

one recurrent layer. In LSTM-RNNs, in addition to the past

hidden-layer output 𝒉𝑡−1, the past memory activation 𝒄𝑡−1 is

also an input to the LSTM cell.

This model can be described as: 𝒊𝑗𝑙 = 𝜎(𝑾𝑥𝑖𝑙 𝒙𝑗𝑙 +𝑾ℎ𝑖𝑙 𝒉𝑗−1𝑙 +𝑾𝑐𝑖𝑙 𝒄𝑗−1𝑙 + 𝒃𝑖𝑙), (1) 𝒇𝑗𝑙 = 𝜎(𝑾𝑥𝑓𝑙 𝒙𝑗𝑙 +𝑾ℎ𝑓𝑙 𝒉𝑗−1𝑙 +𝑾𝑐𝑓𝑙 𝒄𝑗−1𝑙 + 𝒃𝑓𝑙), (2) 𝒄𝑗𝑙 = 𝒇𝑗𝑙 .∗ 𝒄𝑗−1𝑙 + 𝒊𝑗𝑙.∗ tanh(𝑾𝑥𝑐𝑙 𝒙𝑗𝑙 +𝑾ℎ𝑐𝑙 𝒉𝑗−1𝑙 + 𝒃𝑐𝑙), (3) 𝒐𝑗𝑙 = 𝜎(𝑾𝑥𝑜𝑙 𝒙𝑗𝑙 +𝑾ℎ𝑜𝑙 𝒉𝑗−1𝑙 +𝑾𝑐𝑜𝑙 𝒄𝑗𝑙 + 𝒃𝑜𝑙), (4) 𝒉𝑗𝑙 = 𝒐𝑗𝑙 .∗ tanh(𝒄𝑗𝑙), (5)

where 𝒊𝑗𝑙, 𝒐𝑗𝑙, 𝒇𝑗𝑙 , and 𝒄𝑗𝑙 denote the activation vectors of input

gate, output gate, forget gate, and memory cell at the l-th layer

and time j, respectively. 𝒉𝑗𝑙 is the output of the LSTM cells at

layer l and time j. 𝑾 terms denote different weight matrices.

For example, 𝑾𝑥𝑖𝑙 is the weight matrix from the cell input to

the input gate at the l-th layer. b terms are the bias terms (e.g., 𝒃𝑖𝑙 is the bias of input gate at layer l). “.∗” denotes element
wise multiplication.

In [13], a LSTM with an additional projection layer prior

to the output (termed LSTMP) was proposed to reduce the

computational complexity of LSTM. A projection layer is

applied to 𝒉𝑗𝑙 as 𝒓𝑗𝑙 = 𝑾ℎ𝑟𝑙 𝒉𝑗𝑙
And then 𝒉𝑗−1𝑙 in Eqs (1)--(4) is replaced by 𝒓𝑗−1𝑙 .

3. FREQUENCY-TIME LSTM-RNN

In this section, we propose a frequency-time LSTM (F-T-

LSTM) which combines frequency LSTM with time LSTM

as shown in Figure 2. We first use a frequency LSTM (F-

LSTM) to scan the frequency bands so that frequency-

evolving information is summarized by the output of the F-

LSTM. The formulation of the F-LSTM is the same as that of

the T-LSTM except that the index j now stands for frequency

steps instead of time steps. Then we can take the outputs from

all F-LSTM steps and use them as the input to T-LSTM to do

time analysis in the traditional way.

F
re

q
u

e
n

c
y

Time

… …

…

… …

…

…
…

Time

Analysis

F
re

q
u

e
n

c
y

A
n

a
ly

sis

Figure 2: A frequency- time LSTM-RNN which scans the

frequency axis first for frequency analysis and then scans

the time axis for time analysis.

The detailed F-LSTM processing for each time step is

described as follows.

 Divide total N log-filter-banks at current time into M

overlapped chunks and each chunk contains B log-

filter-banks. There are C log-filter-banks overlapped

between adjacent chunks. Here we have the

relationship 𝑀 = 𝑁−𝐶𝐵−𝐶 . An extreme case is C=0

where there is no overlapped log-filter-bank. In such

a case, 𝑀 = 𝑁𝐵.

 Use the M overlapped chunks as the frequency steps

of F-LSTM and generate the output of 𝒉𝑚 , 𝑚 =0…𝑀 − 1.

 Merge 𝒉𝑚 , 𝑚 = 0…𝑀 − 1. into a super-vector 𝒉

which can be considered as a trajectory of frequency

patterns at current time. Then use 𝒉 as the input to a

T-LSTM with multiple layers.

Figure 3 shows an example setup of the F-LSTM used in

our experiments. The input at each frame consists of a 40

dimensional vector of log-filter-bank values at the current

time t. We divide the 40 log-filter-bank channels into 33

overlapped chunks with each chunk containing 8 log-filter-

banks. This results in 7 log-filter-banks of overlap between

adjacent chunks (C=7). Therefore, the first F-LSTM cell

takes eight inputs: the log-filter-banks from 0 to 7, and the

second F-LSTM cell takes the log-filter-banks from 1 to 8,

and so on. The m-th F-LSTM cell generates outputs 𝒉𝑚 ,

which will be passed into the m+1-th F-LSTM cell. Finally, 𝒉𝑚 , 𝑚 = 0…𝑀 − 1 (M=33 in this example) will be

concatenated as the input to a T-LSTM.

Figure 3: An example setup of F-LSTM.

4. RELATION TO PRIOR WORK

In this section, we first discuss the difference between our

proposed F-T-LSTM and the convolutional LSTM DNN

(CLDNN) [16] which combines CNNs, LSTMs, and DNNs

together. The CLDNN first uses a CNN [22][23] to reduce

the spectral variation, and then the output of the CNN layer is

fed into a multi-layer LSTM to learn the temporal patterns.

Finally, the output of the last LSTM layer is fed into several

fully connected DNN layers for the purpose of classification.

The key difference between the proposed F-T-LSTM and

the CLDNN is that the F-T-LSTM uses frequency recurrence

with the F-LSTM, whereas the CLDNN uses a sliding

convolutional window for pattern detection with the CNN.

While the sliding window achieves some invariance through

shifting, it is not the same as a fully recurrent network. The

two approaches both aim to achieve invariance to input

distortions, but the pattern detectors in the CNN maintain a

constant dimensionality, while the F-LSTM can perform a

general frequency warping.

 The proposed F-T-LSTM performs 1-D recurrence over

the frequency axis and then performs 1-D recurrence over the

time axis. This is different from the concept of

multidimensional processing which has been proved very

successful in the handwriting recognition tasks [17][18] and

outperformed the traditional handwriting systems that use

CNNs [22][23] as the feature extractor. To summarize, the

T-F-LSTM works on multidimensional space separately with

simplicity while the multidimensional RNN [17][18] works

jointly on multidimensional space with more powerful

modeling.

5. EXPERIMENTS AND DISCISSIONS

In this section, we use a Windows Phone short message

dictation task to evaluate the proposed method. The training

data consists of 60 hours of transcribed US-English audio.

The test set consists of 3 hours of data from the same

Windows Phone task. The audio data is 16k HZ sampled,

recorded in mobile environments using Windows phones.

The vocabulary has around 130k words and the LM has

around 6.6M ngrams (up to trigram). All experiments were

conducted using the computational network toolkit (CNTK)

[24], which allows us to build and evaluate various network

structures efficiently without deriving and implementing

complicated training algorithms. All the models were trained

to minimize the frame-level cross-entropy criterion.

The input to the baseline CD-DNN-HMM system

consists of 40-dimensional log-filter-bank features. We

augment these feature vectors with 5 frames of context on

either side (5-1-5). The DNN has 5 hidden layers, each with

2048 sigmoid units. Both the baseline and LSTM systems use

1812 tied-triphone states or senones.

The baseline T-LSTMP is modeled after that in [13]. It

has four T-LSTMP layers: each has 1024 hidden units and the

output size of each T-LSTM layer is reduced to 512 using a

linear projection layer. There is no frame stacking, and the

output HMM state label is delayed by 5 frames as in [13].

When training T-LSTMP, the backpropagation through time

(BPTT) [25] step is 20.

We built the F-T-LSTM with a single F-LSTM that scans

the log-filter-banks and three T-LSTMP layers. The number

of parameters of the F-T-LSTM is between the numbers of

parameters of the three- and four- layer LSTMPs. To generate

the input to the F-LSTM, we use the example setup in Section

3 by dividing the 40 log-filter-bank channels into 33

overlapped chunks with each chunk containing 8 log-filter-

banks. The F-LSTM has 24 memory cells.

In Table 1, we compare the WERs of a DNN, T-LSTM,

and F-T-LSTM. The T-LSTM is clearly better than the DNN

due to its temporal modeling power. With both the frequency

and temporal modeling, the F-T-LSTM is better than the 4-

layer T-LSTM, with 3.6% relative WER reduction.

Table 1: WER comparison of DNN, T-LSTM, and F-T-

LSTM

Model WER (%)

DNN 21.84

3-layer T-LSTMP 20.79

4-layer T-LSTMP 20.38

F-LSTM (24 cells)+3-layer T-

LSTMP

19.64

We investigate the impact of different cell numbers in

the F-LSTM in Table 2. When the number of cells is very

small, e.g., 8, the power of F-LSTM is very limited with only

a slight improvement over the T-LSTM. However, when the

number of cells becomes 24, the F-LSTM shows its

advantage because the memory cells are powerful enough to

store the frequency patterns. When we increase the number

of cells to 48, there is no further improvement.

Table 2: Impact of cell numbers in F-LSTM

Model WER (%)

F-LSTM (8 cells)+3-layer T-

LSTMP

20.19

F-LSTM (24 cells)+3-layer T-

LSTMP

19.64

F-LSTM (48 cells)+3-layer T-

LSTMP

19.81

In all the aforementioned experiments, we have not stacked

multiple frames of log-filter-banks as the input to F-T-LSTM.

This decision is made based on our previous experience with

T-LSTMs, where we found that stacking multiple frame

inputs doesn’t have any benefit, and [13] also doesn’t have
the frame stacking. In Table 3, we compare the setup with and

without multiple-frame stacking. Stacking N frames means

that every chunk now has 8*N log-filter-banks. When

stacking 11 frames, we predict the center frame’s label. As

shown in Table 3, it doesn’t provide any benefit to WER by

stacking 11 frames as the input to F-LSTM.

Table 3: Comparison of F-T-LSTM with and without

stacking frame inputs

Model Number of

Input Frames

WER

(%)

F-LSTM (24 cells)+3-

layer T-LSTMP

1 19.64

F-LSTM (24 cells)+3-

layer T-LSTMP

11 20.08

F-LSTM (48 cells)+3-

layer T-LSTMP

1 19.81

F-LSTM (48 cells)+3-

layer T-LSTMP

11 20.01

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a FT--LSTM architecture

that scans both the time and frequency axis to model the

evolving patterns of the spectrogram. The F-T-LSTM first

uses an F-LSTM to performs a frequency recurrence that

summarizes frequency-wise patterns. This is then fed into a

T-LSTM. The proposed F-T-LSTM obtained a 3.6% relative

WER reduction from the traditional T-LSTM on a short

message dictation task. We have shown that as long as the

number of memory cells in the F-LSTM is reasonable, the F-

T-LSTM can achieve good performance. We also evaluated

the impact of stacking multiple frames as the input to F-

LSTM, and found that it is best to simply present the frames

one at a time

Several research issues will be addressed in the future to

further increase the effectiveness of the algorithm presented

in this paper. First, we will compare the performance of F-T-

LSTMs with CLDNNs to better understand their relative

advantages. Second, we want to explore architectural variants

of the F-T-LSTM. For example, we will examine whether

frequency overlapping of the input to F-LSTM is necessary.

Third, we will move the input of F-LSTM from log-filter-

banks directly to log-spectrum. There are studies showing

that directly working of log-spectrum can be beneficial to

DNN [26]. By applying the F-LSTM directly on log-

spectrum, we can naturally remove the hand-crafted filter-

banks, and automatically learn the frequency patterns that

benefit the recognizer. Fourth, in [27] it is shown that CNNs

can consistently provide advantages over DNNs in

mismatched training-test conditions. It is interesting to see

whether the frequency recurrence brought by the F-LSTM

can be more helpful in the mismatched conditions. Last and

most importantly, we will advance our study by proposing a

multidimensional LSTM with a simplified structure which

performs recurrence over the time and frequency axes jointly

[28]. We term it the time-frequency LSTM (TF-LSTM). We

will compare TF-LSTM and F-T-LSTM in [28] by using a

much larger ASR task. It will be shown that F-T-LSTM is

still effective on that larger ASR task.

REFERENCES

[1] F. Seide, G. Li, and D. Yu, “Conversational speech
transcription using context-dependent deep neural networks,”
in Proc. Interspeech, pp. 437-440, 2011.

[2] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “An
application of pretrained deep neural networks to large

vocabulary conversational speech recognition,” in Proc.

Interspeech, 2012.

[3] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P.

Novak, A.-R. Mohamed, “Making deep belief networks
effective for large vocabulary continuous speech recognition,”

in Proc. ASRU, pp. 30-35, 2011.

[4] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Large vocabulary
continuous speech recognition with context-dependent DBN-

HMMs,” in Proc. ICASSP, pp. 4688-4691, 2011.

[5] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling
using deep belief networks,” IEEE Trans. Audio Speech and

Language Process., vol. 20, no. 1, pp. 14-22, Jan. 2012.

[6] L. Deng, J. Li, J.-T. Huang et. al. “Recent advances in deep

learning for speech research at Microsoft,” in Proc. ICASSP,

2013.

[7] H. Bourlard and N. Morgan. Connectionist speech recognition

- A Hybrid approach, Kluwer Academic Press, 1994.

[8] S. Renals, N. Morgan, H. Boulard, M. Cohen, and H. Franco.

“Connectionist probability estimators in HMM speech

recognition,” IEEE Transactions on Speech and Audio

Processing, vol. 2, no. 1, pp. 161–174, 1994.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,

1997.

[10] A. Gers, J. Schmidhuber, and F. Cummins. “Learning to
forget: Continual prediction with LSTM,” Neural

Computation, vol. 12, no. 10, pp. 2451-2471, 2000.

[11] A. Graves, A. Mohamed, G. Hinton. “Speech recognition with

deep recurrent neural networks,” in Proc. ICASSP, 2013.

[12] A. Graves, N. Jaitly, A. Mohamed. “Hybrid speech

recognition with deep bidirectional LSTM,” in Proc. ASRU,

2013.

[13] H. Sak, A. Senior, F. Beaufays, "Long short-term memory

recurrent neural network architectures for large scale acoustic

modeling," in Proc. Interspeech, 2014.

[14] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R.

Monga, M. Mao, "Sequence discriminative distributed

training of long short-term memory recurrent neural

networks," in Proc. Interspeech, 2014.

[15] X. Li and X. Wu, “Constructing long short-term memory

based deep recurrent neural networks for large vocabulary

speech recognition,” in Proc. ICASSP, 2015.

[16] T. N. Sainath, O. Vinyals, A. Senior and H. Sak,

"Convolutional, long short-term memory, fully connected

deep neural networks," in Proc. ICASSP, 2015.

[17] A. Graves, S. Fernández, J. Schmidhuber, “Multi-dimensional

recurrent neural networks,” in ICANN, pp. 549-558, 2007.

[18] A. Graves and J. Schmidhuber, “Offline handwriting
recognition with multidimensional recurrent neural

networks,” Advances in Neural Information Processing

Systems, pp. 545-552, 2009.

[19] A. Mohamed, G. Hinton, and G. Penn, “Understanding how
deep belief networks perform acoustic modelling,” in Proc.

ICASSP, pp. 4273–4276, 2012.

[20] J. Li, D. Yu, J. T. Huang, and Y. Gong. "Improving wideband

speech recognition using mixed-bandwidth training data in

CD-DNN-HMM," Proc. IEEE Spoken Language Technology

Workshop, pages 131–136, 2012.

[21] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term

dependencies with gradient descent is difficult,” IEEE

Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166,

1994.

[22] T. N. Sainath, A. Mohamed, B. Kingsbury and B.

Ramabhadran, "Deep convolutional neural networks for

LVCSR," in Proc. ICASSP, 2013.

[23] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn,

and Dong Yu, “Convolutional neural networks for speech

recognition,” IEEE/ACM Transactions on Audio, Speech, and

Language processing, vol. 22, no. 10, pp. 1533-1545, 2014.

[24] D. Yu, A. Eversole, M. Seltzer, et. al., "An introduction to

computational networks and the computational network

toolkit," Microsoft Technical Report MSR-TR-2014-112,

2014.

[25] Jaeger, H. “Tutorial on training recurrent neural networks,

covering BPPT, RTRL, EKF and the echo state network

approach,” GMD Report 159, GMD—German National

Research Institute for Computer Science, 2002.

[26] T. N. Sainath, B. Kingsbury, A. Mohamed and B.

Ramabhadran, "Learning filter banks within a deep neural

network framework," in Proc. ASRU, 2013.

[27] J.-T. Huang, J. Li, and Y. Gong, An analysis of convolutional

neural networks for speech recognition, in Proc. ICASSP,

2015.

[28] J. Li, A. Mohamed, G. Zweig, and Yifan Gong, “Exploring

multidimensional LSTMs for large vocabulary ASR,”
submitted to Proc. ICASSP, 2016.

https://sites.google.com/site/tsainath/tsainath_cnnLVCSR.pdf?attredirects=0
https://sites.google.com/site/tsainath/tsainath_cnnLVCSR.pdf?attredirects=0

